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In layered metals, the anisotropic structure combines with the Coulomb and RKKY interactions 
to create unusual Friedel oscillations whose period exactly coincides with twice the spacing 
between layers. This results in a Coulomb-mediated mechanism for superconductive pairing of 
electrons and an RKKY interaction that leads to an antiferromagnetically-ordered magnetic 
structure with oppositely oriented magnetic layers. 

1. INTRODUCTION 

High-temperature superconductivity has been disco- 
vered in a number of families of compounds, specifically 
La-Ba-Cu-0, Y-Ba-Cu-0, Bi-Sr-Ca-Cu-0, and 
T1-Ba(Ca)-Cu-0. Despite strenuous efforts directed at 
making sense of the experimental investigations, which are 
many and varied, at this time the microscopic mechanism 
for high-temperature superconductivity in these compounds 
remains obscure. Under these circumstances, we are well- 
advised to investigate the overall patterns imposed by exper- 
iment on the properties of high-temperature superconduc- 
tors. 

We will base our discussion on the well-known experi- 
mental fact' that all these compounds have a layered perov- 
skite structure characterized by copper-oxygen layers in 
which the conduction electrons are concentrated. Measure- 
ments of the conductivity, upper critical field, penetration 
depth, and other physical quantities clearly indicate that all 
these systems are strongly anisotropic, which is a conse- 
quence of the different nature of the motion of conduction 
electrons along and transverse to the layers. 

The unusual magnetic properties of these compounds 
are also noteworthy. The discovery of superconductivity in 
one of these systems-YBa, Cu, 0,-at temperatures above 
90 K stimulated the fabrication and investigation of the ser- 
ies of rare-earth compounds RBa, Cu, 0 , .  It was found that 
complete replacement of yttrium by rare-earth magnetic 
ions R had practically no effect on the superconducting tran- 
sition temperature, which remains ~ 9 0  K; the only excep- 
tions to this rule are the compounds with R = Ce, Pr, and 
Tb, which are either normal metals or insulators. At lower 
temperatures (on the order of 1 K) ,  three-dimensional mag- 
netic ordering appears in the sublattice of rare-earth magne- 
tic ions, which raises the question of how superconductivity 
and magnetism can coexist in these systems. This question 
has arisen before, and was intensely in~estigated,~ with re- 
gard to the ternary magnetic superconductors RMo,S,, 
RMo, Se, , and RRh, B4 

The coexistence of superconductivity and magnetism is 
closely bound up with interactions between magnetic ions 
and the conduction electrons that are responsible for the 
superconducting properties. It is well-known3 that when 
magnetic ions in a superconductor behave as expected they 
usually cause a very abrupt decrease in the superconducting 
transition temperature due to the exchange interaction 
between conduction electrons and ion spins. In this case the 

magnitude of the drop in the superconductive transition 
temperature is comparable with the magnetic ordering tem- 
perature. In the ternary compounds the coexistence of mag- 
netism and superconductivity is favored by the fact that the 
conduction electrons and the magnetic ions are spatially se- 
parated due to the peculiar crystal structure of these com- 
p o u n d ~ . ~  The same phenomenon occurs in the high-temper- 
ature superconductors RBa, Cu, 0, : the conduction 
electrons are located in the CuO, planes, while the rare- 
earth ions Rare located between these planes, and this physi- 
cal separation weakens the influence of the magnetic mo- 
ments of the rare-earth ions on the superconducting pairing 
temperature. 

In the high-temperature superconductors the conduc- 
tion electrons are concentrated in narrow regions along the 
conducting planes. In this case the basic motion of the elec- 
trons has a marked two-dimensional character, with transi- 
tions between layers occurring only rarely. Under these cir- 
cumstances, it is reasonable to suppose that within each 
conducting layer there is a well-defined dispersion law for 
electrons with the ordinary energy parameters WE,, while 
the rare transitions between layers are characterized by a 
hopping integral t g ~ , .  Let us assume that the motion in the 
layer is isotropic and characterized by a longitudinal mass 
m, while the motion of electrons between layers can be de- 
scribed using the tight-binding approximation, and that 
these motions of the electrons are independent. Then the 
dispersion law for the electrons has the following form: 

where d is the interplanar spacing and p, is the Fermi mo- 
mentum. 

