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Induced scattering of sound in a medium with smooth inhomogeneities is investigated. It  is shown 
that the most effective mechanism is a unique two-step scattering channel inactive in scattering of 
light and not considered in previously studied mechanisms of sound scattering. The scattering 
thresholds and the amplification of a weak scattered wave are obtained. 

1. INTRODUCTION 

Nonlinear interaction of acoustic waves with inelastic 
perturbations of a medium have been far less investigated 
than the sound-sound interaction familiar in nonlinear 
acoustics. Attention has been heretofore paid mostly to self- 
focusing' and stimulated scattering of which are 
analogous to self-focusing and stimulated temperature scat- 
tering of light.5s6 Most investigated effects are analyzed by a 
procedure analogous to that used for propagation of light. 

At the same time, effects relatively easy to observe in 
light waves are difficult to produce in sound waves, and some 
have not been produced to this day. Additional difficulties 
encountered in the acoustic case are due to the weak disper- 
sion of sound waves, which leads to an abundance of compet- 
ing nonlinear processes. For example, weakly stimulated 
scattering of sound can hardly compete with zero-threshold 
generation of  harmonic^.^ At high intensities, however, pro- 
pagation of the pump wave leads to generation of large-scale 
acoustic flows that disturb the resonant character of the 
scattering and greatly reduces its effectiveness. 

We propose here a mechanism for effective interaction 
of acoustic waves with inelastic perturbations produced in a 
medium whose thermodynamic parameters vary smoothly. 
We show that if the characteristic length of the inhomogen- 
eity (of the sound refraction) is less than the damping 
length, the sound is scattered most effectively by a two-step 
mechanism having no analog in light waves. During the first 
step, the interaction of the incident and of the scattered 
sound waves with the initial inhomogeneity of the medium 
excites a rotational wave which excites in turn, by convec- 
tion, a scattering grating (e.g., a thermal wave). The reson- 
ant character of the interaction during the two steps makes 
the excited grating much larger than in one-step mechan- 
isms. 

It must be emphasized that in all the cases considered 
below the inhomogeneity of the medium is weak (L,, k% 1 1, 
and the total temperature change in the entire interaction 
region is relatively small (ST/T< 1). As a result, first, in the 
linear approximation the sound is only refracted and its am- 
plitude changes gradually; second, the resonance condition 
is not violated in the entire interaction region. Yet the stimu- 
lated-scattering mechanism described below is effective en- 
ough, even under these conditions, to cause significant 
growth of the scattered wave. 

2. BASIC EQUATIONS 

For the sake of clarity, we consider a medium described 
by the standard hydrodynamic equations 

3 + div (pu) =0, 
at 

and by an equation of state of general form. All the results 
can be easily reformulated to cover more complicated cases. 
Here p, T, P, u, and S are respectively the density, tempera- 
ture, pressure, velocity, and entropy per unit mass, x and 77 
are the thermal-conductivity and dynamic-viscosity coeffi- 
cients, and q represents the acting heat sources and sinks. 

Consider sound propagation in a medium enclosed in a 
waveguide having rigid heat-conducting walls. The medium 
is made inhomogeneous either by bulk heat sources or by 
keeping opposite waveguide walls at different temperatures. 
In the undisturbed state the medium is immobile and the 
pressure in it is constant. The distribution of the tempera- 
ture, density, and entropy is stationary, and their gradients 
are connected by the linear relations 

where C, is the isobaric heat capacity per unit mass. 
We assume that the characteristic length 

Lin = T/IVT I of the inhomogeneity exceeds the wave- 
length of the sound, but is much shorter than the bulk damp- 
ing length. 

