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We consider the effect of relaxation of atomic orbitals associated with the intra-atomic Coulomb 
interactions between valence electrons. We show that inclusion of this effect within the 
framework of the single-band approximation leads to the appearance of a term 
fai;t,a,,, ( 2 ,  - , + 2,, - , ) in the Hamiltonian. The magnitude of the parameter f is determined by 
the Hubbard matrix element Uand the overlap integral S, and its sign coincides with the sign of 
the amplitude of single-particle interatomic transitions. We discuss certain properties of the 
resulting Hamiltonian. 

1. INTRODUCTION 

At this time, ongoing discussions of various aspects of 
high-temperature superconductivity have lent a special ur- 
gency to the study of the detailed structure of the Coulomb 
electron-electron interaction in crystals. This interaction 
determines the insulating and magnetic properties of the 
compounds La, CuO, and YBa, Cu, 0, , which within the 
framework of standard band theory should be metals;' it is 
in fact the basis of Anderson's hypothesis regarding resonat- 
ing valence bonds;' and finally, according to H i r ~ c h , ~  it can 
lead to a phononless mechanism for superconductivity in 
hole-based metals according to the BCS scheme. 

The simplest model used to describe the properties of 
interacting electrons is the Hubbard model., This model 
treats the case of a hypothetical nondegenerate band con- 
taining n electrons per atom (n<2) which interact only 
when they are located on the same lattice site in the crystal. 
In its standard form, the Hubbard Hamiltonian can be writ- 
ten 

where c& (c,,, ) are creation (annihilation) operators for an 
electron at the ith site with spin a (a=  f 1/2), and 
A,, = ci;c,,, is the number operator for electrons at the ith 
site with spin a. The matrix elements tii and Uare calculated 
using atomic wave  function^;^ the former, which are ampli- 
tudes for intersite transitions, are matrix elements of the 
crystal potential, while 

is the matrix element of the intrasite Coulomb electron-elec- 
tron interaction. 

Usually, the Hubbard Hamiltonian is sufficient to de- 
scribe dielectric and magnetic properties or resonating va- 
lence bonds. However, Hirsch3 has shown that including the 
matrix elements of the electron-electron interaction in the 
form 

can lead to a qualitatively new effect. The Hirsch correction 
to the Hamiltonian ( 1 ) can be written in the form 

Such a term in the Hamiltonian describes a change in the 
amplitude of the intercenter transition ( i z j )  due to the ac- 
tion of the Coulomb potential created by electrons that al- 
ready occupy these centers. It is important that the Coulomb 
potential is repulsive, whereas the amplitude of the direct 
intersite transition tii is calculated from the attractive crystal 
potential. From this it follows that interactions of the form 
(2) interfere with tii, leading to a decrease in the total ampli- 
tude of the intercenter transitions, and consequently to a 
shrinking of the band as the electron density increases. From 
similar considerations it follows that the energies of elec- 
tronic states located in the top half of the band will decrease 
with increasing electron density. This fact also led Hirsch to 
the conclusion that in a hole-based metal there exists a Cou- 
lomb mechanism for electron-electron interactions which 
can lead to an instability of Cooper type without phonons. 

In this paper we wish to discuss an effect which leads to 
a new type of electron-electron interaction. The essence of 
this effect may be described as follows. Because of the Cou- 
lomb repulsion, the energy of valence electrons at a given 
crystal lattice site depends on their number, i.e., the more 
electrons found on a given site, the higher their energies and 
consequently the larger the radii of the wave functions of 
these electrons. This broadening of the wave functions in 
turn implies that there is an increase in the overlap integrals 
for electron wave functions on neighboring sites; conse- 
quently, the tunneling probability for these sites increases. 
From this we see that the amplitude of intersite transitions 
depends on the occupation numbers of these sites. We see 
here a certain similarity between this effect and the effect 
described by Hirsch. However, in our case the energy band 
widens. In what follows we will show that for the case of a 
sufficiently narrow band the effect of broadening of the orbi- 
tals dominates, thanks to the exponential dependence of the 
matrix elements for intercenter transitions on the orbital ra- 
dius. 