For t = 0 the Fermi surface is a cylinder; switching on 
the overlap t # O  creates corrugations on the cylinder (Fig. 
1 ). In view of this, very general considerations based on the 
fact that the crystal structure is laminar and the motion of 
electrons is free in the conducting planes and restricted in 
the perpendicular directions imply that the coherent motion 
of conduction electrons is described by strongly anisotropic 
dispersion laws, and that the Fermi surface is open in the 
direction perpendicular to the layers (compare with Refs. 5- 
7 ) .  As we will see, this leads to marked peculiarities in the 
behavior both of the electron-electron interaction in layered 
metals and of the indirect exchange interaction of rare-earth 
magnetic ions via conduction electrons. These peculiarities 
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will be discussed in both the normal and superconducting 
states. 

2. DESCRIPTION OFTHE SCREENED COULOMB 
INTERACTION IN LAYERED METALS 

Let us consider a model of a layered metal in which the 
motion of conduction electrons follows an isotropic quadra- 
tic dispersion relation in the layer, while motion of conduc- 
tion electrons between layers is treated in the tight-binding 
approximation; within the band picture we can use the dis- 
persion law ( 1 ) to describe this motion. In order to analyze 
the screened Coulomb interaction in the high-density limit,* 
wherep,~, ) 1 [here a, = (me2) - ' is the Bohr radius], it is 
sufficient as usual to include only ring diagrams. Then the 
screened Coulomb interaction Ucan be found from the well- 
known equation 

i7 (rr', o) 

=U(r-rl)-ZT 1 dr, dr2U(r--r,)G(r,r,, €+a) 

Here U(r) is the unscreened Coulomb interaction, which 
equals e2/r, while G(rrl,w) is the temperature Green's func- 
tion for electrons with the dispersion law ( 1 ) . 

The electron density is concentrated primarily in a nar- 
row region along the layers. Therefore we will neglect the 
regions outside the layers where the electron density is small. 
This description corresponds to transforming from the con- 
tinuous coordinate representation ( p,z) to a discrete Wan- 
nier representation with respect to the coordinate z perpen- 
dicular to the layers, i.e., (p,n), where the variable n labels 
the layer. The screened Coulomb interaction in the Wannier 
representation has the form 

where W ,  (z) is the Wannier function for layer n. In the same 
way, the Green's function also can be expressed by using 
Wannier functions: 

G (zz', XW) = w,, (z) w.* (z') ~..(xo), (3 )  
mn 

here the vector x = (p, ,p, ) denotes the momentum of an 
electron moving in the conducting layer. The Green's func- 

FIG. 1. Cylindrical Fermi surface in the absence ( t  = 0) of inter- 
planar hopping (a) and a cross section of the Fermi surface when 
interplanar hopping ( t #O) is included (b) Q is the distinctive vec- 
tor which is associated with a corrugated cylinder. 

tion G,, depends only on the difference between the argu- 
ments m and n, which is a consequence of the invariance of 
the system with respect to translations with period d, and is 
given by the relation 

n/d 

Substituting Eq. (3) into Eq. (2)  and going to a Fourier 
representation with respect to the coordinate p, we obtain an 
integral equation with interchange of momentum along the 
conducting layer. Then, by using Wannier functions to pro- 
ject this equation onto the plane of the conducting layer, we 
obtain an equation for the quantities 3$z'(x,w). Since the 
overlap of electronic layers is small, i.e., the Wannier func- 
tion w, (2) is localized near the nth layer, we need only retain 
those terms that do not contain any small quantities con- 
nected with integration with respect to Wannier functions 
from different layers. In this approximation 

This results in the following equation for the screened Cou- 
lomb interaction: 

Let us first consider the unscreened Coulomb interac- 
tion: 

(x) = 1 dz dztU (z-z', x )  1 w n  (z) 1' 1 w,,, (zr) 1 

Here we have used the property w, (z) = w, (z - nd) of the 
Wannier functions. As we see, (5 )  depends only on the dif- 
ference n - n', and Eq. (4) is found to be an integral equa- 
tion with a difference kernel in the variable n: 
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The polarization operator is a simple loop: 

Equation (6)  is easily solved by a Fourier transform: 

