
Scattering of light by electrons in superconductors at finite temperature 
S. Klyama') and L. A. Fal'kovskii 

L. D. Landau Institute of Theoretical Physics of the Academy of Sciences of the USSR 
(Submitted 18 February 1991 ) 
Zh. Eksp. Teor. Fiz. 100,625-634 (August 199 1 ) 

Electron Raman scattering at finite temperature in a normal metal and in a superconductor is 
studied. The anisotropic BCS model is used for the superconductor. Decreasing the temperature 
in the superconducting state results mainly in exponential suppression of subthreshold scattering. 

INTRODUCTION 

There is considerable research on the electron scatter- 
ing of light (ESL). This interest is explained by the fact that 
theoretically' ESL in a superconductor at zero temperature 
should exhibit a threshold-scattering does not occur if the 
transferred energy w = wi - w, (w, and w, are the frequen- 
cies of the incident and scattered light) is less than the width 
2A of the gap in the spectrum of the superconductor. The 
first observations of ESL in Nb,Sn and V, Si (Refs. 2 4 )  
indeed revealed a sharp rise in the intensity of the scattered 
light and the gap width determined from the position of the 
maximum agrees quite well with the value obtained from 

where A"' and A'"' are the vector potentials of the incident 
and scattered light in the metal. The term that is linear in the 
field and describes scattering in second-order perturbation 
theory makes a contribution that is small in proportion to 
the ratio @/ai,  and in addition we have mi -w, and these 
energies are comparable to the Fermi energy. 

The scattering matrix element can be written in the 
form 

where 
tunneling experiments. &! 

Electron scattering of light in high-T, superconduc- 
GIae = - 

2 
tors, however, has a different frequency dependence. For 
low frequencies w < 2A, where ESL should not occur, a lin- 
ear dependence of the scattering cross section on w is appar- 
ently ob~e rved .~ - '~  Several possible explanations of this fact 
have been advanced. First, because of the low quality of 
high-T, samples the gap width can vary appreciably in the 
volume of the sample. Second, the character of the electron 
pairing can be such that the gap vanishes at separate points 
or on lines on the Fermi surface. In both the first and second 
(if the gap vanishes on linesI5 ) cases the intensity of ESL is a 
linear function of w. Finally, because the thermal conducti- 
vity of the sample is low the temperature in the laser spot 
could be significantly higher than in the cooling bath. It 
should be noted that in some experimental works the magni- 
tude of the heating in the spot was estimated. As far as we 
know, however, the temperature has never been measured 
directly. At the same time, there exists a relatively simple 
method for measuring the temperature based on data on 
ESL. For this it is sufficient to compare the intensity of the 
Stokes I(w) and anti-Stokes I( - w) components for an ar- 
bitrary transferred quantum w. Their ratio is equal to 

I (-(0) / I ( w )  =ewmIT. (1 )  

The aim of this work is to calculate the effect of the 
temperature on the electron scattering of light by metals in 
the normal and superconducting states. We note that there is 
still no information about the observation of ESL in normal 
metals. 

is (see Fig. 1 ) the sum of the perturbation series in the con- 
stant g, and each term of this series is taken in first order in 
the interaction A"'A'"' with the field." A detailed analysis 
of this series shows that, first, the equality 

which has already been employed in writing down Eq. (3) ,  is 
satisfied and, second, diagrams of the form (g/2) ( T$, $2 ) 
can be neglected. The last assertion can be understood by 
studying the second diagram in Fig. 1.  For small momentum 
transfer the bottom loop, containing two parallel Green's 
functions, in contrast to the corresponding loop for 
( T$$ + ), can make a large logarithmic contribution, which 
together with the additional (compared with the first dia- 
gram in Fig. l ) small factor g is close to unity on account of 
the equation determining the gap width in the theory of su- 
perconductivity. As a result, the denominator in the progres- 
sion shown in Fig. 1 differs little from unity; this is why the 
term with C must be retained in Eq. (3) .  

