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The spectral renormalization of electromagnetic waves of finite amplitude propagating in metals 
is investigated. The change in nondissipative conductivity attributable to the nonlinear nature of 
particle motion in the wave field is found. A qualitative analysis is carried out and equations of 
motion of electrons with an arbitrary spectrum ~ ( p )  in a uniform magnetic field B, and a 
circularly-polarized wave field are found. The spectral renormalization effects of an electron 
doppleron in cadmium are examined. Such effects are manifested as a reduction in the period of 
surface impedance oscillations and a shift of these oscillations toward stronger fields B, with 
increasing wave amplitude. The nonlinear effects are shown to be sensitive to the behavior of the 
portion of the electronic spectrum responsible for the threshold conductivity (the intersection 
with the extremal value of the derivative dS /dp, or the reference point). These effects are 
compared to experimental resulk3 

1. INTRODUCTION 

The interaction between a strong electromagnetic wave 
and resonant electrons may have a significant effect on the 
conductivity of a metal. This interaction will principally re- 
duce the dissipative part of the conductivity and cause a cor- 
responding decrease in nondissipative damping, since it is 
the resonant particles that make the primary contribution to 
the damping. Moreover, the interaction of charged particles 
with a wave will also modify the nondissipative part of the 
conductivity, which leads to renormalization of the real part 
of the spectrum. Since, as a rule, all particles-not just the 
resonant ones-contribute to the nondissipative conductiv- 
ity, the nonlinear renormalization effects of the real part of 
the spectrum will generally be less strongly expressed than 
the nonlinear damping effects. 

The nonlinear spectral renormalization problem was 
first analyzed by Morales and O'Neill in a study of longitu- 
dinal plasma waves. The nonlinear frequency shift Sw was 
shown to asymptotically (as t-  cc ) approach a quantity 
proportional to the oscillation frequency of the trapped par- 
ticlesz. Karpman and Lundin2 calculated the nonlinear fre- 
quency shift of circularly polarized waves (whistlers) prop- 
agating in a gaseous plasma. 

The present paper is devoted to an investigation of the 
effects of nonlinear renormalization of the spectrum of elec- 
tromagnetic waves propagating in a degenerate electron- 
hole metal plasma. The nature of this problem is such that, as 
a rule, we have an essentially nonquadratic energy spectrum 
of the carriers ~ ( p )  and, moreover, the degeneration of the 
electron-hole plasma yields a discernible collisionless cyclo- 
tron absorption threshold. 

The real and imaginary parts of the conductivity are, as 
a rule, nonanalytic at the threshold, with the character of the 
singularity determined by the electronic spectrum at the 
reference point or near the intersection of the Fermi surface 
with the extremal value of the derivative dS/dp, (S is the 
cross section of the Fermi surface andp, is the projection of 
the momentum in the direction of the magnetic field). As 
suggested in this study, the dispersion law of the electromag- 

netic wave will change most significantly with increasing 
wave amplitude near the absorption threshold due to the 
effect of the wave on particles either near the reference point 
or at the intersection with the extremal of dS/dp,. It will be 
demonstrated, specifically, that the strong nonlinear renor- 
malization of conductivity (both the real and imaginary 
parts) may generate waves of a new type beyond the colli- 
sionless absorption threshold. Such waves have been ob- 
served experimentally in cadmium and may have been de- 
tected in t ~ n g s t e n . ~  In addition to the well-known electron 
doppleron propagating along the magnetic field with zero 
collisionless damping, a new branch of opposite polarity was 
also discovered beyond the collisionless cyclotron absorp- 
tion threshold under nonlinear conditions in cadmium. Such 
anomalous dopplerons have not been observed under linear 
conditions. 

Before solving the spectral renormalization problem, 
we analyze the dynamics of particles with a complex electron 
dispersion law in a longitudinal magnetic field B, and in the 
field of a circularly-polarized electromagnetic wave travel- 
ing parallel to B, (Sec. 2). The distribution function of the 
resonant electrons is then calculated by means of the kinetic 
Boltzmann equation (Sec. 3 ) . The nonlinear correction to 
the nondissipative conductivity and the nonlinear spectral 
renormalization are calculated in Sec. 4. The parameters of 
the anomalous doppleron in cadmium observed in Ref. 3 are 
discussed in the final, fifth section. 