The denominator in (7)  is the momentum- and frequency- 
dependent dielectric permittivity of the conduction elec- 
trons calculated within the random phase approximation. 
After summation over the frequency the polarization opera- 
tor takes the usual form:' 

where n (l,, ) is the Fermi distribution. 
From the formal point of view, Eqs. (7)  and (8)  estab- 

lish the equivalence between perpendicular and parallel dir- 
ections with respect to the conducting layers. At first glance 
this is unexpected, since no such equivalence is apparent in 
coordinate space. The inequivalence between transverse and 
longitudinal directions is manifest only in the dispersion law 
for electrons and the explicit form of the unscreened Cou- 
lomb interaction. Because the Wannier function w, (z) is 
localized around the n-th layer, its contribution to U, ( p )  is 
concentrated near the points z = nd: 

In the momentum representation the unscreened interaction 
has the form 

2ne2 s h x d  
U ( x , q ) = -  

x ch xd-cos qd ' 

For small momentum transfer the bare Coulomb interaction 
(9)  is three-dimensional in character: 4re2/(q2 + x2)d, and 
all components of momentum are equivalent. The situation 
changes in a fundamental way for momentum transfers 
x > d - I ,  for which the unscreened Coulomb interaction be- 
comes two-dimensional in character and equal to 2re2/x, 
and ceases altogether to depend on the transverse momen- 
tum component q. 

3. DISTINCTIVE PROPERTIESOF COULOMB REPULSION 
AND FRIEDEL OSCILLATIONS IN A LAYERED METAL 

The behavior of the screened Coulomb interaction is 
determined by the form of the polarization operator in (8).  
Its form is simplest for a pure two-dimensional dispersion 
law,9 i.e., when the transfer integral between conducting 
layers satisfies t = 0. The static polarization operator equals 
a constant which coincides with the two-dimensional den- 
sity of states for momenta less than twice the Fermi momen- 
tum 2p, : 

11 ( x )  = m / n ,  x<2p0, 
and then decreases with increasing x: 

Note that the screening is absolutely independent of the elec- 
tron density for x < 2p0; we emphasize that this is specific to 
the two-dimensional problem. 

In the quasi-two-dimensional case, i.e., for arbitrary 

transfer integral t #0, the polarization operator can be writ- 
ten in the form 

II (p)/II (0 )=I-n-1x-2  J +o( x 2 - 4 n  1 t sin $1 sin rp) 

where rI (0)  = m / r  is the two-dimensional density of states. 
It is apparent from ( 11 ) that in the quasi-two-dimensional 
case the static polarization operator for momenta x smaller 
than 2po remains constant to accuracy t /E,, and equals the 
two-dimensional density of states. Equation ( 1 1 ) allows us 
to study the screened Coulomb interaction as a function of 
the spacing between layers. 

When there is no hopping between layers ( t  = 0)  the 
dependence of the screened Coulomb interaction on the 
transverse momentum is determined by the bare Coulomb 
interaction U(p) which enters into (9). Therefore the 
screened Coulomb interaction can be written in the form 

2ne2 s h x d  a(%, !?I= -- 
x A ( x )  -cos qd ' 

A ( x )  =ch xd+ (2ne2/r.) II ( x )  I r=o sh xd.  

From II (0) > 0 it follows that A(x)  > 1. In particular, for 
x = 0 we have A (0) = 1 + 2d /a,. Since the interplanar 
spacing d is much larger than the Bohr radius a, in real 
metals, we find that A (0)  ) 1. As x increases A ( x )  increases 
monotonically as well, and so we have A(%) ) 1 for all x. The 
parameter which measures the extent to which this inequa- 
lity is fulfilled is the ratio of the interplanar spacing to the 
Bohr radius, d )  a,. Let us expand the screened Coulomb 
interaction in a Fourier series: 

The Fourier component & ( x )  is determined by the simple 
expression 

(12) 

Since A ( x )  ) 1 holds for all x, we find that U,, ( x )  decreases 
rapidly as the label n increases, and that 
U, ( x )  a ( 2 4 )  - "-  I .  Although the Coulomb interaction is 
important for n = 0, it decreases exponentially with n; 
moreover, the exponent involved has a factor 
2 ln(2d /a, ) ) 1. For n = 1, this weakening of the Coulomb 
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interaction implies that screening which involves the inter- 
action of electrons located in adjacent layers is mediated not 
by single electrons with charges of magnitude e but rather by 
dipoles of size -a, and distance between dipoles -d. The 
interaction of charges from more distant planes corresponds 
to increasing multipolarity. 