The dynamics of the high-frequency (acoustic) and 
low-frequency (elastic) perturbations of the medium are de- 
termined by different processes. The relative values of the 
individual terms in Eqs. ( 1 )-( 3) differ correspondingly. 
The main perturbations in sound waves occur in the pres- 
sure, density, and the potential part of the velocity. The en- 
tropy and vorticity perturbations are relatively small. Dissi- 
pation produces acoustic boundary layers and relatively 
strong sound damping.' Outside these layers, however, dis- 
sipation plays a minor role compared with linear refraction 
and with effects due to nonlinear interaction. The dissipative 
terms in the equations for the sound waves can therefore be 
neglected, and the wall damping can be taken into account 
separately in the determination of the scattering threshold. 
In inelastic quasistationary waves, on the contrary, the en- 
tropy and vorticity are strongly perturbed. Allowance for 
the dissipative processes is therefore fundamental, since it is 
they which limit these perturbations. The pressure perturba- 
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tion is relatively small and requires only insignificant nonlin- 
ear corrections to the sound dispersion. These corrections 
will be disregarded below. 

In view of the foregoing, it is expedient to separate in the 
system ( 1 )-(3) the high-frequency (w) and the low-fre- 
quency ( R )  parts. For the acoustic perturbations we obtain 

Pa au. 1 
P a = -  -=-- as* - & V S a ,  VPm, -= 

pc2 at P at 

Here the tilde marks a deviation from a homogeneous equili- 
brium value, iV, = rot ii, is the vorticity, c is the speed of 
sound, V= l/p is the specific volume, and = V(p,ii), 
(for low-frequency perturbatipns it is convenient to use the 
mass-transport velocity directly). 

The three terms in the right-hand side of (4) corre- 
spond to different scattering channel. The first accounts for 
the transport of the entropy wave by the sound waves, the 
second is due to modulation of the sound velocity in the 
quasistationary wave, and the third describes scattering by 
the vortex waves. 

The equations for the low-frequency perturbations are 

-- as, x as.=-iQ vsa-u. vsm, 
at  - 

div f Q = O ,  A ( P Q - f J R )  =0, 
-, 

f Q l G = O ,  S Q I G = O ,  

where 

is the sound radiation pressure;8 x and v are the thermal- 
diffusivity and kinematic-viscosity coefficients. We have 
also left out the terms describing the previously investigated 
quasi-stationary-wave buildup mechanisms which are paral- 
lel to the investigated one. 

The size of the vorticity source [right-hand side of Eq. 
(7)  1 calls for special notice. To obtain its correct value it is 
necessary to take into account not only the radiation-pres- 
sure gradient but also the transport of weak intrinsic vorti- 
city in the sound waves, and the third-order linear terms. 
The system (4)-(10) is closed by adding the continuity 
equation and the equation of state. 

3. WAVE INTERACTION 

We use Eqs. (4)-(10) to determine the gain of a weak 
scattered wave in the given-pump approximation. In this 

case we can neglect the self-action of the weak quasistation- 
ary waves. We assume in addition that the pump intensity is 
low enough to be able to neglect the large-scale flows it ex- 
cites. 

The modes of a plane waveguide can be represented as 
combinations of plane waves. We start therefore by consi- 
dering the interaction of three waves: a strong acoustic pump 
wave "1" of frequency w, , propagating in the direction n, , a 
weak scattered sound wave "2" having a close frequency w, 
and propagating parallel to n,, and a quasistationary scat- 
tering interference wave "3" having a wave vector 
k, -- (n, + n, )w/c. The sound-wave interaction that excites 
wave "3" is small to the extent that the initial gradient 
VT/Tk is small. A major role in its formation is played by 
small violations of the adiabatic and potential (irrotational) 
character of the sound waves. A noticeable effect is pro- 
duced by the nonstationary character of the scattering wave 
(the smallness of the quantities vk : ,xk :, wl - w, = fl 
compared with the sound frequency). 

The ratios of the oscillation amplitudes of the different 
parameters in the sound waves have the standard geometric- 
acoustics forms.9 

For wave "1" with amplitude a , ,  the perturbations are 
F,  = aIpc2 for the pressure, PI = a l p  for the density, - 
i ,  = aln,c for the velocity, S, = - ia, (n, VS)c/w, for the 
entropy, and w, = a ,  [n, ,Vp] c/p for the vorticity. All the 
quantities are proportional to 

The relations for wave "2" are obtained by replacing the 
subscript "1" by "2." Account must also be taken of the 
nonlinear contribution made to the perturbation by the tran- 
sport of the entropy component of wave "3" to wave "1" and 
responsible for one of the scattering channels [see Eq. (4) ] : 

Except where necessary, the subscripts of o,,, zo  are omit- 
ted below. 

