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We calculate the contribution to the total tunneling current through a barrier due to interband 
tunneling, in which electron-hole pairs appear at the barrier whose constituents are on opposite 
sides of the barrier layer. This process switches on when a potential difference larger than E,/ IeI is 
applied to a tunneling structure consisting of two layers of narrow-gap doped semiconductor 
(where E~ is the width of the forbidden band of the semiconductor) with a wide-gap 
semiconductor barrier between them. We find numerical estimates of the electron-hole pair 
concentration generated at such a barrier for heterostructures based on lead chalcogenides. In 
addition to serving as IR radiators, these tunneling structures are also interesting sources of 
negative resistance. 

1. INTRODUCTION 

Ordinary tunneling processes in metal-insulator-metal 
structures or semiconductor heterostru~tures'.~ do not in- 
volve transitions in which the band state label of a current 
carrier changes. However, for tunneling heterostructures 
consisting of two layers of narrow-gap doped semiconductor 
( E ~  is the width of the forbidden band of the semiconductor) 
separated by a wide-gap semiconductor barrier occupying 
the region lzl < d / 2 ,  application of a potential difference 
V >  ~ , / l e j  can lead to a fundamental change in the physics 
involving the switching-on of a channel for interband tun- 
neling", i.e., to the generation of electron-hole pairs at the 
boundaries z = d /2 of the barrier. For definiteness, we 
will treat the case where the voltage decreases across the 
barrier from left to right (see the band diagram in Fig. l ) ,  so 
that the process of interband tunneling transfers electrons 
from states of the valence band to the conduction band. This 
process is allowed for energies E lying in the interval bound- 
ed by the inequality 

whereas tunneling between conduction band (or valence 
band) states corresponds to the energy interval 

( E ( > ( e p + ( e l V ) / 2 .  

However, the first of these inequalities is not a sufficient 
condition for switching on interband tunneling: the 
threshold voltage also depends on the way the narrow-gap 
semiconductors are doped. It is clear from the band dia- 
grams for n- and p-type heterostructures shown in Fig. l 
(where p, and p,, are the appropriate Fermi levels) that 
these processes actually switch on when [el V >  E,  + p. For 
(el V -  E, < E ,  the interband contribution to the current is 
due to transitions between low-energy valence- and conduc- 
tion-band states; in this approximation we can derive simple 
analytic dependences for the tunneling current. 

The tunneling current calculations described here are 
based on a symmetric two-band (Dirac-like) model of the 
energy spectrum. The case of an isotropic spectrum and het- 
erostructure band offsets that are large compared to E,  de- 
scribes tunneling between equivalent pairs of valleys in he- 
terostructures based on lead chalcogenides (we assume that 
mixing of states from different valleys by the sharp hetero- 

structure potential is small) .4 In addition to these approxi- 
mations, in investigating the band diagram of Fig. 1 we also 
assume that all the applied voltage V falls at the barrier (i.e., 
the case of flat bands in the strongly doped n- and p-type 
materials), and that the band offsets A E , ,  are much larger 
than lei V, so that the positions of the band extrema in the 
barrier may be considered constant (see the dotted lines on 
Figs. l b  and lc).  Although this latter approximation results 
in a rather crude picture of the IV characteristics of the 
structure, it is convenient for estimating the concentration of 
electron-hole pairs generated by the barrier. 

The simple analytic expressions which follow from 
these approximations show the qualitative differences be- 
tween this case and that of Zener tunneling in a reverse- 
biasedpn-junction. In our structure the character of the be- 
low-barrier motion is different (here the process of 
tunneling takes place far below the barrier, which decreases 
the overall magnitude of the current); furthermore, the 
width of the tunneling layer does not depend on the applied 
voltage (whereas in apn-junction the thickness of the deple- 
tion layer increases with increasing V, which also decreases 
the tunneling current). We also note that the interband tun- 
neling current turns out to be a strong function of the ratio 
AEJAE, -a2; in the limit AE, = 0 (for which the variation 
in the positions of the valence band extrema corresponds to 

FIG. 1.  Band diagram of heterostructures under discussion. a )  for zero 
potential difference applied to the structure, b) for a voltage lei V >  E, 

across an n-type structure, c )  for ap-type structure under the same condi- 
tions. The dashed lines denote the Fermi level, and the dotted lines ap- 
proximate the positions of the band extrema in the barrier. 