2. PARTICLE DYNAMICS 

Let us consider the dynamics of a charged particle in the 
field of a circularly polarized electromagnetic wave propa- 
gating in the direction of a fixed, uniform magnetic field B,. 
We assume cylindrical symmetry of the Fermi surface of the 
metal, and carry out a preliminary qualitative analysis of this 
dynamical system for a comparatively simple model of the 
electronic spectrum 
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We write the equations of motion and analyze the phase 
portrait of the system. There is no electrical field associated 
with the wave in the coordinate system traveling with the 
phase velocity up of the wave while the magnetic field coin- 
cides with the electrical field in the laboratory frame accu- 
rate to terms of the order of ( u , / ~ ) ~ .  In this case the initial 
equations of motion take the form 

where e is electron charge, c is the speed of light, v = &/dp is 
particle velocity, and B = (B sin kz, B cos kz, 0) is the field 
of the circularly-polarized wave (" - " polarization). Since 
the total energy of the particle ~ ( p )  - vpp, is conserved in 
the comoving frame, one of the equations of the system (2)  
can be dropped. The two remaining equations are easily 
written for the longitudinal momentum p, and for the angle 
/3 between the magnetic field of the wave and the transverse 
velocity vector of the particle v,: 

-- d p z  = -hrnu, sin /3, 
d7 

-- a' - ~+ku , /a .+hu , /u~  eos i3, 
d t  

Here 7 = w,t is dimensionless time, w, is the cyclotron fre- 
quency, h=B/B, ,  and k is the wave vector, 
/3= g, + kz + 7~/2, cp = arctg(u,,/u, ). The stationary 
points of Eqs. (3)  are found by the equations 

sin p=O, p=nn, (4a) 

Let us first analyze the system (4)  assuming that the 
velocity u, (p) has no extremum in the momentum domain 
-pF <pz <pF (Fig. la) .  The position of the stationary 
points on the p, axis depends on q = ku,/w,. This is illus- 
trated by Fig. 2. Curves 1 and 2 represent the dependence of 
the left side of Eq. (4b) on p, for different values of pa- 
rameter q. Curves 3 and 4 are plots of the right side of the 
equation with an even (curve 3) and odd (curve 4) value of 
n. The intersections of these curves define the position of the 
stationary points on the phase plane. Figure 2 reveals that 
for q < 1 there are two stationary points in the neighborhood 
of p, = + p,. Both of these points are "centers" (see Fig. 
3a). The situation changes with increasing q: curves 1 and 4 
make contact and a third "saddle-center" singularity ap- 
pears at a certain value q = q,, (Fig. 3b). Finally there are 
four singularities for q > 9,: these are "centers" and "sad- 
dles" (Fig. 3c). 

When the velocity v, (p,) has an extremum (Fig. lb),  
equations (4a) and (4b) continue to describe the position of 

FIG. 2. Graphical solution of Eq. (4b) that determines the position of the 
stationary points. 

the stationary points on the phase plane, although there may 
be an increasing number of solutions of Eq. (4b) (the num- 
ber of intersections of curve 5 in Fig. 2 ) .  Specifically, there 
may be two cyclotron resonances symmetrical to the extre- 
mum of u, (p, ) . 

We now analyze the more general model of the elec- 
tronic spectrum 

We represent the vector potential A in a constant magnetic 
field parallel to the z axis and in the field of a perpendicularly 
polarized wave as 

We then have for the Hamiltonian 

where 

eB 
pLZ = ( p. + ck sin ( k r - a t )  

w is the frequency of the electromagnetic wave, 
x, = cp,, /eB, . 

We now need to carry out a number of canonical trans- 
forms on Hamiltonian ( 6 )  corresponding to a transition to 
the comoving frame of the wave and selection of more con- 
venient action-angle canonically conjugate variables. These 
transforms are carried out in the Appendix. 

FIG. 1.  Electron velocity in a metal in the direction of the mag- 
netic field. a-pf <po, b--p, >po. 

P F P O  Pz Po PC Pz 
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FIG. 3. Phase portraits of the dynamical system ( 3 )  for different values of 
the parameter q. 

Particle dynamics in the vicinity of different singulari- 
ties on the phase plane can be analyzed by means of equa- 
tions of motion (A6) listed in the Appendix. We, however, 
will only focus on the neighborhood of cyclotron resonance 
defined in linear theory by the condition 

where the actions P and J are given by Eqs. (A3). It is this 
domain, as will be demonstrated below, that makes the 
strongest contribution to spectral renormalization and 
damping of the wave. 

