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Based on a new perturbation theory involving expansion in powers of the nonlinearity of the 
theory (for a system with a power-law nonlinearity), we calculate the fluctuation spectrum of a 
nonlinear system to second order. For an anharmonic oscillator in the strong-damping limit we 
show that as the power of the nonlinearity and the intensity of the external noise change a 
reconstruction of the spectrum is possible due to a sign change in the nonlinear contribution to the 
total spectrum. 

In Refs. 1 and 2 a new analytic technique was proposed m 

for studying nonlinear field theory, which was later genera- x = r(i3nx.. 
lized to supersymmetric models3 and stochastic quantiza- n=O 

tion. ~eference 3 also provided the stimulus for the investi- 
gation we describe here, in which we apply this new 
perturbation theory to problems involving the dynamics of 
nonlinear systems in the presence of noise. In Ref. 3 the auth- 
ors constructed expansions not in the interaction constant 
but rather in the nonlinear exponent S of the theory (for a 
power-law nonlinearity, i.e., x2" I ) .  Therefore we should 
expect nontrivial dependences on the physical parameters 
which ultimately will allow us to identify features of the 
theory which could not be studied using previous methods of 
investigation. 

In this paper we obtain an expression for the fluctuation 
spectrum (i.e., the Fourier transform of the autocorrelation 
function) to second order in S for the example of a one- 
dimensional system with strong damping. This example 
shows that a reconstruction of the spectrum is possible. We 
note that after the necessary regularization (see Refs. 5 and 
6) our expressions for the spectrum can be used for any non- 
linear system with a power-law nonlinearity in a space of 
arbitrary dimension. The Appendices contain a discussion of 
how to average expressions containing the logarithm of a 
random function, using a different method from the one gi- 
ven in Refs. 1 and 2, along with some technical details. 

Expanding x on the right side of ( 1 ), we obtain the following 
system of equations: 

Xxo=f (0,  (4) 
$xi=--yxo In xo2, ( 5  

K X ~ = - ~ [ ~ X ~ + X ~  In xo2+i/2xo(ln x ~ ~ ) ~ ] .  ( 6 )  

The fluctuation spectrum is determined as follows: 
+ m 

F (Q)= (x(t+r)iz(t) )c-"~ dr. 
-m 

( 7 )  

Accordingly, to second order in S the autocorrelation func- 
tion has the form 

<x(l)x(2))=<xo(l)xo(2)>fi3 [<xo(l)x,(2)>i-(1++2)] 

+6z[<~o(1)~2(2)  )S .<XO(~)X, (~ )  >+<xi (1)xi (2) )I,  ( 8 )  

wherex(l)=x(t l  1. 
To zero order in 6,  taking into account that 

m 

xo(l)=G(l,  2)f (2)- J G(t,-t2)f (t2)dt2, (9) 
- ca 

Consider the following equation: A 

where G = K - ' is the Green's function, it is not difficult to 
Bx=-yx(xZo-I) +f (t), (1) obtain 

h 

where K is an arbitrary linear differential operator in which Fo(Q)=lG(Q)lZB(Q), (10) 
we have included a term yx for convenience; f(t) is a Gaus- 
sian random process with correlation function where G ( a )  and B ( a )  are the Fourier transforms of the 

Green's function and the noise correlator, respectively. 

Assume that x is a dimensionless q u a n t i t y , ~ ~  that the 
dimensions of y coincide with the dimensions of K ( y e  have 
in mind dimensions of frequency). For example, let K be the 
operator for a damped harmonic oscillator. Then by using a 
dimensionless action we obtain the dimensions of the follow- 
ing quantities: [ t ]  = - 1, [x]  = - 1/2, [y]  = 2 + S. If we 
introduce a dimensional parameter v with the dimensions of 
frequency and make the replacement v1I2x +x, retaining a 
dimensionality of 2 for y, we obtain an expression analogous 
to (1). 

Following Refs. 1 and 2, we write x in the form 

To first order in S it is necessary to calculate the average 

For this we write 

we then assume that k is an integer, and carry out the average 
by evaluating the derivative at zero (a  different derivation is 
given in Appendix 1 ) . As a result, we find the following first- 
order fluctuation spectrum: 

F,(Q) =-26yL Re G ( - 8 )  F,(Q), (12) 
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where 

We can use analogous methods to perform the second- 
order calculations in S (see Appendix 2). In this case, the 
expression for the spectrum has the form 

F(Q)=PO(Q)+ (-7)Re G(-Q)F,(QX (6L+1)2-1-l-6Zrp'~II) 

-47bZA] + 262yZPo (62)Re G (-8) 
1 

where 
m 

It is not difficult to see that the frequency dependence of 
the second term in ( 13) coincides with the expression ob- 
tained by perturbing with respect to y. However, in our case 
it is now possible for the sign of the coefficient in the square 
brackets to change. To first order in 6, the coefficient be- 
comes negative when L < 0; naturally, the inclusion of se- 
cond-order terms in S provides necessary bounds on this. 
Certainly all this agrees with the usual perturbation theory 
in y, where the contribution of this term is proportional to 
( - y) .  Let 

where w2 = wO2 + y is the renormalized frequency, so that 
Fo ( R) depends on y. Expanding ( 13) to first order in y, we 
see that the coefficient of the second term is equal to 
(SL + 1) + 1 + S2$'(3/2), i.e., it is positive, so that the 
contribution is determined by ( - y), which agrees with the 
usual perturbation theory. 