The scattering cross section is determined by the aver- 
age value 

r 

SCATTERING MATRIX 

We write the Hamiltonian of an isotropic superconduc- 
tor interacting with an electromagnetic field in the form 5'+8+8 + ... g e2 ArOA(a)$+$ - q,+ ($I$) $, H = -  

mc2 2 
(2)  

FIG. 1 .  The sum of the diagrams for the vertex function C. 
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The brackets here denote both quantum-mechanical averag- 
ing and statistical averaging at finite temperature over the 
Gibbs distribution. 

We go over to Fourier components [x = (x, 
t ) - + q =  (q,w)l :  

Since the average of the product of $ operators in Eq. ( 5 )  
depends only on the difference y - x ,  we obtain 

do a j d4qJ d' (y-x) o"(x-gl({ 5 (A(')Aq(")'$+ (y ) $ (y) 

If the term in C were not present in Eq. (6),  then ever- 
ything would reduce to the Fourier component p(w, q) of 
the density correlation function at finite temperature. The 
prescription for calculating it is well known (see Ref. 16, p. 
205): It is necessary to calculate the two-particle tempera- 
ture Green's function X(T - TO, after which its Fourier 
component X ( w ,  ) must be continued from discrete values 
w, = 2 m T  onto the imaginary axis w, = - iw so that the 
resulting Green's function K (w) would not have singulari- 
ties in the upper half of the w plane. The required function 
p(w, q)  is obtained with the help of the relation 

1 Im KR(o) 
p(o,q)= -- i-e-*l= . (7)  

This prescription is also applicable in our case with C 
included in Eq. (6) ,  since in the proof essentially only the 
Bose character of the commutation of the operators S + and 
S was employed. 

We start by calculating C(T), which depends on ima- 
ginary time. Summing the series shown in Fig. 1 leads to the 
equation 

2e2 
(T$a+ (r)$+ (T) )= - J d4zf A(~)A::) I~&+( .c -T ' )~  (TI-1) 

mc- 

where the Fourier components of the temperature Green's 
functions are equal to 

Equation (8)  confirms the matrix structure of Eq. (4)  
and is solved by Fourier transforming: 

where 

Substituting Eq. ( 10) into Eq. (6)  we can see that the 
problem reduces to the calculation of the Fourier compon- 
ents of the two-particle function 

Calculating the average we obtain 

where we retain the factor a = e"'e'"'/m, since below we go 
over to the anisotropic case; e"' and e'"' are the unit polari- 
zation vectors of the incident and scattered light. 

The expressions appearing in Eq. ( 1 1 ) are analogous to 
those present in Eqs. (8 )  and ( 10). We demonstrate how to 
calculate them for the example of the denominator in Eq. 
(10): 

The components of the four-vector p - q are p - q and 
w '  = w' - w,. The integral over the momentum p reduces 
to an integral over the energy variable 6, measured from the 
Fermi energy, and over the Fermi surface. Once again, we 
denote the latter integration by angular brackets 
$ d s / u ( 2 ~ )  '... = (...), hoping that no confusion arises, since 
the quantum-mechanical and thermodynamic averaging 
will no longer appear. We designate by p the angle between p 
andq, so that 6- = 6 ( p  - q) ={(PI - vqp; q =  

The integral over 6 and the sum over w' in Eq. (12) 
diverge at the upper limit. We single out this divergence, 
subtracting and adding the corresponding expression for 
q=w,  =o :  

which, according to the equation determining the gap (see 
Ref. 16, p. 387), is equal to l/g. We integrate over 6 the 
remaining difference, making the substitution p- - p, i.e., 
p - - p ,  and the shift w' - w, -a' in the intermediate cal- 
culations: 
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A similar sum was studied in Ref. 16, where the conduc- 
tivity of a superconductor was calculated in the limit 
vq) max ( To, o, 1, but the scheme employed there is appli- 
cable in our case also. The summation over w' is replaced by 
integration 

over the contour enclosing the real axis, on which the poles 
of tan(w1/2T) lie. After deforming the contour and making 
a substitution of variables and the transformation wo + - iw 
we obtain an integral along the contour in Fig. 2. This inte- 
gral gives the function K R ( ~ )  for the arrangement of cuts 
shown, which is analytic in the upper half of thew plane and 
which we need for real values ofw; the signs of the imaginary 
part of the functions (a" + A')'" and 
[ (w' - wO )' + A2] 'I2 on the edges of the cuts are circled. 