Carrying out an expansion in the resonant shift of the 
momentum s = - P, defined by condition (7) in (A6), and 
introducing the dimensionless momentum s = (P + PI ) / p  
and time T = 5t,  we obtain the following Hamiltonian sys- 
tem: 

ds 8% -=--= -sin pi-vs sin p ,  
da a p  

dp aa 
-- = - = s+3ys2+v cos p, 
da as 

% = q / z ~ 2 - ~ o ~  p+ys3+vs cos p. 

Here 

is the characteristic resonant width and characteristic oscil- 

lation frequency of the trapped particles, respectively, while 
the parameters 

are expressed through the derivatives of the resonant cross 
section S ( E ~ ; ~ ,  ) and the derivative of the cyclotron frequen- 
cy (m, is the cyclotron mass). 

It is possible to simplify the Hamiltonian (8)  by elimi- 
nating the term vs cos p through the change of variables 

s-v-v cos p ,  p=p ,  

after which, to within small terms of order v2 and vp, we 
have 

We therefore arrive at the Hamiltonian of a mathematical 
pendulum with an additional small parameter pv3. This ad- 
dition will be shown to have little effect on wave damping, 
although it is significant in determining spectral renormal- 
ization. 

3. KINETICS OF RESONANT PARTICLES 

The electron distribution function of the resonant parti- 
cles satisfies the kinetic Boltzmann equation, which in the 
comoving frame of the wave in the variables J, 9, P, P takes 
the form 

where the collision integral is written in a relaxation-time 
approximation, rp is the drift time, f, (E' + vpp, = const) is 
the equilibrium distribution function, while 
E' = E - upp, = const is the energy in the comoving frame. 
The time dependence of the distribution function in the co- 
moving frame is entirely attributable to the temporal de- 
pendence of the amplitude, i.e., damping, so this permits ne- 
glecting the term af /at in Eq. ( 10). Assuming f = f, + g, we 
obtain for the nonequilibrium correction g 

where f ;, = df0/d&. 
The electron collisions in Eq. ( 1 1 ) must be taken into 

account in order to calculate the nonlinear absorption coeffi- 
cient of the wave. This coefficient is found to be proportional 
to the nonlinearity parameter a, which in turn is equal to the 
ratio of the electron collision frequency T ;  to the oscilla- 
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tion frequency of the trapped particles i3 (Ref. 4).  Renor- 
malization of the real part of the spectrum appears even in 
zeroth order in a, i.e., it has a collisionless nature. Therefore, 
allowing rP to approach infinity in Eq. ( 1 I ) ,  we obtain 

h 
g = - a f i ( ~ - ~  + (p, cos p-p, cos p)), (12) 

where the prime denotes time averaging. 
We have neglected the dependence of fh on s in Eq. 

(1 1 ) in calculating Eq. ( 12). Taking this relation into ac- 
count will lead to terms proportional to f t ,  etc. in Eq. ( 12). 
The term with f ; in the distribution function of Ref. 1 made 
the principal contribution to the frequency renormalization 
of a Langmuir wave propagating in a Maxwellian plasma. 
The frequency shift of a circularly-polarized wave in a non- 
degenerate plasma was determined in Ref. 2 by terms pro- 
portional to both f; and f;. In our case terms with f; are 
clearly small compared to the remaining terms in Eq. ( 12) in 
the parameter vp/u, due to Fermi degeneracy. It is easily 
determined that to first order in the wave amplitude the dis- 
tribution function ( 12) becomes 

O c  
g, = -hv,~,f;,- cos p. kv,+o. 

Evaluation of integral (17) by means of the equations of 
motion (8a) allowing for the small value of p ,  for passing 
particles ( H >  1 ) reduces to 

n 

where w(x)  = 2?r/Tis the oscillation frequency, E ( x )  is a 
complete elliptical integral of the second kind, and the di- 
mensionless parameter x is given by 

2 xZ=-. 
H-t l 

We use the following approach to determine oscillation fre- 
quency w ( x )  . We introduce the action I as 

and, using the expansion ( 16), we obtain 

Writing the expression for the field-generated current by 
means of the distribution functions ( 12) and ( 13 ), we obtain 
the nonlinear renormalization of the Hall conductivity: 