In order to obtain the necessary bound for S, let us 
evaluate the integral A in ( 13). For this we go to the strong- 
damping limit, where the second derivative with respect to 
time in K can be neglected. In this case 

where O(r) is a step function and B(t, -t ,) 

= 2D6( t, - t2 ) (we have made the replacement y -. y/ 
2 r ) .  Substituting (14) into the expression for A, we obtain 
(see Appendix 3 ) 

Using (15) in (13), we find that for L<O and 
y S  1.63w2 

where /3 = y/02. For L > 0 we have f(L) < 0; at the point 
L = 0 the function f ( ~ ) '  changes sign, then goes through a 
maximum for 

L,,=- [2p+ 4' ( 3 / z )  (1-B) I"'. 

AS /3 increases, the value S,,, = f(L,,, ) decreases, e.g., 
fromS,,, =0.89 for/3=0.1 to S,,, =0.58for/3=0.5. It 
is obvious that for each S there is a value of L in this interval 
determined by the equation f(L) = 6. Thus, as S and L vary 
a restructuring of the spectrum is possible, associated with 
the change in sign of the nonlinear contribution to the total 
spectrum [the second term in ( 13) 1. 

Let us consider a specific example. Let S = 0.5, and as- 
sume a nonlinearity in ( 1 ) of the form - yxlxl . Let us take 
/3 = 0.5; then for 0.09 < D  / r u 2  <0.54we observe a restruc- 
turing of the spectrum for this system, which takes place for 
fixed damping parameters of the anharmonic oscillator as 
the intensity of external noise varies. 

Finally, we must keep in mind that for small frequencies 
or near resonance the contribution of the third and fourth 
terms to ( 14) can be quite significant, so that it is necessary 
to consider the high-frequency region in order to identify 
effects associated with the reconstruction of the spectrum. 

We note that changing the sign of the nonlinear contri- 
bution to the fluctuation spectrum of the system leads to a 
change in the direction of transfer of energy due to the non- 
linear interaction. For example, the behavior of a plasma 
with a linear inhomogeneity in the Lagrange variables is de- 
scribed by Eq. ( 1 ) with S = 0.5 (see Ref. 7), so that for 
certain noise intensities we may expect the formation of an 
energy-containing region for small frequencies. We can hope 
that a similar picture will also be correct [when we introduce 
spatial variations into ( 13), i.e., Rr-wt - qx, dr+dtdx, 
and R-. (w,q) 1, in which case the analogous restructuring 
of the spectrum can play the role of a mechanism for pump- 
ing down the large-scale structure of the noise. 

APPENDIX 1 

In this section we show how to obtain the average of the 
logarithm of a random function without representing the 
logarithm as the derivative of a power-law function evaluat- 
ed at zero. For this we will use the integral formula: 

da  
~n r . ~  = 5 Z e r p  ( - p 2 )  J a [erp (-a)  - exp (2ia8"~z0) 1. 

- m 0 

(1.1) 

We note that we could bypass the integration with re- 
spect to B; however, because our application involves a sys- 
tem in which a deterministic source is present along with the 
random force, we find that the linear dependence on xo in the 
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exponent has its advantages. Substituting ( 1.1 ) into ( 1 1 ) 
and using the relation 

<xo (4) xo (2) exp ( 2 i a " b  (2) ) 

=<x, ( l )xo  (2) > (1-4aB21) exp(-2aB2Z), (1.2) 

after integrating with respect to P we obtain 

We now use the transformation 
m 

and substitute ( 1.4) into ( 1.3); then after integrating with 
respect to a we obtain 

m 

< x o ~ i ~ x o ~ ~ ~ ~ n x o ~ ~ ~ ~ ~ = < x o ~ ~ ~ x o ~ ~ ~ ~  J*glhe-gln2y~ 
r (3 /2 )  

APPENDIX 2 

We illustrate the second-order calculation in S with the 
following example: 

(x*(I)x1(2)) 

=r2G (1,3) G (2,4) (xO (3) ln xo2 (3) so (4) In x,2 (4) >. (2.1 ) 

Following Refs. 1 and 2, we write 

<x , (3 ) lnx ,2 (3 )xo (4 ) lnx ,2 (4 )~  

By differentiation we obtain 

where a = I - ' ( x ,  (3)x0 (4)). We now use the definition of 
the hypergeometric function and its integral representation; 
as a result we find 

(xi ( l ) ~ i ( 2 ) )  
I 

Note once more the necessity for the following partition: 

This term arises in taking the average 

<so (1) xo (2) ln xO2 (2) ln ~ ~ " 3 )  ). 

APPENDIX 3 

In the course of the calculations leading up to ( 15 ) it 
becomes necessary to sum the following series: 

m 

Using the hypergeometric function, it is easy to obtain 

where we have used 

Let us calculate the integral 

where y, is the Euler-Mascheroni constant. Assembling all 
the integrals we obtain 

R=l-1/2$' (3/~) .  
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