We study the two limiting cases of small and large vq. If 
vq 4 max ( T,, w ) holds, we can drop vq in Eq. ( 13 ) in the 
zeroth-order approximation. For - w/2 < - A the purely 
imaginary square roots in the denominator of Eq. ( 13) can 
have different signs, and at the point a' = - iw/2 in the 
segment of integration from i ( A  - w) up to - iA there 
arises a pole which determines the imaginary part of the inte- 
gral 

The number 1 in the denominator of Eq. ( 10) cancels with 
the first term in Eq. ( 14), after which the ratio R, is found to 
be independent of the small constant g and, as one can easily 
see, is equal to - A/w. 

According to Eq. (7), we are interested in the imagin- 
ary part of the analytically continued Fourier component of 
the expression ( 1 1 ). In the limit of small q, studiec ere, the 
imaginary parts of the first, second, and third exp; ,,sions in 
brackets in Eq. ( 1 1 ) are obtained from the imaginary part of 
Eq. ( 14) by multiplying by - 2A2/w2, - A/w, and 1, re- 
spectively. Thanks to these relations Im K vanishes at 
q = 0, and the next term in the expansion must be retained, 
which was done in Ref. 17 for the case T = 0. The nonvan- 
ishing correction is a function of the ratio 

and it reaches a maximum value of order (vq/w) for u - 1. 
Exact cancellation in Im K at q = 0 does not occur for 

the case of an anisotropic superconductor, which is of special 
interest, if we have in mind modern high- Tc superconduc- 
tors. When anisotropy is taken into account, there the in- 
verse mass tensor m,; ' appears in the interaction with the 
electromagnetic field, and the quantity a in Eq. ( 11 ) must be 
replaced by 

1 o 8(o -2A)  
I ( ~ ) = - +  o ( i n t h -  In addition, in the electronic interaction the kernel V(n, n') 

g 4T 2  (02-4A2) " arises, which depends on the direction of the electron mo- 
m menta. An equation of the form (8) ,  which sums the loops, 

o1 do' 
-o I th- (14) can also be easily solved when anisotropy is taken into ac- 

2T (aa-40' t )  (ol 2-A2)'h count, if it is assumed that the kernel factors in terms of some 
functions p (n)  : 

@ @ @  Repeating these calculations for the anisotropic case, we ob- 
tain for vqg max ( Tc, w) 

i A 1 -- 1 
2  o ( @ ( a - 2 A ( n 1 ) )  

I m K R ( o ) = - t h -  
n o 4T [a2-4A (n')Z]'" 1 aA (n' ) 

*-i 9 <aArpZ(n, o ,  T )  > 
-q (n') (cp21 (n,  o,  T )  > 

1 ' ) .  ("1 
- i A  1 @F") where I(n,  o ,  T) is the function appearing in the brackets in 

Eq. ( 14) and depends on the direction of n, for which the gap 
0 0  assumes the value A. 

We now study the limit of large uq% max ( T,, w )  . The 

FIG. 2. The contour of integration (curves with the arrows) and the in Eq. ( 13) gives the large 
position of the cuts (heavy straight lines) and of the pole (*). ln(vq/A ), which does not appear in the numerator of R ,  in 
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Eq. ( 10). Together with this contribution, in the neighbor- row neighborhood of the threshold, when 
hood of the threshold w -+2A there arises in the numerator 
and denominator of R,  a singular term of order 

v4 A ln--~--Inl8A/(o--2A)I. 
A vq 

A 
-1n18A/(a-2A) 1. 

Elsewhere the terms with R ,  can be neglected in Eq. ( 1 1 ), 
For this reason, R, can be of order unity only in a very nar- and after integrating over 6 we obtain 

For large vq the integration over ,LL can be extended to 
infinity, after symmetrizing p-- - p. This integral can be 
evaluated formally by passing to the 6-function 

n 
[ (o '  '+A2)'+ (0-' Z+A2)'b-ivqp] -' -+ - 8 (p). 

v4 

After performing the analytic continuation according to the 
prescription described above, we obtain 

2 a2 
=-(-8(p)[J dor o1 (ol+o) -A' 

4 0  {(a '  '-A') [ (O'+O)~-A'])~ 

x j d d  
o' (o-ol) +Az t h q ) .  