We evaluate the momentum integral in ( 14) by going over to 
the dimensionless momentums, phasep, and action Jintro- 
duced above. Here 

fo'dp=-km,Pd (1-J=)dJdpds, 

where J, is the value of action J o n  the Fermi surface. It is 
simple to carry out the integration with respect to J ,  and Eq. 
( 14) then becomes 

where the following dimensionless small parameters are in- 
troduced: 

We then calculate J and cos 0 in Eq. ( 15). For this 
purpose we define u, as 

and by means of the Hamiltonian (8a) obtain the relation 
u ( 0 )  with small p: 

We find Ij by evaluating the corresponding integral over peri- 
od T: 

Now, calculating w ( x )  as 

we finally have for the passing particles 

where K ( x )  is a complete elliptical integral of the first kind. 
Carrying out analogous calculations for the trapped 

particles, we have 

For p = 0 Eqs. ( 19) and (20) become the familiar expres- 
sions obtained by approximating the Hamiltonian to be that 
of the mathematical pendulum. 

We need only calculate cos 0 to lowest order in p,  
which yields for the passing and trapped particles 

respectively. We then have for S 

whereuand cosp aregivenbyEqs. (19), (20),and (21). 
This value of S completely determines the distribution func- 
tion ( 12) and the nonlinear correction to the nondissipative 
conductivity ( 15 ) . 
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4. NONLINEAR SPECTRAL RENORMALIZATION 

We now determine the nonlinear correction to the con- 
ductivity a,, and renormalization of the spectrum o ( k )  by 
means of the linear g ,  and nonlinearg distribution functions 
obtained in the preceding section using Eqs. ( 14) and ( 15). 

We go from the variables s, fl to the variables x ,  p in  the 
double integral (15) ,  after which it is possible to integrate 
with respect top. The integral with respect to the variable 6 
is taken largely in the same manner as in Ref. 2, and we 
therefore need not consider its evaluation in detail here. The 
integration with respect to x is carried out numerically, 
which yields 

where 

The nonlinear renormalization of cyclotron damping of 
electromagnetic waves determined by the dissipative com- 
ponent of the conductivity tensor a,, has been treated pre- 
viously in Ref. 4. This study demonstrated that when 

holds, implying that the collision frequency is much less 
than the oscillation frequency of the particles at resonance, 
the conductivity a,, and the absorption coefficient both de- 
crease by a factor of approximately 2a compared to the lin- 
ear case. Assuming a 4 1, we calculate the nonlinear correc- 
tions to the spectrum [its real part w(k) ]  neglecting 
damping entirely. Using the resulting expression for the 
nonlinear correction to the conductivity (22) it is, in princi- 
ple, possible to find the change in the wave vector Ak for a 
given frequency w, which is consistent with experimental 
conditions. For this purpose we write the nonlinear disper- 
sion equation as 

The numerical parameters Q and F a r e  represented by the 
following integrals: 

where 

The term proportional to p will only be nonzero for a non- 
quadratic electron spectrum. 

For a dispersion law ~ ( p )  = p2/2m, Eq. (22) becomes 

where q = kv,/wc; q = 1 corresponds to the collisionless cy- 
clotron absorption threshold, while a, = en,c/B,. Accor- 
ding to Eq. (23) the conductivity shifts most severely at 
q = (6/5) "', although it should be recalled that Eqs. (22) 
and (23) are only valid when 

4-lBq0-1, 

where q, corresponds to the bifurcation point (see Sec. 2 and 
Fig. 3b). In the case of an isotropic and a quadratic disper- 
sion law, q, takes the form 

go= (l+h")". 

It then follows from Eq. (22) as well as the parameters 
p ,  7, and Y ,  that ha is proportional to the square root of the 
dimensionless amplitude of the electromagnetic wave h. In 
general this correction can be either positive or negative de- 
pending on the sign and the value of parameters p and v. 

the wave vector k in Eq. (24) is a solution of the linear dis- 
persion equation 

while Ak is the unknown nonlinear correction to the wave 
vector k; the " + " and " - " signs represent the corre- 
sponding polarizations. Linearizing Eq. (24) with respect to 
Ak we have 

or, using relation (25), 

where v, = (dw/dk) , = , is the group velocity. 
These expressions for the modification of the wave vec- 

tor (26), (27) and the correction to the conductivity (22) 
provide a solution in principle to spectral renormalization 
when ~ ( p )  is known. 