This exponential decrease of the Coulomb repulsion in 
directions perpendicular to the conducting layers takes 
place only for a cylindrical Fermi surface, i.e., for t = 0. For 
t #O the Fermi surface becomes a corrugated cylinder, in 
which case a special vector is singled out with k, = r / d  
(Fig. lb) corresponding to a new singularity of the polariza- 
tion operator ( 1 1 ) . This singularity of the polarization oper- 
ator leads to the appearance of a new period in the Friedel 
oscillations, which equals twice the spacing 2d between con- 
ducting layers. The period of the oscillations coincides with 
twice the spacing between layers because the Fermi surface 
is open in the direction parallel to the k, axis. As the width of 
the band increases, the overlap integral increases as well un- 
til t 2pO2/2m is satisfied, at which point the Fermi surface 
becomes closed. From here on, the period of the Friedel 0s- 
cillations ceases to equal twice the period of the lattice. 

Although the Friedel oscillations of the Coulomb inter- 
action decay, their decrease is governed by a power law, i.e., 
considerably slower than exponential. This impies that the 
oscillatory part of the interaction will dominate over its 
monotonic repulsive part starting with a certain layer label 
n,. Because the Friedel part of the interaction changes sign 
as we go from one layer to another, electrons in different 
conducting layers attract one another beginning with labels 
n > n,. This latter effect mediates a superconducting transi- 
tion in the system of conduction electrons, which we will 
discuss below. 

The fact that the period of the Friedel oscillations 
equals twice the distance between layers can also lead to a 
structural phase transition with a period twice that of the 
crystal lattice in the z-axis direction. This structural transi- 
tion is one possible channel by which the Fermi surface can 
change its topology, as was discussed in Refs. 10 and 11; see 
Fig. 2. 

4.THE ELIASHBERG EQUATION AND THE 
SUPERCONDUCTING TRANSITION TEMPERATURE 

In order to determine the superconducting transition 
temperature T, we write the Eliashberg equation for the gap 
in the following form: 

where the kernel r includes both the electron-phonon and 
the Coulomb interaction: r(p,w) = D(p,w) + u(p,w). It is 
convenient to introduce the momentum and Wannier repre- 
sentations in the Eliashberg equation, as we did above in 
analyzing the screened Coulomb interaction (see also Refs. 
5 and 6). After a Fourier transform with respect to the longi- 
tudinal coordinates x ,  y we can expand the gap in Wannier 
functions: 

A(zz', Xa)=C (zr)4nn,(xw).  
nn' 

FIG. 2. Splitting of the Fermi surface when the period of the crystal lattice 
is doubled. 

In obtaining this equation we have used the following pro- 
perty of the kernel of Eq. (14) in the Wannier function 
representation: 

r:;" = I ' m m , 6 m 1 6 m ~ 1 , ,  

which is connected with the localization of the Wannier 
functions in narrow regions around the conducting layers. 
Carrying out the Fourier transform with respect to the layer 
index and introducing the new function A + A/( w2 + { 2), 
we obtain the Eliashberg equation in the momentum repre- 
sentation: 

PtUi  

All the projections of the momentum enter into ( 14) in an 
identical way. This is analogous to the symmetry between 
components mentioned earlier which emerged in the course 
of our description of the screened Coulomb interaction. The 
lack of equivalence of the longitudinal and transverse mo- 
tion is manifest only in the form of the kernel r and the 
dispersion law g(p) .  In this analysis we will ignore both 
Coulomb-and phonon-induced renormalization of the elec- 
tron Green's function, since these refinements do not change 
our results qualitatively. 

The solution of Eq. ( 14) is conveniently expanded in 
Fourier harmonics, resulting in a corresponding equation 
for each harmonic whose nontrivial solution A, +O leads to 
a transition temperature Tn : 

T,= ( 2y In )  a, exp [--I/ (Xn-pn*) 1, 

Here A, is the nth harmonic of the electron-phonon interac- 
tion constant and p, is the angular average of the screened 
Coulomb interaction U ( X , ~ )  : 

n/d 2 PO 

This leads to the equation 
The transition temperature is obviously determined by the 
maximum Tn . 
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Let us investigate the Coulomb pseudopotential p,, 
which can be written in the form of a sum of two terms: 

The first (repulsive) term in this interaction is short-range 
and is determined by the polarization operator (1 1) for 
t = 0 :  

Thus, in layered metals the Coulomb repulsion is weakened 
within all the layers except the layer with n = 0 by a small 
factor of order a,/2d & 1. 