352 Sov. Phys. JETP 73 (2). August 1991 0038-5646/91/080352-07$03.00 @ 1991 American Institute of Physics 352 



the dotted-dashed line on the band diagram Fig. Ib) this 
current increases rapidly. We emphasize that for tunneling 
through a high barrier ( AE,,, %E, ) there are qualitative dif- 
ferences even for the case [el V <  E ~ ,  in that the transparency 
of the barrier during tunneling between low energy conduc- 
tion- or valence-band states depends (in contrast to the usu- 
al quantum mechanical formula5 ) on the parameter a. 

Below in Sec. 2 we discuss the quantum mechanics of 
electron tunneling in a structure made of narrow-gap semi- 
conductors separated by a wide-gap barrier. Then in Sec. 3 
we calculate the transmission coefficient which corresponds 
to the process of interband tunneling and whose value deter- 
mines its contribution to the tunneling current. Following 
this (Secs. 4 and 5), we discuss the increase in the interband 
tunneling for the case AE, = 0 and the intraband contribu- 
tion to the tunneling current. In the concluding Sec. 6, we 
give an estimate for the concentration of electron-hole pairs 
generated by a wide-gap barrier and discuss the approxima- 
tions used. 

2. DESCRIPTION OFSCATTERING BY A WIDE-GAP BARRIER 
(THE TWO-BAND HETEROSTRUCTURE MODEL) 

The dynamics of low-energy electronic states (i.e., close 
to the extrema of the conduction or valence bands) are deter- 
mined within the k.p approximation by the 4 x 4  Hamilto- 
nian matrix 

in which P = (p, - ifi-d /dz) is the momentum operator; 
the characteristic interband velocity s and Pauli matrices o 
define the velocity operator $ entering into the right-hand 
side of the equation. Since we are investigating the case of 
symmetric bands, terms that are quadratic in P have been 
neglected in Eq. ( 1 ) . The diagonal matrix i.(z), which de- 
pends on the transverse coordinate z, is defined by the posi- 
tion of the spin-degenerate extrema of the conduction and 
valence bands E,, (z). For the case of strongly doped nar- 
row-gap materials the bias voltage V  falls across the tunnel 
barrier, which occupies the region Izl < d /2, so that the band 
diagrams in Figs. l b  and l c  correspond to the expressions 

Using the resulting four-component wave function 
$(z) of a state with energy E [which is determined by the 
Schroedinger equation &(z )  = E$(z) ] we obtain the z 
component of the current density 

for the one-dimensionally nonuniform system under discus- 
sion here the current j does not depend on z. The equation 
dj/dz = 0 can be verified by using the Schroedinger equation 
given above and the Hermitian character of the Hamiltonian 
h. 

In investigating the problem of scattering by a barrier, it 
is convenient to carry out a unitary transformation which 
diagonalizes the Hamiltonian ( 1 ) in the spin variables (see, 
e.g., Ref. 6 ) ,  so that the four-component spinor $(z) is given 
in the new representation by the expression 

Here la) is an eigenfunction of uz ( a  = + 1 are the spin 
projections on the axis perpendicular to the 2 -0  momentum 
p, where the latter describes the motion along the barrier); 
for the wave function components p and ,y we obtain a sys- 
tem of first-order equations 

in whichp = (p  1, and the position of the extrema E , ,  is deter- 
mined by (2).  After this unitary transformation; the z-com- 
ponent of the current density defined in (3)  for a state char- 
acterized by energy E and quantum numbers p, a is given by 
the expression 

In solving the system (4)  it is convenient to eliminate 
the barrier region from consideration by connecting the 
wave functions on the left-hand half-space (z  < - d /2) 

with those on the right-hand half-space (z > d /2) 

& 

In the high-barrier approximation (AE,,, % lei v) the com- 
ponents p and ,y are given in the region lzl < d /2 by linear 
combinations of exponentially decaying and growing contri- 
butions - exp( xz), where the scale of variation of these 
contributions is determined from (4): 

We now use the conditions that the p- andx-components be 
continuous at z = + d /2 [these conditions follow directly 
from Eq. (4)  ] and match the coefficients standing in front of 
the functions exp( + xz). As a result we obtain the bound- 
ary conditions which connect the I- and r-solutions in the 
narrow-gap materials: 

