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We investigate theoretically and experimentally the penetration of magnetic fields much weaker 
than the granule critical field into HTSC ceramics. Expressions are obtained, using the theory of 
the critical state of a random Josephson medium in low-field electrodynamics, for the harmonics 
of the inductionB(t) as functions of the external parameters, in two asymptotic cases-low field 
and thin sample. For a thin sample, in particular, it is shown that the harmonics are oscillatory 
functions of the alternating-field amplitude. The behavior of the linear and nonlinear 
susceptibilities (in an alternating field) and of the hysteresis loop and of the magnetization curve 
(in a constant field) are investigated experimentally in a wide range of temperatures and fields. 
The experimental and theoretical results are in satisfactory agreement. A number of quantities 
descriptive of the low-field electrodynamics of HTSC, and their behavior as functions of 
temperature, are determined. An explicit form of the function 
f, (H, T )  = fo ( T) H i ( T)/ (H + H ( T) ) is determined experimentally. 

1. INTRODUCTION 

Many recent publications deal with the penetration of 
magnetic fields much weaker than the first critical field of 
the granules themselves into ceramic high-temperature su- 
perconductors (HTSC). This phenomenon, called low-field 
electrodynamics, arises because ceramic HTSC is a random 
Josephson medium that behaves as a standard type-I1 super- 
conductor (see, e.g., Refs. 1 and 2).  For such a superconduc- 
tor, H,, and a quantity assuming the role of H,, , which we 
shall designate by H,, are determined by the parameters of 
the Josephson-current density j, and by the granule dimen- 
sions a: H,, -jja, H, -ao /a2 (QO is the fluxon). Experi- 
ment usually yields H,, - 10 - ' Oe (Ref. 3) and H, - 10 Oe 
(Ref. 4) .  The effective penetration depth A '- @,/H,, is 
large in this case. Since the role of the coherence length is 
played in this superconductor by the granule dimension a, 
the Landau-Ginzburg parameter is x -A /a) 1. In the field 
interval Hc, < H < H, such a medium contains a macro- 
scopic system of vortices with characteristic distances 
S - (@, /H) ' I2  a between them. It is obvious that the con- 
cept of an effective medium is applicable in this situation, 
since the vortices entrain many granules. 

All of the above is basic equilibrium electrodynamics. 
Pinning, however, prevents equilibrium in ceramic HTSC, 
and the magnetic-field penetration must be described in this 
case in the language of nonequilibrium electrodynamics. It is 
customary then to use the premises of the theory of the criti- 
cal state. 

THEORY 

In critical-state theory the magnetic-pressure force Vp 
is balanced by the pinning force a (h ). The corresponding 
equation for a low-field superconductor having an efTective 
diamagnetic permeability p, (more below) is 

where h (x)  is the inhomogeneous magnetic field in the sam- 
ple. 

Equation ( 1 ) contains the absolute value 1 Vpl because 

pinning is a dry-friction force and is therefore always direct- 
ed counter to the magnetic-pressure force. Such a system is 
non-Hamiltonian, and hence the disequilibrium. Consider a 
slab of thickness d in the x direction and infinite in the two 
other directions. We direct the field along z. The critical- 
state equation ( 1 ) is then 

The quantity j, (h)  proportional to the pinning force is 
called the critical-current density. Using the Maxwell equa- 
tion 4?rj(x) = - dh /dx, where the current density j (x )  is 
directed along y, we obtain I j (x)  / = j, (h ). Thus, the abso- 
lute value of the current density is j, (h)  at each point of 
space. 

As seen from (2 ) ,  the crucial quantity in critical-state 
theory is the phenomenological function j, (h) ,  usually de- 
fined in a specific form, e.g., 

H0 ( i i ) ,  j e ( h ) = j o  (i), j c ( h ) = j O p  
Ho+lhl 

Ho Ho2 
(3 

j, (h) = jo ---- ( i i i )  , j c  ( h )  = jo  -- (iv) , 
Ihl HO2-t h2 

where H, is some characteristic field. 
The relation (i) above leads to Bean's model 

(ii) was proposed in Ref. 7, and (iii) is called the Kim- 
Anderson model.' There is in general no theoretically justi- 
fied choice of the function j, (h).  It is therefore obviously 
important to determine it experimentally. A j, (h) depend- 
ence corresponding to the case (iv) is derived here by two 
independent methods. 