{(a '  '-A2j [ (o-o')2-~2])1'1 2T 
A 

(16) 

The two integral terms in Eq. ( 16) have a different phy- 
sical meaning. The first term describes single-particle excita- 
tions on one side of the gap and the second term describes 
pair creation through the gap. The first term vanishes as 
T-0, and it has no analog in the limit ( 15) of small q. This is 
explained by the fact that the law of conservation of energy 
for single-particle excitations E, - E, - , = o ,  in contrast to 
the law E~ + E, - , = o corresponding to pair creation, can- 
not be satisfied for q = 0 and finite w. 

REFLECTION COEFFICIENT 

The relative number of photons reflected into the solid 
angle d f l  and the frequency interval dw can be written in the 
form' 

where the integral I ( o )  takes into account the decay of the 
field in the metal at a depth S: - 

n and x are the refraction coefficient and the damping coeffi- 
cient at the frequency of the incident light w, and 
6 = c/wi. We shall employ the simplified form of Eq. ( 18) in 
the limit n ( x .  In the general case the factor in front of 
p(w, q)  has the form 

The Fourier componentp(o, q )  can be expressed with 
the help of Eq. (7)  in terms of Im K R(w), which is given by 
Eqs. (15) and (16) in the limiting cases, where the trans- 
ferred quantum w was assumed to be positive. Direct calcu- 
lation shows that Im K R (  - o) = - Im K R(w). Therefore 

which proves Eq. ( 1 ) given in the Introduction. Bearing in 
mind the relation (191, we confine our attention in what 
follows to values o > 0. 

We start with the case of a normal metal, when A = 0 
holds and only the region uq > w exists ( v  is the maximum 
value of the projection of the Fermi velocity on the normal to 
the surface of the sample), for which Eq. ( 16) is valid. Car- 
rying out the integration in Eq. ( 16) we obtain 

where a = ey'mj; let'. We note that taking into account 
Debye screening, which must be done at low frequencies," 
leads in Eq. (20) to the substitution a-a - (a). 

The integral over q in Eq. ( 18) can be easily evaluated, 
and for the intensity we obtain 

62 1n (2v/o6), o-=~v/d,  (21) 

4 ( v ) .  o>u/8. (22) 

The qualitative frequency dependence of the intensity given 
by Eqs. (2 1 ) and (22) is shown in Fig. 3. 

FIG. 3. The spectrum of radiation scattered by a normal metal at low 
temperatures T<u/S ( a )  and at high temperatures T )  u/6 (b).  The typi- 
cal values of the Fermi velocity u- 10' cm/s and penetration depth 
6- 10 - cm correspond to the frequency u/S- 50 cm - ' ( 1 cm ' = 1.44 
K). 

349 Sov. Phys. JETP 73 (2), August 1991 S. Klyama and L. A. Fal'kovskil 349 



As the structure of the expressions ( 15)  and ( 16)  
shows, the spectrum of light scattered by a superconductor 
consists of a background, given by the first integral in Eq. 
(161 ,  and a maximum, which lies in the frequency range 
w > 2A,,, , where 2Amin is the minimum gap width. 

The background can be easily calculated at low temper- 
atures T <  A,,, , when the corresponding integral in Eq. ( 16) 
over w' gives 2 T ( l - e - " / T ) e - A / T  for w & T  and 
(2?rwT)' / ' ( l  - e ~ ~ / ~ ) e -  A/Tfor w ) T .  The remaining inte- 
gral over the strip lying on the Fermi surface, where p = 0 ,  
contributes the additional factor (7rT/2Akin ) if the gap 
varies sufficiently rapidly A" ) the derivative is evaluated 
at the point on the strip where the gap width is minimum. 

Thus for the background at temperatures T &  A,,, the 
following interpolation formula is obtained: 

where uq,,, = max ( T , ,  w )  and when the anisotropy of the 
gap width is large the additional factor ( T / A k i n  ) '"must be 
taken into account. 