It is necessary to emphasize that this effect is wholly due 
to the intra-atomic interaction, and therefore is determined 
by the Hubbard matrix element U. Nevertheless, it cannot be 
obtained within the framework of the representations deve- 
loped in Refs. 3 and 4, i.e., from investigating the various 
matrix elements for electron-electron scattering, which are 
determined by the atomic wave functions. 
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The goal of this paper is to include the effect of orbital 
relaxation in terms of second quantization operators, and 
also to discuss several properties of the Hamiltonian ( 13). 
We note that the authors of Refs. 5 and 6 did indicate the 
importance of including changes in the wave functions when 
electrons are added or subtracted. However, these authors 
did not discuss effects associated with changes in the wave 
function overlaps of neighboring atoms. 

Our subsequent discussions will be based on a many- 
body Hamiltonian for interacting valence electrons moving 
in a periodic pseudopotential field. In order to clarify the 
physics of this situation, and also to obtain quantitative re- 
sults, we will first investigate the case of a one-dimensional 
crystal with a pseudopotential in the form of a set of 6-func- 
tions. The results obtained in this way are easily generalized 
to the case of a nondegenerate band in a three-dimensional 
lattice. 

The plan of this article is as follows: in Sec. 2 we de- 
scribe the pseudopotential model, and discuss the properties 
of the single-particle spectrum. In Sec. 3, we consider the 
interaction and set up the second-quantized Hamiltonian. In 
Sec. 4, the results we obtain are generalized to the case of a 
simple three-dimensional lattice. Section 5 is devoted to a 
discussion of several properties of the new Hamiltonian. 

2. MODEL PSEUDOPOTENTIAL AND PROPERTIES OF THE 
SINGLE-PARTICLE SPECTRUM 

As we have already said, correlations caused by orbital 
relaxation effects are not described by matrix elements of the 
Coulomb interaction determined by a set of atomic wave 
functions from different sites. Generally speaking, in order 
to include this effect properly it is necessary to use exact 
wave functions for all values of the energy. Therefore, it is 
convenient to begin with a model in which the states and the 
spectrum of the Hamiltonian can be calculated exactly. We 
will investigate the model of a one-dimensional crystal with 
pseudopotentials for the atomic states in the form of 6-func- 
tions. Note that the model with 6-function-like potentials 
can be solved exactly in the three-dimensional case as well.' 
The Schroedinger equation for the valence electrons has the 
form 

m 

where D < 0 characterizes the depth of the pseudopotential 
well, and a is the spacing between neighboring wells. It is 
convenient to rewrite (3)  in the following form: 

where 

Since the bound state of a 6-function potential has the 
form exp( - x 1x1 1, we seek the wave function in the form of 
a superposition of such bound states: 

where x is determined from the condition that the function 
(5)  satisfy Eq. (4). Despite a superficial similarity between 
Y k  ( x )  and the wave function which follows from the tight- 
binding method, there is a significant difference between 
them: in this case, x depends on k. Substituting (5)  into (4) ,  
we obtain 

For large a such that ga b 1 (the case of a narrow band), Eq. 
(6)  can be solved by the method of successive approxima- 
tions. In the zeroth approximation we have x =g/2, 
E = - g2/4, while in the first approximation we have 

Equation (7) corresponds to the tight-binding approxima- 
tion. We limit ourselves to this order of accuracy; the wave 
functions corresponding to energies E > 0 can be obtained 
from (5) by analytic continuation of x onto the imaginary 
axis. Substituting these functions into (4), we obtain the 
following dispersion relation: 

c=xZ, 
2 x  (cos xu-cos ka )  =g sin xu. 

It is easy to see that (8) is obtained from (6)  if we make the 
replacement x +ix in the latter. Equation (6) gives a set of 
energy bands; the allowed bands are determined from the 
condition 

The expressions given above imply that for sufficiently 
large values of the parameter ga the wave function of the 
lowest band is given by Eq. (5)  with x a real quantity for all k 
( I k I <n-/a). However, ifga < 1 holds, for k larger than a cer- 
tain k, the quantity x becomes imaginary. This implies that 
the energy E = 0 now lies in the lowest band. From (8)  it is 
easy to obtain an equation for k,: 

From this it is clear that forga/4 > 1 the energy of the lowest 
band is always negative, and x is a real quantity for all k. The 
properties of electrons from this band will be of interest to us 
in what follows. 