Recall that in our situation the field hardly penetrates 
into the granules. This is accounted for by intr~ducing"~ the 
concept of effective diamagnetic permeability p,, 
= f, +f, (pgr ) ,  wheref, and f, are the fractions of the su- 

perconducting and nonsuperconducting media, f, + f, = 1, 
and (p,, ) Is the average granule permeability and depends 
on the London penetration depth, size, and shape of the 
granules. The induction in the sample can be represented in 
this case by 
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The penetration of the field h (x)  is screened by the Jo- 
sephson currents, which in conjunction with the pinning 
force actually determine jc (h). The critical-state equation 
has therefore been written just for h (x)  . Expression (4)  in 
fact constitutes an extension of h(x)  to include the entire 
sample volume, recognizing that the field does not penetrate 
into the granules (see Refs. 1 and 2 for details). 

The most important property of the critical state is im- 
penetrability. Its mathematical manifestation is that Eq. (2)  
contains not the current density but only its absolute value. 
This leads (see Refs. 1, 2, 5, 6 )  to kinks on the field and 
induction distributions h(x)  and B(x) ,  and also to hystere- 
sis of these quantitites and of their mean values b and over 
the sample: 

d / Z  

1 
b = -  j h(x)dx, B = p e f , b .  

- d / Z  
(5)  

This hysteresis was considered in detail, for example, in 
Ref. 2, and we shall use those results hereafter. 

We apply collinearly to the sample a static field Hand  
an alternating field of amplitude h,, H( t )  = H 
+ h, cos(wt) and expand the induction B( t )  in a Fourier 

series 

B ( t )  = 2 +z [a. ws (not )  +b .  sin (not )  1 ,  
n 

The amplitudes of the harmonics a ,  and b, depend on 
the relation between the four fields h,, H, H,, and h,, of 
which two (h, and H) are external, while H, and h, are 
determined by the properties of the superconductor itself 
and depend on temperature. The field 

h2=2ndj, (7)  

is governed-also by the sample size. 
Although a situation with arbitrary relations between 

these fields can be treated theoretically, we consider only 
two simple asymptotic cases that facilitate the comparison of 
the theory with experiment, and can be experimentally real- 
ized. 

Low-field phenomena in HTSC are usually described 
by some arbitrary phenomenological functionf, (H) whose 
parameters are next determined from experiment. This ap- 
proach is integral. Here, however, we use a differential ap- 
proach and find two limiting cases in which the measured 
quantities are determined by the values ofj, (H),  where H is 
the applied static field. This enabled us to find the explicit 
form of jc (H)  directly from experiment. 

We designate as the low-field regime the case h, (H, 
H,, h,, with arbitrary relations between H, H, and h,. 

The second limiting case is defined by the conditions 
h, - h, (H) and h, (H) 4 H,, where h, (H)  = 2adjc (H) 
(h, (0) a h , ) .  It is readily seen that the inequality 
h, (H) 4 H,, is equivalent to the condition 

d~l=Ho/4nj , (H) ,  ( 8  

where I is a certain characteristic length. The sample is 
called thin for d & 1 and thick for d% I. In a thin sample the 

magnetic-field gradient can be regarded as independent ofx, 
for when the condition (8)  is satisfied the field variation over 
the sample dimension d is always less than H o r  H,. It is thus 
always possible to expand jc (H( t )  ) in terms of the alternat- 
ing field amplitude h, and retain only the zeroth term of the 
expansion. The expression for the partial hysteresis loop 
[see Eq. ( 12) below] will be quite similar to the correspond- 
ing expression in Bean's model if h * of Ref. 6 is replaced by 
hz (HI. 

Note that the weak-field concept holds for both thick 
and thin samples. We shall show below that the characteris- 
tic field H, for the investigated sample is approximately 2 Oe 
and varies little with temperature in the interval from 78 to 
90 K. In the same temperature interval, however, j, varies 
over almost four orders of magnitude (from 10' to lo- '  
A/cm2). Our sample can therefore be regarded as thick at 
low temperature, when the current density j, (H) is high, 
and as thin near Tc, when jc (H) -0. 