Consider the steady-state picture of the interaction. 
Neglect of the influence of the boundary conditions on a 
quasi-stationary wave, permissible when the waveguide 
transverse dimension is significantly larger than I lk3 ,  
makes Eqs. (7)  and (8)  algebraic in the perturbation ampli- 
tudes of the entropy and vorticity in the quasistationary 
wave "3": 

For the energy density Z, = 1% ( 2 / p ~ Z  in wave "2" we 
obtain the equation 

div ( c ~ ~ E ~ )  = ( r N i + r N z ) ~ ~ ~ r  (13) 
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where r,, is the nonlinear growth rate connected with sin- 
gle-step scattering channels 

and I?,, is the nonlinear growth rate connected with the 
two-step channel: 

Single-step scattering channels, in which the scattering 
wave is excited directly by interaction of an incident and a 
scattered wave, is described by the first terms in expressions 
( 1 1 ) and ( 12). The only difference between this scattering 
mechanism and those studied earlier2-" is that inelastic scat- 
tering waves are excited not by damping but by refraction of 
sound waves. If, however, the bulk damping length L, ex- 
ceeds the characteristic inhomogeneity length L,, , the scat- 
tering is mainly in two steps: the incident and scattered 
sound waves excite a rotational wave, the resultant convec- 
tion excites an entropy wave, and the interaction between the 
latter and the incident wave amplifies the scattered acoustic 
wave. This channel is effective because resonant excitation 
of a quasistationary wave takes place in each step, so that 
each step enhances the effect. As a result, the characteristic 
value of the nonlinear growth rate is (L3/Lin ) 2  times larger 
than the growth rate in the preceding scattering mechan- 
isms. 

The above hydrodynamic system has only one two-step 
scattering channel, because there is only one source of inho- 
mogeneity. If, however, in general there are several such 
sources and accordingly additional degrees of freedom, ad- 
ditional two-step scattering channels appear. On the whole, 
the presence of such channels is one of the interesting fea- 
tures of this scattering. 

Let us investigate in greater detail the possibility of ob- 
serving scattering in the steady state. To be specific, we as- 
sume that the thermal-diffusivity is of the same order or 
smaller than the kinematic viscosity, as is the case in gases 
and liquids. The estimates that follow can obviously be gen- 
eralized to other cases. 

4. LONGITUDINAL INHOMOGENEITY IN WAVEGUIDE 

If the parameters of the medium vary only along the 
waveguide, its modes constitute combinations of two plane 
waves whose transverse wave-vector components are oppo- 
sitely directed and the longitudinal components are equal 
and vary smoothly along the waveguide. 

To be specific, we assume henceforth that the pump 
wave is the zeroth mode of the waveguide ( a  plane wave 
propagating along its axis). The results for the other cases 
are essentially the same. 

If the waveguide width exceeds the sound wavelength, 
we obtain directly from ( 13) 

where z is the propagation direction of the incident wave, 20 

is the angle between the components of the scattered wave, 
k,  = 20  ( 1 - cos 0)  /c, and 

The mutual influence of the scattered-wave compon- 
ents is small enough to be neglected. Expressions (16) and 
( 17 ) are not valid for angles 0 =: 7r/2 and 0 =: 0. 

The effective gain length of the scattered wave is limited 
in this case by the inhomogeneity length, so that the condi- 
tion for observing scattering at angles 0=: 1 takes the form 

Here L is the waveguide length, T is the temperature differ- 
ence between its ends, and the observation condition is as- 
sumed to be T,L > 10. 