, g,=l c h x d  - a - l s h x d I  

z=-d/2  - a s h x d  c h x d  

(7) 
The wave functions in the narrow-gap materials are giv- 

en by the expressions 

in which the wave vectors k,,, are determined from the dis- 
persion relation 
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obtained from the condition that the system (4)  have a non- 
trivial solution (here EL, are the positions of the band ex- 
trema on the left for i = I and on the right for i = r of the 
barrier, as shown in the band diagrams Figs. lb  and lc) . The 
constant coefficients q, ', and xi+ must be found from the 
boundary conditions ( 7 )  and the condition of normaliza- 
tion; the current density (5) is expressed in terms of these 
coefficients using the relation between q, and x from the up- 
per or lower equations of the system (4).  As a result, we can 
express (5) in terms of the coefficients p ', or xik using the 
relations 

where i takes on values I or r, since the current j  does not 
depend on position. 

In order to investigate tunneling for V >  0 we need that 
solution to (8)  which contains only the transmitted (T)  
wave in the r-region z > d /2 and which contains both the 
incident ( I )  and reflected (R)  wave in the I-region 
z < - d /2; then for z < - d /2 all the coefficients q, : and 

will be nonzero, while for z > d /2 only one pair of com- 
ponents (q,  ', , x', or q, '- , xr- ) will be nonzero. The pro- 
cess of separating out the I, R, and Tcontributions to Eq. ( 8) 
is analogous to that employed in relativistic quantum me- 
chanics,' including the fact that the contributions to the cur- 
rent defined by Eqs. (10) change sign as E passes into the 
forbidden band. 

3. CALCULATING THE INTERBAND TRANSMISSION 
COEFFICIENT AND TUNNELING CURRENT 

In investigating the interband tunneling channel it is 
convenient to define the current j> 0 using the right-hand 
side of Eq. ( lo) ,  since we need only retain the transmitted 
wave in the r-region; we have shown that the Tcontribution 
is proportional to X ;  exp(ik,z), while xr- = 0. We can 
likewise extract the I and R contributions in the region 
c < - d /2 in an analogous fashion. For the case under consi- 
deration here we have EL > E >  E: (see Fig. I ) ,  so that the I 
contribution is proportional to exp ( - ik,z) and the R con- 
tribution to exp ( + ik,z) . For the currents j ,  - , j, - , and 
j,- we use the expressions 

2.9% k ,  2s21ik, 
j r = e , ' - - ~  I - I  il= &= I X + ~ I ~ .  

which ensure that the law of current conservation 
j, - j, = j ,  =j is fulfilled. 

The transmission coefficient T,, ( E )  (where the inci- 
dent electron is characterized by energy E, the spin quantum 
number a and the 2D-momentum p) is defined in the usual 
way in terms of the currents introduced above: 

so that in order to calculate it we must express X ;  in terms 

FIG. 2. Dispersion law of narrow-gap materials in the r- and I-regions 
(curves 1 and 2, respectively; the dashed lines correspond to Fermi levels 
for the cases of n-type andp-type doping). 

of using the boundary conditions (7 ) .  These algebraic 
equations are solved directly; however, the results turn out 
to be quite awkward." We will limit ourselves to the case of 
small energy overlap of the conduction and valence bands 

When low-energy states participate in the interband tunnel- 
ing process, for ( 12) we obtain the simple expression 

21izk1k, 
T p  ( E )  -- exp  ( - 2 x 4  ----- . (13) 

In this case we can also use the parabolic approximation to 
describe the dispersion law (see Fig. 2) 

which follows from the dispersion relation (9) in the region 
of small longitudinal momenta. 

The total current Jper  unit area is expressed in terms of 
( 12) in the following fashion: 

Here in place of the variables E, a, p, we have used the set k,, 
a, p, and w,  = f i -  'dE/dk, is the transverse component of 
the velocity of electrons incident on the barrier; the function 
f, denotes the electron distribution for z < - d /2, while 
( 1 -f,) is the distribution of unoccupied states for z > d /2. 
In calculating the interband contribution to the tunneling 
current J,,,,, we use the transmission coefficient ( 13). For 
either n- or p-type materials, the integration in expression 
( 15) is carried out over an energy interval determined by the 
following inequalities (see Figs. 1 and 2; p, or p, are the 
Fermi energies of the strongly degenerate electrons or holes 
referenced from the extrema of the corresponding bands) : 

~, '>E>&, t+p ,  (n-type); E , ' -  p,, > E > E , ~  (P-type) . (16) 
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FIG. 3. Plot of the function 9 ( t )  from (19), which determines the de- 
pendence of J,,,,, ( v )  near the threshold for interband tunneling. 