5. THE ANOMALOUS DOPPLERON 

Fisher et al. first experimentally detected a dependence 
of the spectrum of electromagnetic waves in metal on their 
amplitude in c a d m i ~ m . ~  We know that electron (" - " po- 
larization) and hole (" + " polarization) dopplerons exist 
in this compensated metal under linear conditions and that 
they propagate along the magnetic field lying on the C, axis. 
The electron doppleron has a wave vector k less than 
w,/u,,, corresponding to the collisionless electron cyclo- 
tron absorption threshold, while the wave vector of the hole 
doppleron is less than the cyclotron hole absorption 
threshold (k  =: 3.77wC/v,,, ) . 
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FIG. 4. Surface impedance oscillations of a cadmium wafer. Wafer thick- 
ness d = 1.71 mm, temperature = 4.2 K. 

A new type of electromagnetic excitation of"  + " po- 
larization with a wave vector near the electron cyclotron 
absorption threshold was first detected experimentally in 
Ref. 3. This anomalous doppleron was only observed under 
nonlinear conditions at a dimensionless wave amplitude 
h 2 10 - 2. Figure 4 shows the magnetic field dependence of 
the surface impedance of a cadmium wafer R , (the plot 
was graciously provided to us by the authors of Ref. 3). 
Curves 1 and 6 correspond to " - " polarization and are 
plotted at alternating field amplitudes of 4 and 75 Oe, respec- 
tively, at 32 kHz. No nonlinearity of this polarization is ob- 
served in practice. This is a natural outcome since negatively 
polarized waves only exist in a near-threshold region con- 
taining no resonant electrons. Curves 2-5 correspond to 
" + " polarization and are plotted at the same frequency at 
amplitudes of 4,40, 63, and 75 Oe, respectively. 

The graphs clearly reveal that the nonlinearity primar- 
ily appears in oscillations in the surface impedance at a finite 
electrical wave amplitude, with the oscillations shifting 
towards stronger magnetic fields with increasing amplitude 
and the period of such oscillations decreasing. Figure 5 
shows the period of the impedance oscillations AB plotted as 
a function of the external constant magnetic field Bo. Curve 
1 corresponds to a " - " doppleron. Curves 2 and 3 were 
obtained by measuring the oscillation periods in curves 5 and 
4 of Fig. 4, respectively. 

The experimental data in Figs. 4 and 5 can be explained 
by the theory of nonlinear renormalization of the real part of 
the spectrum w(k) developed in this paper and by recalling 
the suppression of cyclotron damping in the field of a finite- 
amplitude wave. As suggested by the analysis in the preced- 

FIG. 5. Period of surface impedance oscillations vs the magnitude of the 
constant magnetic field. 

ing section, a nonlinear correction to the nondissipative con- 
ductivity A a  will not radically alter the behavior of the 
conductivity and may produce a new " + " - polarized 
branch, an anomalous doppleron. Obviously, such a branch 
can be attributed to the nonlinear decrease in cyclotron 
damping (roughly by a factor of 2a) beyond the absorption 
threshold. In order to test this conjecture we analyze a dis- 
persion equation for " + " polarized waves (24) by writing 
the equation in dimensionless form 

Here 

the parameter q = ku,,, /w,, v,,, is the maximum possible 
velocity of electrons in the metal in the direction of the mag- 
netic field; 

Q (q) = (l /qZ) (l+ad/ah) 9 

where a K is electron conductivity, while a, is hole conduc- 
tivity equal to en,c/Bo in the local limit (no is concentra- 
tion). In the dispersion equation (28) we have neglected 
ehtirely the dissipative part of the conductivity as well as the 
damping because they are proportional to the small pa- 
rameter 2a, which is of order 10 - ' under experimental con- 
ditions. 

The function @(q) will essentially depend on the be- 
havior of the electron spectrum near the intersections with 
the external value of dS/dp,. Assuming that the lens elec- 
trons in cadmium responsible for the conductivity singular- 
ity at the threshold have a spectrum 

wherep, is the inflection point and u, = u, (p, ) is the maxi- 
mum velocity (Fig. lb) ,  it is clearly evident that in the case 
of an elliptical reference point (we have such a situation for 
any n, forp, <po; see Fig. l a )  the conductivity and its func- 
tion @(q) are finite and continuous at the threshold (only 
the derivative d@/dq has a singularity), as demonstrated by 
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Fig. 6a. Qualitatively, the behavior of @(q) remains un- 
changed for p,>p,, if n = 2. However, the conductivity at 
the threshold in this case will tend logarithmically towards 
- on both sides of the threshold for p, = p,, while it also 

has a logarithmic singularity forp, >po with values of q < 1 
and begins to appear at a certain finite negative value imme- 
diately beyond the threshold. For p,>p,, with n>4, the 
function @(q) behaves as shown in Fig. 6b, i.e., it decays 
monotonically everywhere for q > 1. It is possible to obtain a 
graphical " + " solution for q >  1 (the anomalous dop- 
pleron) as the intersection of the curve @(q) with the con- 
stant{gL(Bo). 