The second term in ( 16) appears as soon as we allow 
hopping from one layer to the next, and is analogous to the 
ordinary Friedel oscillations that accompany the screening 
of a charge placed in a quasi-isotropic metal." This part of 
the interaction is oscillatory and decreases at large distances 
as 

We emphasize that ,u,(2) is negative for all even n and is 
positive for all odd n. For the even-n layers there is a compe- 
tition between the attractive and repulsive parts of the Cou- 
lomb interaction. Beginning with a certain critical label nt,  
which can always be found for a given bandwidth, the attrac- 
tive part of the interaction dominates over the repulsive. 
This situation is realized even for n = 2 if t > t2 , where 

t 2 = ( ~ 0 2 / 2 m )    lad)^ ln ( 2 1 ~ ) .  

In this case, the width of the band transverse to the layer is 
much smaller than it is along the layer, i.e., t, &pO2/2m. 
Thus, even in the absence of the electron-phonon interaction 
this leads to a Coulomb mechanism for superconducting 
pairing with a transition temperature 

TC=ER exp (- 15n2v3po/ 1 t 1 e l ) .  (18) 

This mechanism for superconductivity is analogous to the 
Kohn-Luttinger mechanism,13 in which superconducting 
pairing involving nonzero orbital angular momentum can 
take place for an isotropic Fermi surface. 

5. DESCRIPTION OF MAGNETIC INTERACTIONS IN LAYERED 
METALS 

Let us consider the interaction of magnetic moments in 
a layered metal which also form a layered crystalline sublat- 
tice. In general, the layers of magnetic moments need not 
coincide with the conducting layers, and can be spatially 
displaced with respect to them. 

The dipole interaction of a spin S, located at a point R, 
has the form 

where ,u is the effeative Bohr magneton. The interaction 
between the magnetic moment of an ion and the magnetic 
field induced by the magnetic moments of its neighbors has 
an additional contribution in the superconducting state 
compared to a normal metal due to the nonattenuating con- 
duction electron currents which occur in superconductors. 

The magnetic field can be found from the Maxwell equations 
including the supercurrents. The exchange interaction 
between the conduction electrons and the magnetic moment 
of the spin S, has the usual form 

U (r) =- J d3rJ (r-Ra) $a+ (r) aaoSa$~ (r) ,  (20) 

where J i s  the exchange integral. Indirect exchange between 
two spins is expressed in terms of the magnetic suscepti- 
bility14 in the following way: 

U (Rb, R,,)=- (SbSa) ) d3rd3r'J(r-&)x(r, rr )J(r'-R,,), (21 ) 

where x(r , r l )  is the nonlocal spin susceptibility, which can 
be written as a correlator: 

ill' 

(r, r f )  =- J dtz~aa'<Tr$o (xi) $T+ (XZ )'JraZ$6 ( ~ 2 )  
U 

In a pure superconductor the susceptibility (22) is immedi- 
ately given in terms of the temperature Green's function: 

X(r, r f ) = - 2 ~ z  Gm(rf,  r)Gm(rf ,  r)+Fw(r, rr )F+ ( r r ,  r) ,  

Since the electron density is negligibly small outside the 
conducting layers, it is convenient to carry out a transforma- 
tion from the continuous coordinate representation ( p,z) to 
the discrete Wannier representation ( p,n) perpendicular to 
the planes of the layers along the z-axis. This representation 
corresponds to the tight-binding approximation and agrees 
with the dispersion law ( 1). The variable n labels the layers. 
Using the relation between Bloch functions and Wannier 
functions, we write the Green's function of the electrons in 
the following form: 

Relation (2 1 ) in this case takes the form 

=- (SbSa) j d 3 r d 3 r r x  J ( r - ~ ~ ) J ( r ' - R ~ ) w ~ ( z ) w ~ *  (z l )  
klmn 

where the spin susceptibility can be written 

Further simplification is possible only if we use certain as- 
sumptions regarding the behavior of the exchange integral 
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J ( r )  and the Wannier functions wn (z). In the compounds 
under discussion the magnetic moments are associated with 
rare-earth ions which have unfilled 4f shells of electrons. 
These shells are more localized than the external shells of 
copper and oxygen from the conduction layers. Because the 
thickness of the latter determines the characteristic scale of 
decay of the Wannier functions, we can assume that the spa- 
tial size of the exchange integral J ( r )  is much smaller than 
the width of the Wannier functions. This implies that it is 
possible to replace J ( r )  by JS(r),  where J i s  the zero Fourier 
component. For indirect exchange we obtain from (25) 

In what follows we limit ourselves to discussing the follow- 
ing two cases for the positions of the magnetic ions. 