In ( 13 ) we used the relation obtained from ( 14) 

which also limits the region of integration in Jinter . 
For vsp,, only the restriction (17) is important, and 

we obtain an interband component of the tunneling current 
which does not depend on the type of doping (the integra- 
tion is carried out with respect to the longitudinalp2/2m and 
transverse fi2k :/2m contributions to the energy measured in 
units of u) :  

limiting behavior does not depend on the type of doping, and 
the interband contribution is given by the expression 

J i n t e r = J i j i , t e r F ( ~ e / u )  (n-type); 

The function F ( t )  given in Fig. 3 has the asymptotic form 

64 
F ( t )  = 1 - - t 5 1 2  

5x 

for small t and 

when its argument is close to unity, so that the singularities 
at the pointsp = 0, 1/2, and 1 appear only in the third deriv- 
ative. 

Despite our use of a simplified band structure and the 
approximation of a wide barrier (i.e., E, = AEc + AE, 
% 1 e 1 V, E, ) the expressions given here describe the basic fea- 
tures of interband tunneling. Equation ( 18) implies a rapid 
( a u3) growth in the pre-exponential factor for voltages 
larger than E, + ,u,, , and an exponential decrease in Tint,, as 
the thickness of the barrier increases. In this case the expo- 
nent determined by (6)  depends on the relative position of 

1 the barrier extrema [expressed in terms of 
v3 

(18) a = (AEc/AE,)L'21 
a 

2 x d  = - E, ( f i / d ) =  
E ( d )  = --- 

14aZ I [ E ~ E ( ~ ) ] "  I 2m ' 
(20) 

wherep,, = m / d z  is the two-dimensional density of states. 
- As the factors p , h  /u vary zero to one, the interband so that J,,,,, turns out to be a for a symmetric 

contribution to the current varies from a maximum value barrier (when a = 1 ) and increases with decreasing m, or 
( 18) to zero for ~ , h  = v. Although the limits of integration ; this matches the dependence obtained above for 
are different for n- and p-type structures [see ( 16) 1, this 

AEc,, >&,. 

4. INTERBAND TUNNELING IN A STRUCTURE WITH AE, =O 

In estimating the maximum increase in (20) due to 
nonsymmetric positioning of the barrier extrema, we consid- 
er only the case of an n-type tunneling structure with 
AE, = 0 (see the band diagram in Fig. 4) ,  which according 
to the "common anion rule"8 should apply to the 
(HgCd)Te-CdTe or PbS-EuS systems. In treating the solu- 
tion near the barrier, we can replace E, (z) - E in the upper 
equation in the system (4) by E,, so that 

when we substitute this expression into the lower equation 
(4)  forx we obtain a second-order equation with a potential 
energy that depends linearly on the coordinate z. The solu- 

FIG. 4. Band diagram for a heterostructure with AE, = 0 and lei  v> E, tion to this equation is given by linear combinations of Airy 
(the notation is the same as in Fig. 1 ). functions: 
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x=C,Ai (Y)  +C,Bi(Y), 

At the edges of the barrier z = + d /2 the argument Y in 
(22) is large, and the boundary condition analogous to (7) 
which connects the components e, and x on the different 
sides of the barrier is here expressed in terms of the asympLo- 
tic forms of the Airy functions. As a result, the matrix M, 
entering into (7)  is now given by the following expression, 
which oscillates with d and V: 

ad = eE 

in which the following large parameters are introduced: 

(I + ;) -f cos (I + ;) 
-ysin(I+;) cos(~+;) 

E= [ 1 e 1 VE./E.E ( d )  ]'"/3.2'", 
~=E;"/[E~E ( d )  ( I  e I V )  "6'''. 