Consider the weak-field case: h, g h, , H, , H. Accord- 
ing to Ref. 2, the expressions for the descending and ascend- 
ing parts of the hysteresis loop are 

1 
[hh, 1- , (hi" I L ~ ]  

4 n d j ,  (H) , -, 

il r h ( t )  r= ho cos ot ,  

where b, = a,/p,, is independent oft. Expanding B(t)  in a 
Fourier series, we obtain expressions for the  harmonic^^,^ 

Note that the even harmonics of a weak field are small, 
since the even part of the hysteresis loop in (9) is small, 
proportional to the parameter ho/Ho for h < h,, or to h,/H 
for H, < H. 

We consider now the limiting case of a thin sample, 
when h, is of the same order as h, , but h,, h, gH,. Here, as 
above, the even part of the hysteresis loop is small in propor- 
tion to the very same parameters. We write down only the 
odd part of the hysteresis loop that depends on the relation 
between h, and h, ( H I .  

For h, < h, (H) we have for the hysteresis loop 

For h, > h, (H) the form of the hysteresis loop becomes de- 
pendent on the range of h: 
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hz(H) + (ho+hY b,  ( h )  =-ho + - 
2 4 h . 9 ( H ) '  

-ho<h<-ho+2h2 ( H )  , 

Using the expansion (6) and Eqs. ( 1 1 ) and ( 12) we 
obtain for the harmonics expressions corresponding to three 
different relations between h, and h, ( H ) :  a )  h, < h, ( H ) ;  b) 
h , ( H )  <ho < 2 h 2 ( H )  andc) h, > 2 h 2 ( H ) .  

In the first of these cases the expressions for a ,  and 
62, + 1 viz.9 

~ e t t h o ~  i 
bzk+i = - 

4nhz ( H )  ( k 2 - ' / A )  (k+'/z)  

coincide with the corresponding expressions for a weak field 
[see ( 10) 1 ,  if it is recognized that h, ( H )  = 2 7 4 ,  ( H )  . 
Note, however, that expressions ( 13),  in contrast to ( 1 ), are 
valid not only for h, ( h ,  ( H )  but also for all h, ( h ,  ( H ) .  

In the second case h, ( H )  < h, < 2h2 ( H )  we obtain 

pettho' peIIh," sin[ ( 2 k + l ) x z ]  peItho2 
azk+t = - - 

21rz(H) + 8 n h Z ( H )  k ( k + l )  ( 2 k + l )  4nh2(H)  
cos (2x,)sin[ (2k+1)x2]  

( k i - 1 )  ( 2 k + l )  (2k+3) 

- 3pefth,2 sin[ ( 2 k - l ) x z ]  
8nhz ( H )  k ( k + l )  (2k-1)  (2k+3)  ' 

where 

In the last case h, > 2h2 ( H )  we have finally 

, pefjho2 sin[ ( 2 k + l ) x i l  
aZk+i=pefihoBk.o T 8nhz ( H )  k ( k + l )  ( 2 k + l )  

- 
3petfho2 sin[ ( 2 k - l ) x l ]  

8nhz ( H )  k ( k + l )  (2k-1)  (2k+3) ' 

- petjho2 cos [ ( 2 k f l ) x i I  
8nh2 ( H )  k ( k + l )  ( 2 k + I )  

where 

2h, ( H )  
cosx ,= l  - ------, 

ho 

It follows from ( 13)-( 1 5 )  that h, varies in three inter- 
vals corresponding to different forms of the hysteresis loop 
with different expressions for the harmonics in these regions. 
One might conclude at first glance that the expressions for 
a,, + , and b,, + , have singularities at h, = h, ( H )  and 
h, = 2h2 ( H )  respectively. It is clear from physical consid- 
erations, however, that only h, = h, ( H )  can be a singular 
point, and not h, = 2h2 ( H ) .  In fact, analysis shows that 
( 14) and ( 15) have no singularities at all at h, = 2h2 ( H ) ,  
and the cause of the two different expressions for a,, + , and 
b,,+ , is that cos x, must be replaced by cos x ,  when x, goes 
through r / 2 .  