1. The layers of magnetic ions exactly coincide with the 
conducting layers, i.e., they are located at the points za = ad 
and zb = bd. Since the Wannier functions are localized near 
z = nd and fall off rapidly outside the layers, terms in the 
sum with k = n = a and I = m = b in (27) are dominant in 
the nearest-neighbor approximation, which leads to the fol- 
lowing expression: 

where J& = J21wo (0)14. 
2. The magnetic-ion layers are located exactly midway 

between the conducting layers, i.e., for za = ad  + d/2, 
zb = bd + d /2. In contrast to the previous case, in the same 
approximation we must retain more terms in the sum (28): 

where J:* = JZI wo (d  /2) 14. Naturally the quantity J& is 
much smaller in this case than in (28). 

The Green's functions G, (p,n,nl) and F, (p,n,nl) can 
be written in the following form: 

X exp [ ixp+ip ,d  (n-n') 1, 

These Green's functions depend on the difference between n 
and n' due to invariance of the system with respect to transla- 
tion by the lattice period d. The isotropy in the conducting 
layer implies that the superconducting gap is uniform and 
does not depend on the value of momentum along the layer. 
This allows us to integrate over the momentum x in the layer 

and over angle. As a result we obtain the coordinate repre- 
sentation of the Green's function in a layered superconduc- 
tor: 

where KO (x)  is a zero-order Bessel function of the second 
kind with imaginary argument: 

Here it is assumed that Re y, > 0 and Re yz > 0. In regions 
that satisfy the inequality 2p0p% 1 Eq. (30) can be written in 
a simpler form. Because the sum over frequencies in (26) 
converges for lw 1 - v/p <po 2/2m, we can expand y, for 
1 0 1  <po2/2m: 

From here on we will use the asymptotic form of the Bessel 
function for large arguments. The behavior of the coordinate 
dependence of the Green's function (30) depends on the 
character of the dependence of the superconducting gap on 
the momentum componentp, . For simplicity we neglect the 
anisotropy of the gap and assume that 

A ( p , )  =const. 
This assumption will be quite accurate if the pairing takes 
place within a conducting layer, and if the pairing between 
layers can be neglected. As a result, for distances 2p0p % 1 the 
Green's function is determined in the following way: 

io 
x [COS a + (,2+a2)s sin mn] , 

p (a2+ A')''' 
x exp [- 

v 
] sin 0,, 

where an =pop + 7~/4 + nr/2 and Jn (x)  is a Bessel func- 
tion. In the region p <p, ', Eq. (3 1) is incorrect. An analy- 
tic expression for the Green's functions can be obtained for 
p = 0. For an arbitrary layer n $0 we obtain from (30) 
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where z = mt/  [pO2 - 2im(m2 + A2)"*]. Equations (31) 
and (32) can be used to calculate the exchange interaction. 

6. INDIRECT EXCHANGE IN LAYERED SUPERCONDUCTORS 

1. Let us consider the simplest case, where the magnetic 
moments are located in the conducting layer. The indirect 
exchange between spins S ,  and S, that are separated from 
one another by n layers and by a distancep along the layers is 
determined by Eq. (28). Substituting (3  1 ) into (28) we ob- 
tain the RKKY interaction which is correct at distances 
2pop % 1 : 

Here N(0) = m/.n is the two-dimensional density of states 
at the Fermi level with a fixed projection of spin, and v is the 
Fermi velocity. The functions Q, (p) and Q2 (p) are deter- 
mined by the expressions 

The following asymptotic expressions can be obtained for 
the functions @, (p) and @, (p) at T = 0: 

Here 5, = v/2A is the superconducting coherence length. 
For distances p<p& ' it is not possible to obtain an analytic 
expression except at p = 0. In the approximation used here 
the indirect exchange reduces to zero for spins located on 
different layers. 