(23) 
e- 

+-2- 

Further calculations involve the use of the wave func- 
tions (8),  and are analogous to those presented in Secs. 2 and 
3. The resulting expressions for the transmission coefficient 
in the low-energy approximation differ from (13) both by 
changes in the exponent, which now contains the parameter 
f introduced in (23), and by the appearance of an additional 
factor which oscillates as a function of f: 

om (E + $1 y-I sin (I + 2) 
( I + )  sin(I+;) 

- oy (5 I. ) cos 2 ~ +  cos2 ( E + 1) ] -'. (25) 

The oscillations of the transmission coefficient arise because 
whenz is close to - d /2 some motion into the barrier region 
is allowed for carriers in states of the valence band (see Fig. 
4),  since the Airy function has an oscillatory rather than a 
decaying character. Substituting expression (25) into Eq. 
( 15) and integrating with respect to the dimensionless vari- 
ables x and y, we obtain the tunneling current Jinter, which 
depends on p,/v and the parameters f and ?v/E, intro- 
duced in (24). 

Let us investigate the nature of the oscillatory depend- 
ence of Jin,,, on f for values of ?V/E, that are small and large 
compared to unity. For ?v/E, ( 1, there is a narrow region 
of values of f close to r / 4  + nn (where n is an integer) for 
which the asymptotic form of the function Y(x,y) is deter- 
mined by the first term in the denominator of (25), and 
Y(x,y) - (x + y) - '. For the remaining range of variation 
of f we can use the asymptotic form 
Y (x,y) z2/cos2(f + r /4) ,  so that the calculation is analo- 
gous to that carried out in Sec. 3, and Jinte, differs from ( 19) 

only by the change in the exponential dependence and the 
appearance of an oscillatory factor 

Let us derive the maximum value of the tunneling current, 
which cuts off the divergence (26) for f = r / 4  + nn; for the 
case v%pe, when Jinte, does not depend on the level of doping 
of the narrow-gap material: 

Here Cz0.16 is obtained by numerical evaluation of the in- 
tegral, which differs from the integral entering into ( 18) and 
( 19) by an additional factor which comes from the asympto- 
tic form Y (x,y) - (x + y) - '. 

For % 1, the oscillatory dependence of Jinte, (6) is 
shifted by r / 2  compared to the limiting case described 
above. Now Y(x,y) is determined by the first term in the 
denominator (25) everywhere except at the point 
f = - n/2 + n r ,  near which this function can be replaced 
by a factor of 2. Therefore, at the maximum points (i.e., for 
f = - r / 4  + n r )  the expression for Jinter differs from ( 18) 
and ( 19) by the replacement ofexp( - 2xd) by exp( - 2c), 
while in the regions between these maximum values we ob- 
tain the dependence 

a-6 
J i , , . . = l ~ ~ . / s i n 2 ( ~  + 2) , \ + - + nn, 

4 
(28) 

in which we have used the results of the integration during 
the calculation of (27). The smooth matching of the func- 
tions determined by (26) and (28) and cutting off of the 
divergence of the maximum value (this kind of matching is 
realized for f close to + n/4 + nn) will not be discussed 
here. 

Thus, the growth of Jinte, in the present case AE, = 0 is 
determined both by the decrease in the exponential depend- 
ence (in place of AE, introduced in ( 16) there now appears 
I e I V/18), and in the oscillatory dependence of the preexpo- 
nential factor described above, which at the corresponding 
maximum values off [the voltages Vat which these maxima 
are reached are determined by (24)] will also exceed the 
values introduced into ( 18). 

5. THE INTRABAND COMPONENT OF THE TUNNELING 
CURRENT 

In calculating the contribution of the intraband channel 
to the tunneling current ( 15), it is necessary to calculate the 
transmission coefficient for energy intervals which for n- 
andp-type materials are determined by the inequalities (see 
Fig. 1 ): 

e , '+p ,>E>~ , '  (n-type), E,'> E > E , '  -pI ,  (p-type) . (29) 

The I-, T-, and R-contributions to the current for these ener- 
gy intervals are once more identified using relation ( 10). For 
n-type materials the transmitted wave is introduced as in 
Sec. 3, so that the expression for j ,  coincides with ( 11 ), 
while for the j,- and j, -currents we obtain 
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Forp-type material, the transmitted wave is proportional to 
XI- exp( - ik,z), and x', = 0, so that now the j,- and jR - 
currents coincide with expression ( 1 1 ), while for the trans- 
mitted current we obtain 

From these expressions for the currents we obtain the 
transmission coefficient for the case under discussion ac- 
cording to the relation T = j,/jI. In this case we use the 
relation between the coefficients x': given by the boundary 
conditions (7) .  These expressions simplify in the case u & E,. 