It is clear next from ( 14) and ( 15) that the arguments 
of the cosines and the sines ( x ,  , and later also x ,  ) vary from 
0 to 7r/2 and back. Functions such as cos [ (2k  + 1 ) x ,  ] also 
oscillate and the number of their oscillations increases with 
k. It is clear from ( 1 4 )  and ( 1 5 )  that these oscillations are 
due to the kink on the hysteresis loop in ( 1 2 )  at 
I h I = h, - 2h, ( H ) .  Such a kink is in fact a threshold singu- 
larity and is the cause of the oscillations. We shall show be- 
low that the oscillations in our case took the form of one 
maximum in the dependence of the magnitude of the third- 
harmonic amplitude on h,. Note that oscillations of even 
harmonics as functions of the static field were observed in 
Ref. 9. 

It  follows from ( 13)-( 15 ) that the susceptibilities 
a,, + , /h, and b,, + , /h,, for which 
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are functions of the dimensionless variable y = ho/h2 (H). 
The equations in ( 16) are quite remarkable. Indeed, if h,, 
h, (H,, only, the entire dependence of the susceptibilities 
on temperature and field is contained in the scaling variable 
y, and their dependence on y is itself universal'. We present by 
way of example, using ( 1 3 )- ( 16), the dependence of x:', X ;  
and X: on y; 

For ~ ( 1  
2 

4nxlf' = - 
2 

p e f r y ,  4nx3'=0, 4nxP = - - P,,,Y. 
331 15n 

For y>l 

It can be seen from ( 17) that x;, + , and X; + are indeed 
continuous at y = 2(h0 = 2h, (H)) and that they are oscil- 
latory functions ofy since, for example, the polynomial in X ;  
has two extrema. This behavior is shown in Fig. 1. It is 
noteworthy that oscillations of x;' with temperature were 
observed in Ref. 10. 

EXPERIMENT 

The principal task of the experimental part of our work 
was to study the static and dynamic magnetic characteristics 
of an ceramic HTSC and compare the results with the theo- 
ry. We have already mentioned that the penetration of a 
magnetic field into a ceramic superconductor is determined 
to a considerable degree by the relations beteween the fields 
h,, H, h, , and H, . Wide ranges of temperatures and external 
fields were used to achieve various situations in experiment, 
including the asymptotic "weak field" and "thin sample" 
cases. 

The investigations have established that the above theo- 
ry describes the observed phenomena adequately. It was 
therefore possible to determine a number of important pa- 

rameters indicative of magnetic-field penetration into a su- 
perconductor, including the critical field j,, and its tempera- 
ture dependence, the specific form of the function jc (H),  and 
the dependence of p,, on T. The j, ( H )  dependence in the 
limiting cases of a weak field and a thin sample where found 
to have the same form, corresponding to (iv) in Eq. (3). It 
was also possible to determine the temperature dependence 
of the characteristic fields h, (T)  and H, (T). 

The ceramic investigated was Y, Ba, Cu, 0, (p -- 5 
g/cm3) produced by a procedure described in Ref. 1 1. The 
sample shapes varied with the purpose of the experiment. 

A cylindrical sample ( z 1 mm dia, 1 ~ 7  mm) was used 
to study the temperature dependence of the static suscepti- 
bility ,ydc = M / H  ( M  is the magnetization). A spherical 
sample ( z 1.2 mm dia) was used to determine p,,. A non- 
standard SQUID magnetometer12 in conjunction with a UJ 
11 1 pickup and a gradiometer of the first kind were used to 
measure these two samples. All the data obtained by this 
method take into account the demagnetization factor. A to- 
roidal sample with outside and inside diameters 12.5 and 7.5 
mm were was used to study the field and temperature de- 
pendence of the real and imaginary susceptibility (x' and 
x") as well as of the magnitudes of the higher-order-har- 
monic amplitude c, = (a: + b 2, ) A single-layer toroidal 
measuring coil was wound on the sample. Obviously, the 
toroidal shape of the sample excludes demagnetization ef- 
fects and permits a more correct comparison of the experi- 
mental and theoretical results. The values ofx'  andx" were 
measured at 20 and 100 kHz, and the higher harmonics at 
the fundamental frequency 20 kHz. These experiments (the 
measurement procedure is described in Ref. 13) were per- 
formed in fields 10 - ? <h, , H ~ 2 . 5  Oe. The ambient laborato- 
ry field was less than 0.01 Oe in all experiments. 