For spins located within the same layer we can expect the 
interaction Uo (p)  to diverge as p - ln2 ( 2 ~ ~ ~ )  for p -+ 0. In 
the absence of either hopping from one layer to the next 
( t  = 0)  or a gap (A = 0)  the interaction (33) wholly coin- 
cides with the RKKY interaction in a normal isotropic 2D- 
metal.9 

2. We now turn to the second case, where the magnetic 
moments are located midway between adjacent conducting 
layers. The indirect exchange between spins S, and S, sepa- 
rated by n layers and a distance p along the layers is deter- 
mined by Eq. (29). Analogous calculations allow us to ob- 
tain the following expression for the RKKY interaction, 
which is valid for 2p0p) 1 : 

The functions @, and @, were determined above, and 
Jn = Jn (tp/v) is a Bessel function. As before, the approxi- 
mations we have used imply that the indirect exchange re- 
duces to zero for spins at the samep: 

For spins in nearest-neighbor layers (n = 0, 1 ) the in- 
teraction U, (p) diverges as p ln2(2pOp) for p -0. Note 
that in contrast to the previous case the interaction between 
spins separated by only a single layer is only slightly weaker 
than the interaction of spins from the same layer: 

7. CONCLUSION 

Recently a number of experimental papers have ap- 
peared which have considerably advanced our understand- 
ing of the possible mechanism for high-temperature super- 
c o n d u ~ t i v i t ~ . ' ~ . ' ~  In these papers the systems 
(YBa, Cu, 0, ) , (PrBa, Cu, 0, ), were investigated, i.e., 
superlattices in which m layers of the yttrium-based 1-2-3 
system alternate with n layers in which the yttrium is re- 
placed by praseodymium. Since the crystal structure of the 
layers with praseodymium differs only slightly from that of 
the yttrium layers, the former produce almost no mechani- 
cal perturbations in the yttrium subsystem. However, there 
is a great difference with respect to conductivity, as the 
layers with praseodymium are very poor conductors. There- 
fore, this system is an ideal model for investigating supercon- 
ductivity of the 1-2-3 yttrium system. At this time the ulti- 
mate reason for the difference in conductivity between the 
praseodymium and yttrium systems is unclear. There are 
 suggestion^'^-'^ that it is connected with the valence instabi- 
lity of Pr. 

These experiments have shown that even individual iso- 
lated layers of the Ysystem 1-2-3 are superconducting with a 
transition temperature of - 10-20 K. Therefore, supercon- 
ductivity in this system has an essentially two-dimensional 
character, and the question of the possible existence of high- 
temperature superconductivity in an individual isolated 
layer with a thickness on the order of the unit cell has been 
answered from a fundamental-physics point of view. Fur- 
thermore, the role of correlations involving electrons in dif- 
ferent layers has been clarified: these experiments show that 
the superconducting transition temperature increases with 
increasing number of yttrium layers up to ~ 9 0  K, the value 
of T, in bulk. At this point it is clear that correlations 
between electrons from different conducting layers have 
made the superconductivity quasi-three-dimensional, and 
that electron correlations between different conducting 
layers are now roughly the same order of magnitude as the 
correlations within a layer. 

One possible source of correlations which is unavoida- 
ble in a layered metallic structure comes from the Friedel 
oscillations we have discussed here, whose features are espe- 
cially pronounced in layered quasi-two-dimensional sys- 
tems. 

We view layered metals as systems of parallel conduct- 
ing layers with a conduction electron density concentrated 
primarily in narrow regions along the layers. Although the 
motion of an electron from one conducting layer to another 
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is coherent, the width of the electron band along the layers is 
considerably larger than the width of the band transverse to 
the layers. In this case the dispersion law for electrons is 
strongly anisotropic, and the Fermi surface is found be open 
in the direction transverse to the layers. As a result, screen- 
ing of the Coulomb interaction in the system is strongly ani- 
sotropic. 

To lowest-order approximation, neglect of hopping 
between conducting layers causes the screening along the 
layer to have a two-dimensional character. In the transverse 
direction the Coulomb interaction between electrons is 
strongly overscreened with a radius d /ln(2d /a ,  ) that is 
much smaller than the interplanar spacing d. Due to this 
strong screening, even relatively small contributions to the 
interaction become important if they fall off more slowly 
with distance. For example, there is a contribution associa- 
ted with the singularity of the polarization operator for 
transverse momentum directions. These special transverse 
projections appear immediately as soon as we take into ac- 
count the overlap between conducting layers, which deforms 
the cylindrical Fermi surface into a corrugated cylinder. The 
new singularity of the polarization operator leads to a contri- 
bution to the Coulomb interaction that falls off slowly, 
which corresponds to the Friedel oscillations of the layered 
metal. 