In n-type material we use the parabolic dispersion law for the 
I-regiop and the estimate fik, =:2(m~,)"*, while in p-type 
material the parabolic dispersion law describes the r-region 
with fik, =: 2 ( m ~ ,  ) 'I2. In these approximations we have for T 

4 { B k , / ( 1 + 2 a 2 )  (n- type) .  
T = e - 2 ~ d  - 

(me,)" Bk,l (1+2/a2)  ( p-type),  (32) 

and these expressions differ only by the replacement of k, by 
k, and a by a - '. These differences can be understood by 
comparing the band diagrams in Figs. l b  and lc. Subsequent 
calculations are carried out in analogy with Sec. 3; however, 
in p-type materials it is convenient to use the variable 
(fik, 12/2m in integrating. The results for the intraband 
component 

differ in n- and p-type materials by the replacement of a by 
a - ' [as in (32) ] and the appearance of Fermi energies for 
electrons or holes (pe or p, ). In contrast to the interband 
contribution ( 19), now there is no dependence on u. 

Comparing this contribution with the interband com- 
ponent of the tunneling current - gives the expression 
A u ~ / ~ u ~ ' ~ E ~  for the ratio J,,,,, /Jin,,,, where A =:0.17( 1 
+ 2a2) holds in n-type material (inp-type material this re- 

lation contains a - andp, ). For v $ ~ p ~ , ,  , we can in fact have 
~ i n t e r / ~ i n t r a  =: 1, i.e., where the efficiency of the interband 
channel is comparable to the intraband channel. 

6. CONCLUSION 

In this section we discuss the approximations used to 
calculate the tunneling currents ( 18), ( 19), (26)-( 28), and 
(33), and also present numerical estimates of the magnitude 
of Jint,, and the concentration of electron-hole pairs genera- 
ted at the barrier. 

The two-band model introduced by expressions ( 1 ) , 
(2) for the heterostructure allows us to consider tunneling 
between pairs of equivalent valleys in heterostructures based 
on lead chalcogenides. The isotropic approximation de- 
scribes PbS, and the results we obtain after summing over 
the valleys (which increases Tin,,, by a factor of 4) allow us to 

estimate the tunneling current in the PbS-EuS-PbS struc- 
ture. In this case we have not included the possible mixing of 
different valleys3' by the abrupt (on the scale of a lattice 
constant) heterostructure potential, nor the contributions of 
other extrema which would change the character of the be- 
low-barrier motion. These approximations have been used 
previously4 in investigating the energy spectrum of optical 
transitions in superlattices, and agree both with experimen- 
tal data and with the results of numerical calculations. The 
model Hamiltonian ( 1 ) describes the narrow-gap hetero- 
structure (PbSn)Te with a graded-gap junction [i.e., 
smooth compared to a lattice constant but abrupt on a scale 
f i / (m~,  ) However, the case of a wide-band barrier cor- 
responds to the use of materials in the I- and r-regions with 
compositions that are close to gapless. It is also necessary to 
generalize the calculation we have done for the case of an 
anisotropic energy spectrum; this, however, is directly car- 
ried out by a coordinate transformation which converts an 
ellipse into a sphere. ' ' 

For heterostructures based on the A, B, semiconduc- 
tors [e.g., InSb-CdTe-InSb or (HgCd)Te] the expressions 
derived above give only an order-of-magnitude estimate of 
the tunneling current, since they do not include the complex 
structure of the valence band. 

The case of doped narrow-gap n-type orp-type materi- 
als investigated here (where all the voltage drop occurs at 
the barrier) is the most convenient one for observing inter- 
band tunneling, and is realized in the very-high-dielectric- 
permittivity structures based on lead chalcogenides. Calcu- 
lations of the transverse voltage distribution using the 
Poisson equation will not change the results significantly as 
long as the band bending near the barrier is small compared 
to E,. 

The most important limitation on these calculations is 
the condition lei V ~ E ~ ,  since even the rather small depend- 
ence of the exponent on V discarded in (20) leads to an 
appreciable change in the IV characteristics of the tunneling 
structure. However, when the interband tunneling channel 
is switched on, the only singularities that appear are in the 
higher derivatives of the IV characteristics [see the asymp- 
totic form of the function F( t)  derived in ( 19) 1. Therefore 
a more detailed calculation of the function J,,,,, ( t )  using the 
Airy solution analogous to (22) in the barrier4' will not 
yield a more accurate identification of the interband compo- 
nent of the tunneling current. 