We begin the survey of the experiments with the tem- 
perature dependence of the susceptibilities. The most dis- 
tinctive feature of the temperature dependence of the dy- 
namic quantities is the presence of one or two maxima on the 
c, ( T)/h, dependence (Fig. 2). The high-temperature maxi- 
mum is observed only at relatively high alternating-field am- 
plitudes. It can be seen from the figure that the location of 
the low-temperature maximum depends strongly on the field 
amplitude. Note that the plots of c, (T)/h, and 

4zX.7,  arb. un. 

FIG. 1.  Dependence of the third harmonic of the sus- 
ceptibility on y = h,/h, ( H )  as calculated from Eq. 
(7 ) :  -4n;y; (curve1foryi1andcurve3fory>1); 
-4q; (curve2); j4q31 = 4 ~ [ ( , y ; ) ~ +  (X;/1)2]1'2 
(curves 1 and 4 for y < 1 and y > 1, respectively. 
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C ~ l h , ,  GIOe 

b, (T)/h, = 4rx" ( T )  also have two maxima each. A simi- 
lar form ofx" ( T) was observed, for example, in Refs. 14 and 
15 and in a number of other studies. This behavior of the 
harmonics arises because the present pattern of ultraweak- 
field penetration into a ceramic superconductor is indeed 
complicated by the field penetration into the granules them- 
selves near T. It is believed at present (see, e.g., Refs. 14 and 
15) that the high-temperature maximum is due to field pene- 
tration into the granules, and that the low-temperature max- 
imum is due to field penetration only into the weakly bonded 
intergranular medium. 

The presence of two (intragranular and intergranular) 
different mechanisms of field penetration into HTSC is man- 
ifested in the temperature dependence of the static suscepti- 
bility. Thex, ( T )  dependence (Fig. 3) clearly shows a bend 
at T=: 89 K that separates two temperature regions of the 
susceptibility variation corresponding to maxima at 
c3 ( T)/h, . No detailed study, however, was made here of the 
field penetration into the granules (of the high-temperature 
maximum). 

Let us examine now the results for the weak field 
(h, <H,  H,, h, . regime. In this limiting case, according to 

FIG. 2. Temperature dependence of c, ( T) /h ,  ( I ) ,  obtained in the 
absence of an external dc static magnetic field at various amplitudes 
ofthealternatingfield h, = 11,O.S (2), 0.2 (3) ,  0.1 ( 4 ) ,  0.05 (9, 
0.02 (6),0.01 ( 7) Oe. 

( lo),  the odd harmonics should increase with the field h, as 
h i  andtheeven ( a tH=O)  ash~.Theharmonicsa, ,  b , ,c3,  
c, and c, had this dependence on h, in the temperature in- 
terval from 78 to 89 K, both for H = 0 and for finite values of 
the static field (Fig. 4). Naturally, no even harmonics were 
observed at H = 0. 

The coefficients of h directly related to the critical 
current j, were determined from the the dependence of a , ,  
b, , c, , and c, on h, . The temperature dependence of these 
coefficients is shown in Fig. 5. We stress that although the 
harmonics themselves change by two orders of magnitude in 
the temperature range, the ratios a ,  /b, , b, /c3 etc. are prac- 
tically independent of temperature (see the plot of a ,  /b, in 
Fig. 5). This confirms once more that these experiments 
were performed under weak-field conditions. Indeed, all the 
expressions for a, and b,,, , in (10) contain the ratio 
p,, ( T)/jc (H,T). It is obvious then that a ,  /b,, b,  /c,, etc. 
need not depend on p,, ( T )  and j, (H,T), and hence on the 
temperature. Note that these harmonic ratios are close to 
those calculated from ( 10) and practically coincide with the 
data of Ref. 16. 

FIG. 3. Temperature dependence of 4q,, obtained for cool- 
ing in a zero external field followed by turning on a measur- 
ing field H = 0.4 Oe (cylinder). 
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q a i  or? I h,, Oe 10 

FIG. 4. Plots of c, (h, ) and c, (h, ) at H = 1.5 Oe and T = 86 K. 