Which of these @(q) relations can explain the experi- 
mental results? An answer to this question can be found by 
analyzing the curves shown in Figs. 4 and 5. The period of 
the impedance oscillations of the wafer AB(B,) in a con- 
stant magnetic field is given by the following expression (see 
Ref. 5 ) : 

where AB, - , is the period of the Gantmakher-Kaner oscil- 
lations, while q(B, ) is the solution of the dispersion equa- 
tion (28). The plot of AB(B,) in Fig. 5 clearly shows that 
the period of oscillations of the anomalous doppleron will 
always exceed AB,-, and will asymptotically approach 
this value with increasing magnetic field B,. According to 
Eq. (30) this reveals that the derivative d@/dq must be 
negative in the range of the " + " doppleron. Such ranges are 
found in both Fig. 6a and 6b. However, the oscillation period 
does not tend toward AB, _ , for the conductivity shown in 
Fig. 6a in strong magnetic fields with values near the upper 
critical field. The relation AB(B, ) for the case shown in Fig. 
6b will, according to Eq. (30), correspond to experiment. 

We now discuss the nonlinear renormalization effects 
of the real part of the spectrum. Such effects are manifested, 
first, as a decrease in the oscillation period, as shown in Fig. 5 
(curves 2 and 3) and, second, as a shift in the oscillation 
peaks towards stronger magnetic fields as the amplitude of 
the alternating field increases. 

Analysis of such effects requires a consideration of the 
nonlinear correction to the function @(q), which is equal to 

where Au can be calculated by means of Eqs. (22) and (9).  

FIG. 6. The right side of the dispersion equation (28)  for different 
electronic spectrum models under linear (solid curve) and nonlin- 
ear (dashed curves) conditions. 

When the electronic spectrum is described by Eq. (29) this 
correction takes the form 

where q, is the dimensionless wave vector defined by the 
condition q, = kv,/o,, while a = (p, - p, )/p,. For 
p,>p, the parameter q, is identical to the parameter q intro- 
duced above. If, on the other hand, we have p, <p,, their 
relation is given by q, = q ( 1 + ban). 

We now discuss the behavior of the correction A@ for 
different spectral models. For n = 2 the characteristic be- 
havior of the renormalized function @(q) is shown in Fig. 
6a: the correction is everywhere positive and drops off preci- 
pitously to zero for 9% 1. In practice this result does not 
depend on the relation between p, and p,, although there 
may be a sign reversal of A@ for p, <p,. The renormalized 
function @(q) is shown in Fig. 6b for n = 4. The nonlinear- 
ity always gives rise to a reduction in conductivity and mo- 
deration of the singularity at the cyclotron absorption 
threshold. This is perfectly understandable behavior, since 
the nonlinear distribution function, unlike the linear distri- 
bution function, has no singularities. 

It is possible to provide a qualitative explanation for the 
experimental results of Ref. 3 if we assume that the cadmium 
conductivity beyond the collisionless cyclotron absorption 
threshold behaves as shown in Fig. 6b. In this case, the ef- 
fects discussed above-the shift in oscillation frequency and 
the reduction of the period AB with increasing wave ampli- 
tude-have the correct sign and are of the same order of 
magnitude. To test this assumption, proceeding from the 
condition 

k(B,; h)  d=2nn, 

which indicates that n wavelengths are accumulated in a 
metallic wafer of thickness d, we obtain an expression for the 
-shift of the nth oscillation as the amplitude goes from 
h, to h,: 

where Ak(h) is given by Eq. (26). Then, using the relation 
between the wave vector k and the dimensionless parameter 
q, this expression can be written as 
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where Aq = qAk /k. Equation (32) gives the correct direc- 
tion of the shift and its relative order of magnitude 10 - ' for 
the first oscillations shown in Fig. 4 as the amplitude rises 
from 63 to 75 Oe (curves 4 and 5 ) ,  which is in qualitative 
agreement with experiment. The ratio AB /AB, - , in this 
case can be directly determined from the curves shown in 
Fig. 5. The sign on SB, is not identical to the experimentally 
derived value for the case corresponding to Fig. 6a. 