The contribution due to pair creation in Eq. ( 16) has 
the following form near the threshold after integration over 
w' (for 9% T , / u ) :  

Expanding with respect to the angle q, near the minimum 
value 2A = 2A,, + A"q, and integrating, we find 

Here all values are taken at the point on the strip of the Fermi 
surface p = 0 where the gap width is minimum. 

For q <  T , /u  we find with the help of Eq. ( 15) 

where the minimum of the gap width is determined on the 
entire Fermi surface, and all values are taken at the corre- 
sponding point. From the expressions ( 2 4 )  and ( 2 5 )  it is 
evident that the intensity of the scattered light associated 
with pair creation 

vanishes quite rapidly-according to a square-root law- 
near the threshold w - 2A,, &Amin and, neglecting the 
temperature dependence of the gap width itself 2A,, ( T), it 
is virtually independent of the temperature. 

The behavior of the pair contribution far from thre- 
shold o ) A , , ,  is evaluated with the help of the formulas 

( 15) and ( 16 ) ,  which lead to the expression 

for q & w / v  and to the expression ( 2 0 ) ,  corresponding to a 
normal metal, for q%w/u.  Thus, far from threshold we ob- 
tain the same result as in the case of a normal metal ( 2  1 ) and 
( 2 2 ) ,  and moreover in the region w ) u/6 we obtain the su- 
perconducting "tail" 

which decays more slowly than the normal term ( 2 2 )  

CONCLUSIONS 

An increase in temperature affects electron Raman 
scattering both in a normal metal and in a superconductor. 
For a normal metal the most significant change is that for 
low transferred energy w < T the cross section, instead of 
decreasing as the frequency increases approximately as 
I a wln ( 2 v / w 6 ) ,  starts to increase slowly as I a Tln ( 2 v / w 6 )  
[see Eq. ( 2  1 ) 1. In a superconductor subthreshold scattering 
arises for frequencies w < 2Amin (if the minimum gap width 
2A,, is not equal to zero). Here the cross section depends 
exponentially on the temperature ( 2 3 ) ,  and the frequency 
dependence is described primarily by the factor 
[ T ( w  + T )  1"'. In the region above threshold the cross sec- 
tion increases somewhat at the transition to the supercon- 
ducting state. 

At the present time it is difficult to draw an unequivocal 
conclusion about the extent to which the experimentally ob- 
served picture can be explained by uncontrollable heating of 
the sample by a laser beam. The frequency dependence ob- 
served at low frequencies is closer to a linear dependence 
than to a square-root dependence (we note that 
[ T ( w  + T )  ] '/* - ( T w )  holds for w > T ) .  In order to clar- 
ify the situation it would be helpful to obtain the detailed 
frequency and temperature dependence of the scattering 
cross section with careful monitoring of the temperature, for 
example, with the help of the relation ( 1 ) . 

Finally, we make a remark concerning the role of inter- 
band transitions in scattering. They can be taken into ac- 
count in the spirit of the k-p scheme. Aside from the depen- 
dence of the inverse-mass tensor on the point on the Fermi 
surface, which we have already discussed, a dependence of 
the inverse-mass tensor on the frequency of the incident and 
scattered light also appears: 

wherep, is the matrix element for a transition from the state 
c on the Fermi surface into other bands u; we neglect the 
change in the electron momentum in the energy denomina- 
tors to the extent that the photon momentum is small com- 
pared with electron momentum. Thus, if the frequency of 
the incident light approaches some interband-absorption 
frequency, then the intensity of Raman scattering, on the 
one hand, increases owing to the resonance denominator in 
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the amplitude while, on the other hand, it decreases owing to 
the decrease of the penetration depth of the light. As regards 
the operator structure of the expressions (2) and ( 3 ) ,  it re- 
mains the same even when interband transitions are taken 
into account. 

In Ref. 19 the cross section near threshold increased 
more slowly than in our case.' The reason for this discre- 
pancy lies not in the more complicated form of the scattering 
matrix element, which as a result is still replaced by a con- 
stant, but rather in the error in the calculation of the coher- 
ence factor: In Eq. (5.8 ) of Ref. 19 up up + , - upup + , should 
bereplacedbyu,v,+, + u,up+, [seeEq. (11) withc, = O  
from Ref. 171. 
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