In the weak-field regime the harmonic amplitudes, as 
noted, are directly connected with the critical-current den- 
sity j,. It is impossible, however, to calculate j, only from a, 
and b,, + , , since knowledge of p, is also necessary. It was 
necessary therefore to determine the effective diamagnetic 
permeability independently. This was done by determining 
p, from the high-field asymptote of the hysteresis loop or 
from the magnetization curve obtained in static field H. 
Note that "high-field asymptote" means the field region 
H) H, , h, . In this case jc (H)  -40 there is no screening due to 
pinning, and the induction x is simply 3 = xd,, 
= = p,, h (see Ref. 2 for details). A plot of p,, ( T )  

FIG. 6. Temperature dependence of the effective diamagnetic permeabil- 
ity p,, determined from intensity measurements. 

obtained in this manner is shown in Fig. 6. Clearly, the effec- 
tive permeability changes most strongly near Tc. 

The principal quantity in the critical-state theory is, as 
already noted, the function jc (H).  To determine this func- 
tion explicitly we have used here a method proposed in Ref. 
16. In this method, as seen from ( lo),  the odd harmonics in 
weak fields are essentially proportional to l/jc (H)  and the 
even to (d /dH) ( l/j, (H)  ). Measurement of these harmon- 
ics as functions of the static fields at a fixed value of h, there- 
fore yields a self-consistent explicit form of j, (H). We per- 
formed such experiments with the third and second 
harmonics. To satisfy the weak-field conditions, the range of 
the alternating field h, was chosen so that c, and c, depend- 
ed quadratically and cubically on ho, respectively. 

As a result, when the static field varied from 0 to 1.5 Oe 
the third-harmonic amplitude, i.e., l/j, ( H )  increased like 
H Z ,  while the second-harmonic amplitude, i.e., ( d /  
dH) ( l/jc (H)  ), was linear in H (Fig. 7). Obviously, this 
behavior of the harmonics corresponds to 

Ho2 it (H) = j o  ---- 
H,2+H2 (18) 

~ l / h ~ , ~ , / h ~ , c 2 R + l / h ~ ,  G/Oe2 
lo-' which is consistent with the model (iv) of Eq. (3). 

In this case we have c, (H)/c, (0) - 1 = H '/H G .  Plots 
of c, (H)  measured at various temperatures show that the 

70 -2 
characteristic field Ho ranges from 3 to 1.8 Oe in the interval 
78< T< 86 K (see Fig. 12 below). We know of no observation 
of a jc (H)  dependence in the form ( 18) in classical super- 
conductors or in ceramic HTSC. It appears that the only 

10 attempt to determine the explicit form of jc (H)  in low-field 
electrodynamics is reported in Ref. 16. However, the jc (H) 
dependence obtained there for another ceramic, Y-Ba-Cu- 

7 0 ,  is of the form (ii), i.e., jc (H) = joHo/( IH I + H, ). The 
3 causes of the different forms of jc (H)  are still unclear. Note 
2 that a dependence of the form (ii) was observed earlier7 in 

I classical superconductors in the high-field region. 
The aim of the succeeding experiments was to deter- 

78 80 82 84 86 88 T,K mine the behavior of the susceptibility in a sample that can 
be regarded as thin, i.e., under the condition 

FIG. 5. Plotsofa,/hi (I), bl /hi  ( 2 ) ,  c,/hi (3) ,  c,/hi (4) anda,/b,, d<z= H~/4?rjc In this case, as the 
obtained in a zero external stationary field. theory predicts that all the susceptibilities (x', x", x,, etc.) 
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scale with the dimensionless variable y = ho/h,. Obviously, 
this regime can be observed in this geometry when the cur- 
rent density j, is low, or else by decreasing j, (H) using a 
strong magnetic field H) Ha. It was impossible, however, to 
obtain in our experiments a field of sufficient strength to 
produce the "thin-sample" state. This regime could there- 
fore be observed only for small j,, i.e., near T, . 

It follows from ( 17) that for ha s h ,  (Ha the function 
4nlx3  (y) I should have a maximum (see Fig. 1 ) . This maxi- 
mum, which is typical of the thin-sample regime, is clearly 
seen on the c, (T)/h, plot of Fig. 2 (a change of temperature 
is accompanied by one of h, and hence of y). To determine 
the scaling behavior of the susceptibility in this limiting case, 
we studied the magnitude of the third harmonic c, as a func- 
tion of the alternating-field amplitude h, for various values 
of the static field and of the temperature. Typical plots of 
c, (h ,  )/ha = 4 4 x 3  ( h, ) ( for different H (at constant T) are 
shown in Fig. 8. Clearly, the plots have maxima at a certain 
field amplitude h, = h,,, with h,,, dependent on H (and, 
in general, on T). 