The study of interband tunneling processes is conve- 
niently carried out not in terms of the IV characteristic, but 
rather by direct recording of the electron-hole pairs genera- 
ted at the tunneling barrier for V>p, ,  . The switching-on of 
the interband tunneling channel for lei V> E, can be detected 
by studying the band-to-band luminescence of the nonequi- 
librium electron-hole pairs when they undergo radiative re- 
combination. The intensity of the luminescence is propor- 
tional to the concentration of nonequilibrium pairs n(z), 
which is determined from the continuity equation along with 
the boundary condition that the tunneling current J,,,,, and 
the diffusion current coincide at the barrier z = d /2. In the r- 
region n(z) decays exponentially over a recombination 
length (DrR ) (where D is the diffusion coefficient and rR 
is the recombination time), and the maximum concentration 
n ( d  /2) is found to equal J,,,,, (7, /D) 
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Let us turn to numerical estimates for the correspond- 
ing chalcogenide structures discussed above,13 with param- 
eters Eg = 1.6 eV, cg ~ 0 . 2 5  eV, m = 0.08me, and values of a 
close to unity. Ford = 25 b;, a carrier concentration greater 
than 1018 ~ m - ~ ,  and vz0.15~, ,  we obtain Ji,,, z 10" 
cm -2.sec - ' (i.e., the density of electric current due to the 
interband tunneling channel can reach 10 
A/cm2). In investigating the case AE, = 0 or structures 
based on narrower-gap materials, we find that the current 
increases by two to three orders of magnitude. For 0 ~ 2 0 0  
cm2/sec and T, - 10 - sec, the maximum pair concentra- 
tion n ( d  /2) reaches 2. 1016 cm-', so that in these structures 
we may expect rather intense luminescence. 

Let us note that at frequencies close to the fundamental 
absorption edge (in the region of the Moss-Burstein shift), 
we may also encounter the case of a negative absorption coef- 
ficient. For the parameters given above, negative absorption 
coefficients for propagation along the plane of the tunneling 
contact of a waveguide mode can reach 5. lo2 cm - ', which 
significantly exceeds free-carrier absorption in this spectral 
region (by at least an order of magnitude). These estimates 
(which do not include details regarding the mechanisms for 
pair recombination and absorption of IR radiation by free 
carriers, nor the structure of the waveguide mode) demon- 
strate not only the possibility of implementing a rather effec- 
tive IR radiator, but also that a regime of stimulated emis- 
sion may be achievable (which would allow us to create an 
IR laser based on a tunneling structure with only n-type orp- 
type materials, i.e., which does not require ap-n junction). 

Ref. 3 contains a discussion of tunneling accompanied by mixing of the 
heavy- and light-hole states. This situation is analogous to the single- 
band case, because no change occurs in the direction of the current as 
happens in a transition between electron and bole states (see the discus- 
sion in Secs. 2 and 3). 
We note the dependence in ( 12) on the spin quantum number [which is 

unimportant for transitions between low-energy states described by 
( 13) ] so that in the case of an anisotropic distribution of carriers in the 
plane of the barrier (caused, e.g., by current flowing in the plane of the 
structure) the electron-hole pairs generated by interband tunneling will 
be oriented with respect to spin. 

3)Such a process is analogous to intervalley scattering at a surface or 
crystal-crystal b~undary .~  In order to describe it, we must use boundary 
conditions for the current that mix the different valleys (this type of 
boundary condition describes the small mixing of the r- and X-valleys 
for GaAs-A1As heterostr~ctures~~ ). The intra- and interband contri- 
butions to the intervalley current differ only slightly (for symmetrical- 
ly-placed valleys) and taking these processes into account leads only to 
a small increase in the currents Ji ,,,, and J ,,,,, . 
The use of exact solutions is necessary for structures with two tunneling 
barriers, where the switching-on of the interband tunneling channel 
between the interbarrier layer of narrow-gap material can lead to an N- 
shaped IV characteristic (see the recent measurements on an 
InAs-A1Sb-GaSb-A1Sb-InAs structure12 ). 
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