Let us now incorporate the Coulomb interaction 
between electrons. Since electrons moving in a narrow band 
spend a large part of their time on sites of the crystal lattice, 
while the Coulomb potential is strongly overscreened, we 
can assume that the electrons interact only when they are 
located on the same site. Such an interaction can be treated 
within the mean-field theory, if we introduce the following 
effective potential into (3)  : 

where (n) is the average number of electrons with opposite 
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spin on a given site. Now it is easy to trace how the energy 
spectrum changes as we vary u. The introduction of this 
effective potential implies that g in Eq. (4) changes by an 
amount u(n), where u = (2m/fiz) 0. Then for u g g  we ob- 
tain from ( 7) 

2a u 
X (1 --(n)+ -(n)garcos ko. 

g 2g 

This equation implies first of all that the average electron 
energy is increased by 1/2gu(n), and secondly that the 
width of the band becomes equal to 

Since g a s  1 holds for a narrow band, the width of the 
band increases. Eq. (9) provides a striking illustration of the 
two competing tendencies mentioned in the Appendix: the 
width of the band is determined both by the pre-exponential 
factor and the overlap integral. On the one hand, the interac- 
tion leads to a decrease in the pre-exponential factor; on the 
other hand, it increases the overlap integral. For a sufficient- 
ly narrow band the second tendency will always dominate 
(irrespective of the dependence on the magnitude of the in- 
teraction energy). 

3. THE TWO-PARTICLE POINT INTERACTION WITHIN THE 
MODEL OF A ONE-DIMENSIONAL CRYSTAL 

Let us now turn to a more correct treatment of the elec- 
tron-electron interaction. For the reasons described above, 
we can assume that the electrons interact only when they are 
located on one and the same site in the crystal. Therefore we 
can introduce the following two-particle potential for the 
Coulomb repulsion: 

Here a and b take on values from unity up to No, where No is 
the number of valence electrons. Let us write the interaction 
operator (10) in second-quantized representation. In the 
quasimomentum representation, the matrix elements have 
the form 

where 

Then using the condition 

Yk(ma)=exp (ikma)Yk(0), 

we find 

vk,m3k,='l,uN6 (kt+kz-ks-k4) Y,,'(O) y,,' (0) Yb (0) Yh(O). 
(12) 

The interaction operator is conventionally divided into three 
groups of operators. In the first group we include operators 
that describe transitions within the lowest band, in the se- 
cond operators which mix the states of the upper bands, and 
in the third operators corresponding to transitions from the 
lowest band to the upper bands and conversely. The corre- 
sponding groups have the form 

Here a + (a), c; (c,  ) are operators for creation (annihila- 
tion) of electrons in the lowest band and in the nth upper 
band, respectively. 

We assume that there are n < 2 valence electrons per 
atom of the crystal. Then in the absence of interactions the 
upper bands are found to be empty, and the lower band is 
only partly filled. Therefore, if the interaction energy U is 
small compared to the size of the forbidden band, to first 
order in Uwe can neglect the admixture to the wave function 
of states from the upper bands.^This implies that in a first 
approximation we should set H, = 0. Nevertheless, it is 
clear from Eq. (9) that there is a contribution to the energy 
of the lowest band associated with the effect of broadening of 
the orbitals even to first order in the interaction energy. Con- 
sequently, in including this effect it is sufficient to cgnsider 
the intraband transitions described by the operator H, . 

Let us calculate the matrix elements of these transitions 
using the exact wave functions (5). It is important that the 
matrix elements are determined by normalized wave func- 
tions. The corresponding normalization constants have the 
form 

where 
m 

For the case of a narrow band, i.e., neglecting all the S(m) 
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with m>2, we obtain the following expression for Yo, (0): 

Then the matrix elements for the intraband transitions have 
the form 

Calculating Vklk2k3k4 to order [exp ( - ga/2) ] [see (7) 1, we 
obtain 

In what follows it will be convenient to change from the 
quasi-momentum representation to the site representation. 
The matrix elements are related in the following way: 

where xi = ia, etc. 
As a finalresult, we obtain the following expression for 

the operator H, : 