We introduce a new variable u = h,/h,,, and replot 
Fig. 8 for this coordinate (Fig. 9). It is seen from the latter 
that all the c, (u)/ho dependence are practically equal. A 

FIG. 7. a )  Dependence of  c , /h  on H z ,  b) depend- 
enceofc,/h: onH, T =  83.92 K ,  (h ,  = 0.25 Oe) .  

disparity is noticeable only for weak static fields. Suscepti- 
bility scaling is thus observed in strong static fields. In weak 
fields we havej, (H) zjo and the condition 27rdjo = h2 (Ha 
is not met. Indeed, extrapolation of the low-field values of 
Ha yields H, =: 1.5 Oe near T,. On the other hand, it follows 
from the very same data for j, that, for example, h, z 1.5 Oe 
at T z  89.6 K; i.e., the thin-sample criterion is not satisfied in 
this case as H-0. 

The value of j, (H) [and hence of h, (H) ] decreases in 
strong static fields, and the sample can become ''thin." As a 
check on this assumption, let us compare the C, (h,)/h, 
plots (Fig. 10) obtained at different temperatures and for 
two values of the static field, H = 0 (curves 1-3) and 1.95 
Oe (curves 4-8). Evidently, in a strong field the plots of 
c, (ha )/ha are in rather good agreement, but they differ for 
the same temperatures if H = 0. We regard this as convinc- 
ing evidence favoring the existence of a thin-sample regime 
in which all the susceptibilities are universal functions of 
only one variable u = h,/h,,,. 

In the above comparison of the c, (h, )/ha plots it was 
assumed implicitly that h,,, = ph,, i.e., y =flu, wherepis a 
certain coefficient. It seems most correct to determine p 
from the c, (ho)/ho dependence obtained in the region 

FIG. 8. Plotsofc, (h , ) /h ,  vsh, a t H =  2.33 ( I ) ,  1.95 
(2), 1.55 (3) ,  1.17 ( 4 ) ,  0.78 (9, and 0.0 ( 6 )  Oe; 
T =  89.62 K .  
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c ~ / h o ,  rel. un. 

FIG. 9. Plots of c, ( h , ) / h ,  vs u = h,/h,,, at H =  0 ( I ) ,  0.78 
( 2 ) ,  1.17 (3) ,  1.55 (41, 1.95 ( 5 )  and2.33 ( 6 )  Oe; T =  89.62K. 

where the two regimes overlap, i.e., when variation of the 
alternating-field amplitude in a sufficiently large interval si- 
multaneously produces maxima on these plots as well as a 
weak-field regime (c ,  - h i ) . This situation actually existed, 
but only in a rather narrow temperature range ( (0 .4  K). In 
this case, by determining the coefficient of h from c,  ( h ,  ) 
for h, <h,,, and then f, by taking into account p,, from 
( l o ) ,  we can also calculate h, = 2n-dj, . On the other hand, 
putting h,,, = ph, we obtained P =  1, i.e., h,,, is none oth- 
er than h, . 

According to the theory [see Eq. ( 17) and Fig. 1 1, how- 
ever, a maximum of ( 4 q 3  ( y )  ( should be observed for 
h,/h, z 1.7 (p- ,  1.7). Experiment, however, yields P = 1. 
This discrepancy can be attributed to the fact that the sample 
used in the experiments was toroidal, whereas expression 
( 17) was derived for a slab. The following, however, must be 
noted. Since a universal dependence of the susceptibility on 
h,/h,, is observed in experiment, expression ( 1 7 )  can be 
rewritten as ~ P J x ,  ( u )  ] = yf (u) ,  where f(  1 )  = 1 .  The ex- 
perimentally determined ye,, ~ 0 . 0 3 4  agrees quite well with 
its value y,, = (2 /15v)pef f  -0.030 calculated from Eq. 
( 1 7 ) .  

Starting from the observed susceptibility scaling and 
assuming that h,, ( H )  = h, ( H )  = 2vdjC ( H ) ,  we can de- 
termine from the dependence of h,,, on H (at constant T )  
the explicit form of the function jc ( H )  for temperatures at 
which the sample can be regarded as thin. As seen from Fig. 
11, h  ;. is linear in H z .  Thus, for a thin sample jc ( H )  has 
the same form as in the low-field regime, i.e., j , ( H )  
= j, H  g /( H + H i  ) . The approximate value of H, ,1.3 Oe, 

determined in this case agrees quite well with a linear extra- 
polation of H, ( T ) ,  in the weak-field regime, into this tem- 
perature region. 