The situation is unusual because the gain increases and 
the threshold is lowered when the waveguide is shortened. 
Under the approximations assumed, the lower bound of the 
waveguide length is of the order of the sound wavelength. 
The threshold intensity in this scattering mechanism is 
lower than in the preceding cases by a factor - 103A /L ,  
[the coefficient in the square brackets of ( 18) 1. This factor 
is smaller than 0.1 for air at A > 2 cm (0 < lo5 Hz), and for 
wateratA>3.10W2cm (m<3.107Hz).  Thisexcessabove 
threshold can be of fundamental significance, since the 
suppression of the scattering by acoustic flow provides an 
upper bound on the permissible amplitude of the incident 
wave. 'O 

5.TRANSVERSE INHOMOGENEITY IN WAVEGUIDE 

Producing a temperature drop in the transverse direc- 
tion has the advantage that the resonant-interaction length 
along the waveguide axis is not limited in this case by the 
inhomogeneity length. This further increases the scattering 
efficiency. 

Consider backscattering of a sound wave. If the wave- 
guide is wider than the wavelength of sound, reflection is the 
most rapidly evolving scattering process. When, however, 
the waveguide width becomes less than half the wavelength, 
reflection is the only possible resonant scattering process. 

Given the temperature difference between the walls, the 
gain of the scattered wave increases with decrease of the 
waveguide width. If the latter becomes less than the wave- . 
length, account must be taken of the effect of the walls on the 
quasistationary wave. 

Assume that the waveguide is planar and of width 2H, 
with the x axis directed across the waveguide, - H<x<H. 
Then 

T,=6T - 
H '  

where ST = T+ , - T -  , & T is the temperature difference 
between the center and the wall. The equations describing 
the change of the perturbations across the waveguide and the 
smooth variation of the sound waves along the waveguide 
axis are 

Pump wave: 
da, d l n c  

2ik - dz + A, (a,) =2k20,'lo (-) 
d l n T  ' 
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Reflected wave: 

Quasistationary wave: 
4kc 

(4vk2--iQ)Gs-vAl(GS)= - i- ai4*[V (PC), n,l , (21 ) 
P 

m 

div f,=O, s ~ ( ~ = ~ ( ~ = o .  (23) 

The equations for the sound waves can be solved by 
perturbation theory, using the analogy between the wave 
equation in the parabolic approximation and the Schro- 
dinger equation." The right-hand sides of these equations 
can be regarded here as the result of the action of a linear 
operator L on the corresponding function a. The unper- 
turbed basis will be a set of functions 9, which are solutions 
of the equation 

E,cp,+Al(cp-) =O 
with boundary conditions 

In the zeroth approximation the parameters of the 
sound are homogeneous across the waveguide. The first- 
order correction to the wave number is determined by the 
diagonal matrix element of the operator L. To calculate it we 
must accordingly determine the quasistationary waves for 
sound amplitudes that are independent of the transverse 
coordinates, and then average them over the cross section. 

Taking all the above into account, we obtain the correc- 
tion to the wave vector of the scattered wave: 

Here 3 is the entropy-scattering form factor. The rotational 
waves make no contribution to the sound reflection. The 
form factor 3 depends on the method used to make the tem- 
perature inhomogeneous. 

If the inhomogeneity is due to the difference between 
the wall temperatures, then 

When the cavity width is large (Z- co ) the expression in 
the square brackets tends to unity. In the opposite limit 
Z - 1 0  we have 3 ( s  = 0) + f l / lO5 .  

The gain of the reflected wave is equal to the imaginary 
part of the correction Sk, to the wave vector. The gain is an 
odd function of the detuning of the reflected wave from the 
incident one. The gain reaches a maximum at a certain value 
of this detuning. The characteristic value of the optimal de- 
tuning is determined by the damping of the quasistationary 
waves. flop, ~ 4 x k  ' if Z > 1 and flop, ZX/H if Z < 1. 

The dependence of the scattering increment on the 
waveguide width is determined by the experimental condi- 
tions. If the temperature difference and the pump amplitude 
are small, the waveguide width can be made optimal. This 
width and the corresponding value of the form factor are 
practically independent of the properties of the medium. 

For air, for example, Y/X = 0.73, the increment is a 
maximum at Zo = 2.9 and 3 ( X o  ) = 2- 10W2, while for 
waterv/x= 7wehaveZo = 2 . 8 , a n d 3 ( Z o )  = 1.9.10-'. 
At larger temperature differences and pump amplitudes, ac- 
count must be taken of the restrictions imposed by the maxi- 
mum permissible distortions of the incident wave: 

a lnc  
a=6T(-) %'(Tn2)-'<anp, 

a l n T  
and by the conditions for neglecting the excited acoustic 
flows: 

This shifts the optimum into the region of small Z. The 
increment limits can then reach the value of the sound wave 
vector. 