The decrease in oscillation period with increasing wave 
amplitude can be described by Eq. (20), which is more con- 
veniently written as 

The derivative dk(B,;h)/dB, grows with increasing ampli- 
tude, a can easily be verified by plotting k(B,) from the 
known relation @(q) (Fig. 6b). A rough estimate of the 
magnitude of variation in the period as the amplitude rises 
from h, to h, can be obtained by writing the difference of the 
periods as 

AB(hi)--AB(h,) d -- 
AB(h,) dB0 

[Bo (Aq (hi)  -Aq (hz))  ] -hih-hi". 

An estimate using Eq. (34) for curves 4 and 5 in Fig. 4 yields 
the same order of magnitude of the effect as experiment. 

This theory of nonlinear spectral renormalization of 
electromagnetic waves in metals therefore explains the na- 
ture of the anomalous doppleron in cadmium, as well as its 
fundamental properties; the theory reveals that these effects 
depend strongly on the form of the electronic spectrum of 
the metal. 

It is worth noting in closing that one of the effects ac- 
companying nonlinear spectral renormalization is a modu- 
lational instability that leads to a smooth, periodic depend- 
ence of wave amplitude on the coordinate. The modulational 
instability, however, only manifests itself if the modulation 
period is far smaller than the characteristic damping length 
of the wave. It is not likely that this condition holds in the 
experiment described in Ref. 3, and hence the modulational 
instability effects were not examined in the present paper. 

The authors wish to express their sincere gratitude to L. 
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APPENDIX 

By means of the generating function 

we introduce into the Hamiltonian (6) a new variable 
6 = kz - wt and its conjugate momentum PC =p,/k. This 
canonical transform is equ$valent to a transformation to a 
frame that is comoving with the phase velocity of the wave 
along the magnetic field B,. Hamiltonian (6),  after the ca- 
nonical transform, is written as 

and is the integral of motion. 
The subsequent analysis of the electron dynamics 

differs from our analysis carried out in Sec. 2 for the simple 
spectral model ( 1 ) . Canonical variables {I,Q)) and {PC,[} 
are conveniently used to reduce the equations of motion to a 
one-dimensional system similar to Eq. ( 3 ) . This can be car- 
ried out by means of a generating function of the type 

Fz=tPc+ J pz(Z, X, E.)dx, 

where the action I is proportional to the area S(&,p, ) of the 
electron orbit in momentum space in a uniform magnetic 
field: 

The phases q, and 5 are expressed through the new action and 
the old coordinates as 

The relation between the momentum PC and the new mo- 
mentum PC is given by 

Now writing the Hamiltonian (A1 ) in the new variables we 
have 

H = ~ ( I ,  k ~ , - h  ( ~ ~ ) ' ~ s i n ( ~ + r p ) )  

2eBo I 
'1, 

--UP,+ hup(T ) sin (t+rp). 

Finally, since the Hamiltonian function depends only on the 
sum of the phases, we introduce the variable 
p= f + Q) + a /2  and the conjugate action J: 

F,=(t+ q+ n / 2 )  P+Jrp, 

which yields 

6=(p, I=P+J, 

B=%+q+n/2, PE=P. 

The Hamiltonian then takes the form 

2eB 
H = E  (I+P; k ~ + h ( -  c (I+P) )"'cos B )  

The Hamiltonian function is independent of the variable 29, 
as follows from Eq. (A4), and hence the action J is an inte- 
gral of motion. 

The phase velocity of the wave v, is commonly much 
less than the characteristic electron velocity in metals. We 
ignore the last two terms proportional tow and up in (A4) in 
order to avoid complicating the subsequent calculation. In 
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the remaining term we carry out an expansion to second 
order in the small parameter h < 1. Finally we have for the 
Hamiltonian and the equations of motion 

\ "  
H = E  (JS-P; P )  + hv, 

d 
~ = k ~ , + ~ , + h - - - ( ~ ~ p ~ ) ~  cos p, I'=hvzp, sin B ,  

i?P 
(A61 

where the transverse momentum is 
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while the subscript J denotes that the partial derivative is 
taken with a fixed value of J. 
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