The critical current density j,,  as already mentioned, is 
one of the most important quantities in critical-state theory. 
We have determined j, here in two limiting cases-weak 
field and thin sample. Recall that for the former case j, was 
calculated with allowance for y,, using Eqs. ( l o ) ,  from the 
values of the coefficients of h i ,  while in the latter it was 
calculated from the values of h,,, for an infinite cylindrical 
sample of diameter d = 0.25 cm. In the present study we 
have thus determined the behavior of j, in a wide tempera- 
ture range. 

For a more transparent representation of the relation 

FIG. 10. Plots of c, /h ,  vs u = h,/h,,, , obtained at various tern- 
peratures for two values of the static field: H = 0 (curves 1-3) 
and 1.95 Oe (curves &8); curves 1-3 and 4-6 pertain to 
T =  89.07, 89.3, 89.62 K, and curves 7 and 8 to T =  89.83 and 
89.92 K respectively. 

0 Z 4 6 holhmax 
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FIG. 11. Dependence of (h,,, (0) - h,,, (H))/h,,, (H) on HZ,  where 
h,,, corresponds to H = 0 and h,,, (H)  to a finite value of the static field. 

between the characteristic fields (h,, H, H,, and H , ) ,  and 
by the same token the conditions for realizing various limit- 
ing regimes, it is better to consider the function h, ( T )  rather 
than j, ( T).  The functions h, ( 7') and H, ( T )  obtained in the 
two limiting cases are shown in Fig. 12. We see that, firstly, 
the characteristic field H, depends little on temperature. 
Secondly, h, is approximately equal to H, at T=: 89.6 K, so 
that in the absence of an external dc field the thin-sample 
regime could be observed in our case only at higher tempera- 
tures. Thirdly, between 78 and 91 K the critical-current den- 
sity j, (whose numerical values can be obtained by multiply- 
ing h, on this figure by 1/2?rdz0.5 cm- ') changes by 
almost four orders, the variation of j, being strongest near 
T,. This is indeed the cause of the small temperature interval 
in which the thin-sample case is observed. Note that for con- 
venience Fig. 12 has two scales-for h, and j, . 

Let us examine now the cause of this strong dependence 
ofj, (equivalently, of a) on T = ( Tc - T ) / T c .  We note first 
that even for an ordinary type-I1 superconductor f, is the 
product of the pair-breaking current j, by the dimensionless 
quantity ( that describes directly the vortex-pinning force 
(see, e.g., Refs. 17 and 18). In our case the pair-breaking 
current is determined by the characteristic value of the Jo- 
sephson bonds with j, far from the transition and j, near it, 
just as in an ordinary supercondu~tor.'~ In view of the com- 
plex geometric structure of a Josephson medium, it is of 
course difficult to calculate [(r),  but if the pinning is strong, 
then ( a  1 and depends weakly on r (see the problem of 
strong pinning in a layered supercond~ctor'~ ). In this case 
j, and a are determined almost completely by the pair- 
breaking current and are proportional to r or r 3'2. 

It can thus be concluded from our investigations that 
the critical-state theory can be used to describe the penetra- 
tion of a magnetic field into granular superconductors. Var- 
ious limiting cases were realized in experiments performed 
on HTSC in a wide range of temperatures and external fields, 
using different procedures, and important quantities indica- 
tive of the penetration of ultraweak fields in ceramic HTSC 
were determined. 

We note in conclusion that low-field electrodynamics 
apparently also occurs in single crystals (see, e.g., Refs. 20- 

FIG. 12. Temperature dependence of the characteristic fields h, = 2rdi0 
and Ho (0-Ho; and A are the values of h, determined for the case of a 
weak field and a thin sample, respectively). The values of Ho at T=: 90 K 
were determined from the h,,, (H)  dependence. The scale of j, is on the 
right. 

22). In all likelihood, the role of weak bonds is assumec 
there by twins, and the role of granules by twinless regions. 
This entire group of phenomena is closely connected with 
the fact that the coherence length in HTSC systems is very 

This very interesting question, however, is still 
open. 
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