The first term in (21 ) corresponds to the Hubbard interac- 
tion, while the second describes intercenter transitions me- 
diated by the Coulomb repulsion. In this case, the amplitude 
of these transitions consists of two contributions. The posi- 
tive contribution ( Ug2/4) exp ( - ga/2) we associate with 
the processes investigated by Hirsch in Ref. 3. However, the 
negative contribution 

reflects the fact that the Coulomb repulsion at one center 
increases the overlap integral with the wave functions of the 
neighboring atoms. Since ga) 1 holds for the case of a nar- 
row band, the sign of the total amplitude is negative. This 
interpretation of the various terms becomes especially ob- 
vious if we examine the resulting Hamiltonian within Har- 
tree-Fock theory. Replacing the operator n by its average 
value, and taking into account that 

we obtain the following expression for the width of the band 

which coincides exactly with (9 ) .  
The matrix elements entering into the single-band Ha- 

miltonian (21) must be regarded as bare electron-electron 
scattering amplitudes. Inclusion of transitions to the upper 
bands leads to their renormalization; it then follows from the 
results obtained in Sec. 2 that the amplitude corresponding 
to orbital relaxation takes the form 

g2 exp ( - $) [ I - ~ X ~  ( g ~ a )  I .  

This behavior is due to the exponential dependence of 
the overlap integral on energy. The change in the other com- 
ponents of the total scattering amplitude is insignificant. 

In concluding this section, let us discuss why the orbital 
relaxation effect was not included by the authors of Refs. 3 
and 4. The fact is that the approximations used in these 
papers by the authors to calculate the bare matrix elements 
were too crude; to be specific, the exact Wannier functions 
were replaced by atomic orbitals in these calculations. Here, 
however, we have in fact included the difference between 
Wannier functions and atomic wave functions. In fact, if we 
neglect the dependence of x on k (ga + oo ), the wave func- 
tion will have the form 

Even in this case, \Yk (x) differs from the wave function gi- 
ven by the tight-binding method due to the additional depen- 
dence on the quasimomentum k. To order [exp ( - ga/2) ] ', 
the Wannier function has the form 

i.e., it differs from the atomic function 
(g/2)'/' exp( - 1/2glxl). 

4. GENERALIZATION OF THE RESULTS TO THE CASE OF A 
THREE-DIMENSIONAL LATTICE 

All the results obtained above are specific to the sim- 
plest model of a one-dimensional crystal with a special type 
of atomic pseudopotential and a special type of interaction 
between the electrons. In this section, however, we consider 
the case of a nondegenerate band in a cubic crystal, and we 
assume that the interaction between valence electrons is the 
usual Coulomb interaction. 

The matrix element for the Coulomb interaction in the 
site representation has the form 
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where @(r)  is the Wannier function for that band and R is a 
translation vector. 

Thus, in order to calculate the matrix elements it is 
necessary to determine the corresponding Wannier func- 
tions. This is easy to do within the approximation discussed 
above. Specifically, let us assume that the overlap integrals 
between neighboring atoms are small, and use a representa- 
tion of the wave functions analogous to (22). Then the Wan- 
nier function has the form 

where Y(r) is a normalized atomic wave function, 

is the overlap integral between orbitals of nearest neighbors, 
and R, is a translation vector to a nearest-neighbor site. Sub- 
stituting Eq. (25) into Eq. (24), we obtain the relation 
between the site matrix element and the atomic matrix ele- 
ment. Then the Hubbard matrix element acquires the form 

Here we have omitted terms of higher order in S. However, it 
should be noted that the second term in (26) is of order S *, 
since the integral entering into it contains an additional fac- 
tor of the orbital overlap. Consequently, this term may be 
neglected. It is easy to verify that there is only one matrix 
element that contains a correction linear in S. It has the form 

where i and j are nearest-neighbor sites. In fact, to order S 
we have 

The integral entering into the second term on the right side 
of (27) contains an additional small factor due to the falloff 
in the Coulomb potential over a lattice period. Therefore, 
this term can be omitted. Discarding all higher-order terms 
in the same way, and picking the function Y (r) to be real, we 
obtain the following Hamiltonian: 