The only process that competes with scattering when 
sound propagates in a narrow waveguide is damping of the 
sound at the walls.' The condition for exceeding the 
threshold is 

Scattering is possible under the condition 1 a 1 ;, > la 1 :,, . 
This corresponds to an upper bound on the sound frequency: 

For example, for ST/T<O. 1 , X  = P o ,  a,,, = 0.1 the con- 
dition (29) yields for air w < w,,, = 3. lo6 Hz (A > 5. lo-' 
cm) and for water w < w,,, = 2.10" Hz ( A  > 4.10 - cm). 
When these conditions are met, the permissible excess above 
threshold is la 1 :,, w,,, /w. 

By way of illustration, we present estimates of the possi- 
ble growth rates and threshold intensities for scattering of 
sound of wavelength A = 1 cm. 

Using the data for the corresponding quantities1' and 
expressions (24) and (28), we obtain 

the threshold pump amplitude: 
for water-a,,, ~ 2 . 2 .  lo-', for air-a,,, ~ 4 .  ; 

the threshold intensity: 

Here for water-I,,, z 1.6. W/cm2, 
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for air-I,,, -7.  W/cmZ; 

the scattering length at near-threshold amplitudes: 
for water-L, -- 185 cm, for air-L, ~ 2 3  cm ; 

the scattering length at nearly limiting amplitudes: 
for water-L, ~ 2 . 3  cm, for air-L, < 1 cm . 
The limiting intensities are lower than the characteris- 

tic value of the threshold in previously in~est igated~-~ types 
of scattering. 

Thus, by varying the width of the waveguide and the 
transverse temperature difference we can significantly alter 
the characteristics of the nonlinear scattering without lower- 
ing its effectiveness. 

6. CONCLUSION 

Our analysis shows, as follows from the proposed me- 
chanism, that even in the case of weak inhomogeneity stimu- 
lated scattering of sound has a rather low threshold. At mo- 
derate pump intensities the characteristic scattering length 
is of the order of several wavelengths and decreases when the 
inhomogeneity of the medium increases. This raises hopes of 
observing it in experiment. This possibility is indirectly con- 
firmed by known experiments on excitation of a density 
wave by a standing sound wave in a transversely inhomogen- 
eous waveguide. l 3  

The scattering investigated must also be taken into ac- 
count as a possible parasitic effect in propagation of strong 
sound. The medium can be made inhomogeneous enough as 
it becomes heated by the sound damping. 

We have confined ourselves here to the initial scattering 
stage, when the scattered-wave amplitude is small. We have 
therefore neglected nonlinear self-action processes excited 
by quasistationary waves. The results of Ref. 13 show that 
these processes become significant when the low-frequency 
perturbations increase, and this can apparently limit the at- 
tainable coefficient for conversion of an incident wave into a 
scattered one. 

We conclude by noting some possibilities of additional- 
ly increasing the efficiency of this type of scattering. 

The scattering increment is quadratic in the quantity 
(a In c2/d In T),, indicative of the relative change of the 
sound velocity with change of temperature. This quantity is 

equal to 1 in the media considered above. In media where it is 
large, however, this scattering efficiency will be higher. 

The boundary conditions we investigated for quasista- 
tionary waves (ideally heat-conducting walls) can be re- 
garded as the least favorable, since they damp these pertur- 
bations strongly near the walls. Thermal insulation of the 
walls or the use of inelastic modes of the medium without 
damping at the walls, for example density waves, also in- 
creases the scattering effectiveness. 

In our system there was no reaction of the entropy wave 
on the rotational ones. In general the feedback can be nega- 
tive as well as positive. If the force of gravity is taken into 
account, the scattering increment will increase when con- 
vective instability (with respect to the Rayleigh number) is 
approached. This is one more possibility of increasing the 
scattering efficiency and smoothly varying its characteris- 
tics. 

The authors thank A. M. Dykhne for helpful discus- 
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