The unusual feature of these Friedel oscillations is the 
fact that their period exactly coincides with twice the dis- 
tance between the layers. These oscillations lead to a Cou- 
lomb-based mechanism for superconducting pairing 
between electrons and to an enhancement, e.g., of the elec- 
tron-phonon pairing. This tendency can be enhanced in 
cases where the electronic spectrum has considerable aniso- 
tropy not only in the direction transverse to the layer but also 
along the layer, which in fact converts it to a quasi-one-di- 
mensional spectrum. This situation is encountered when the 
conducting layers have square crystalline unit cells, and 
when the Brillouin zone is close to half-occupied by conduc- 
tion electrons. Here the increase in the critical supercon- 
ducting transition temperature is due to the large amplitude 
of the Friedel oscillations, whose size is due first of all to the 
large density of states and secondly to the stronger singular- 
ity of the polarization operator. The increase in the critical 
temperature is limited in this case by an instability with re- 
spect to a transition to an insulating state near half-occupa- 
tion by electrons. The instability first arises at an (incom- 
mensurate) momentum equal to the diameter of the Fermi 
surface, where the polarization operator reaches its maxi- 
mum; an analysis of this instability for the case of exact nest- 
ing was carried out in Ref. 18. In addition to its influence on 
the superconducting pairing, the fact that the period of the 
Friedel oscillations is exactly twice the distance between 
conducting layers can also induce a type of structural phase 
transition in the system which leads to doubling of the 
number of conducting layers in an elementary cell and corre- 
spondingly to a doubling of the period of the crystal struc- 
ture in this direction. This also leads to a change in the topo- 
logy of the Fermi surface, which amounts to splitting it into 
two parts (see Fig. 2) .  

The new singularity of the polarization operator affects 
not only the Friedel oscillations but the exchange interaction 
in layered metals as well. The indirect exchange interaction 
has an anisotropic character and falls off slowly with dis- 

tance. It is convenient to represent it as a sum of two terms. 
The first term oscillates with period 2p,p as we pass from 
layer to layer and falls off with distance as p - only for the 
first layer. For layers with labels n >  1 the interaction first 
increases according to the law p2'n - I )  and then decays as 
p for distancesp > v/t; this dependence is characteristic of 
quasi-isotropic 3D-metals. 

An important feature of these oscillations in the direc- 
tion perpendicular to the layers is that, like the Friedel oscil- 
lations, their period coincides with twice the spacing 
between the layers. Furthermore, the interaction of an indi- 
vidual magnetic moment in a layer with moments from the 
nearest-neighbor layers is opposite in sign to its interaction 
with magnetic moments in the same layer. This property 
rather quickly leads us to the conclusion that in the presence 
of indirect exchange alone the three-dimensional magnetic 
ordering consists of alternation of oppositely oriented layers, 
and is always antiferromagnetic. 

The second term, which is determined by @, , reduces to 
zero for A = 0. It does not oscillate, has antiferromagnetic 
character and decreases slowly with distance. Both terms are 
cut off at distances -go, as in the case of a quasi-isotropic 
three-dimensional supercondu~tor .~~  At distances 
p > u/t%p; ' there is a transition to the types of dependences 
which occur in quasi-isotropic metals. This behavior of the 
exchange integral leads to the following model for describing 
magnetic ordering. Neighboring momenta located in the 
same layer interact with a large exchange constant J , ,  lead- 
ing to anti- or ferromagnetic ordering in an isolated layer. In 
addition, it is necessary to take into account the exchange 
interaction J2 between moments which are not nearest 
neighbors but are located in neighboring layers. For nearest 
neighbors from different layers the interaction reduces to 
zero. The constant J, is much smaller than J, in order of 
magnitude and opposite to it in sign. For a constant J ,  that is 
ferromagnetic this interaction as a whole leads to an antifer- 
romagnetic structure consisting of alternating ferromagne- 
tic layers with opposite orientations. For a sign of J, corre- 
sponding to antiferromagnetic order in an individual layer, 
the magnetic structure consists of repeating antiferromagne- 
tically ordered layers which are displaced one with respect to 
another by half the magnetic period in the layer. 
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