where E~ is the nondegenerate atomic level, 

Au is a pseudopotential created by all the atoms except the 
one at r = 0, U is the intra-atomic Coulomb interaction en- 
ergy, V is the matrix element for Coulomb interactions 
between neighboring atoms, and 

where S is the overlap integral. 
We note that, generally speaking, we have SU> VH, 

since VH contains an additional small factor due to the decay 
of-the Coulomb potential over an interatomic spacing. 
Therefore the sign of the total amplitude for intersite transi- 
tions due to the Coulomb repulsion coincides with the sign of 
t( Au < 0). Furthermore, inclusion of the upper bands must 
lead to enhancement of the contribution with the same sign 
as t. Let us estimate this contribution. We assume that the 
atomic wave function falls off at large distances like 
exp ( - r/ro ) /r , ,  where ro is a characteristic scale of the de- 
cay. Then we have the following estimate: 

where a is the interatomic spacing and %is the pseudopo- 
tential averaged over a scale ro. From this it follows that 

The term of interest to us is 

Inclusion of higher orders of perturbation theory with re- 
spect to the parameter U /  bu leads to the function 

Then for values of U that are not too small we have fi VH, 
and the contribution VH to the total amplitude can be neg- 
lected in general. 

5. DISCUSSION OF RESULTS 

In this paper we have shown that the interaction corre- 
sponding to the effect of orbital relaxation has the form 

+ -  
- I f  1 ai .oaj ,G(ni , -o+~j , -o)  . 

For cases where the band is narrow enough, or the intra- 
center repulsion strong enough, that multiband effects be- 
come important, the magnitude of this term exceeds the con- 
tribution of the term described by Hirsch, which is 
analogous but has a different origin (and a different sign). It 
is obvious that these results can be generalized without diffi- 
culty to the case of degenerate bands. 

Let us now consider certain physical consequences of 
this interaction. First of all, it follows from Eq. (28) that the 
interaction leads to an increase in the effective width of the 
energy bands as the electron density increases. The absolute 
value of the amplitude for intersite transitions t is increased 
by an amount I f  In. This assertion has a precise meaning 
only in the case where a single unoccupied state is present in 
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the band. Then the energy of a hole has the form 

where N is the number of sites in the lattice and z is the 
number of neighbors. Secondly, this interaction can lead to a 
Cooper instability when there is less than one electron per 
atom. In fact, the corresponding amplitude in the quasimo- 
mentum representation has the form 

From this it is clear that the interaction will be attrac- 
tive when the momentum of the electrons is not too large (in 
contrast to Ref. 3, where the electrons attract in antibonding 
states). Finally, let us touch briefly on the magnetic proper- 
ties of the system. We discuss the case of a half-filled band 
and a situation where U s  f 2 t .  Then to zeroth order in f and t  
we can assume that each atom is occupied by one electron. 
Such a system is infinitely degenerate with respect to the 
direction of spins. Taking into account transitions by adja- 
cent atoms leads to magnetic (antiferromagnetic) ordering. 
The effective Hamiltonian corresponding to treating t  and f 
via perturbation theory has the forms 

where S, is the spin operator. From this it is clear that an 
increase in the amplitude of the intersite transitions leads to 
an increase in the antiferromagnetic exchange energy in the 
Heisenberg Hamiltonian (29). Furthermore, since it is 

necessary to include the difference between the true ampli- 
tude f and the bare amplitude, the exchange energy can de- 
pend on Uin a nonmonotonic fashion. In fact, the condition 
for it to be an increasing function of U  has the form 

while the condition for applicability of the expansion (29) is 

It is obvious that this condition can be satisfied. 
If in this situation we add or subtract one electron, we 

obtain an excitation of electron or hole type, respectively, 
whose energies are separated by the Hubbard gap U. How- 
ever, in this case the electronic excitations have a smaller 
effective mass than the hole excitations. This asymmetry in 
the properties of the electrons and holes leads in turn to an 
asymmetry in the regions of ferromagnetic and antiferro- 
magnetic ordering on the phase diagram U / t  versus 
n = (ni ) with respect to the linen = 1. The curve that separ- 
ates these regions has the form 1 - n a t  / U  for holes and 
n - 1 a ( t  + f ) / U  for electrons. 
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