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The oscillatory part of the electron density of states of a metal in a magnetic field-the part of the 
density of states that determines the physical nature of the oscillations of the thermodynamic and 
kinetic characteristics of a metal in a magnetic field-is calculated using the coherent states of the 
electrons in the magnetic field. The physical reason for the substantial simplification, achieved in 
this approach, of the mathematical procedure lies in the fact that the coherent states employed in 
the calculations best describe quantum macroscopic phenomena, which the Shubnikov-de Haas 
and the de Haas-van Alphen effects in metals, semimetals, and degenerate semiconductors are. 
Oscillation effects in metals in a magnetic field are related to quantum macroscopic phenomena, 
such as superconductivity and weak-link superconductivity, and they are governed by a specific 
macroscopic quantum interference of elementary excitations of the boson type, with whose help 
the partial motion of electrons in a plane perpendicular to the magnetic field H is described. 

1. INTRODUCTION 

The foundations of the quantum physics of charged 
particles in a magnetic field were laid in Refs. 1-3, where 
oscillations of the kinetic coefficients of a metal (semimetal, 
degenerate semiconductor) in a magnetic field (the Shubni- 
kov-de Haas effect (SdHE), Landau diamagnetism, and os- 
cillations of the thermodynamic potentials of a metal and 
their derivatives (first and higher order) in a magnetic field 
[the de Haas-van Alphen effect (dHvAE) 1 were first stud- 
ied.4,5 

In the 1950's a relation (the Lifshitz-Onsager relation) 
was established between the period of the oscillations and 
the parameters of the Fermi surface, and the oscillation phe- 
nomena became the most accurate and reliable method for 
determining the parameters of the Fermi ~u r f ace .~  

After Glauber introduced in 1963 (Refs. 6 and 7 )  the 
concept of a coherent state la) as an eigenstate of a nonher- 
mitian annihilation operator a of excitations of the boson 
type ( a / a )  = a l a )  ) Malkin and Man'ko8z9 were the first to 
construct a coherent state for a charge in a constant uniform 
magnetic field. As shown in Ref. 2, the corresponding Schro- 
dinger equation for the eigenfunctions and eigenvalues re- 
duces to the Schrodinger equation for a one-dimensional dis- 
placed harmonic oscillator. This equation, by Haken's 
definition,'' is the "prototype of an elementary excitation in 
a solid" and an example of the simplest physical system for 
which a coherent state can be introduced in a natural man- 
ner. Later, Feldman and Kahn" formulated in terms of co- 
herent states the theory of dimagnetism of free electrons, and 
Granovskii and DimashkoI2 employed coherent states and 
the method of Green's functions for describing the de Haas- 
van Alphen effect in the case of a free-electron gas. 

Dodonov and M a n ' k ~ ~ ~ , ' ~  comparatively recently, in 
the context of their theory of quantum integrals of motion 
which are explicitly time-dependent, proposed their own ap- 
proach to the use of coherent states for obtaining the de 
Haas-van Alphen effect for a free-electron gas. In Refs. 12 
and 14 it was pointed out that in the proposed approaches 
the use of coherent states significantly simplifies the math- 
ematical calculation of the oscillating part of the thermody- 

namic characteristics. In particular, Dodonov and 
~ a n ' k o ' ~  point out that their method does not require the 
energy spectrum of the elementary excitations and it is also 
not necessary to perform the difficult summation of the ener- 
gy levels using the Poisson summation formula, as is done in 
the usual a p p r ~ a c h . ~ . ~  At the same time, it is significant that 
in Refs. 12-14 only thermodynamic and not kinetic phe- 
nomena in a free-electron gas were studied. This is undoubt- 
edly connected with the fact that coherent states, as eigen- 
states of a nonhermitian operator, are not orthogonal, i.e., 
transitions between different coherent states can occur spon- 
taneously. 

At the same time it is well known4 on the basis of the 
traditional theory of oscillation phenomena in metals in a 
magnetic field that the Shubnikov-de Haas effect and the de 
Haas-van Alphen effect are related with one another and 
that the period of the oscillations-the main characteristic 
providing information about the parameters of the Fermi 
surface-is the same for both the thermodynamic and kinet- 
ic quantities. 

These phenomena have another interesting characteris- 
tic feature: The Shubnikov-de Haas and de Haas-van Alphen 
effects are not only quantum effects. They are also macro- 
scopic effects, and in these respects (the quantum character 
and macroscopic nature, simultaneously) they are related 
with phenomena such as superconductivity, weak-link su- 
perconductivity (Josephson effects), lasing, and von Klitz- 
ing's effect. '' It is natural that this sequence of definitions of 
the phenomena mentioned should end with quasiclassicity, 
i.e., quantum-macroscopic-quasiclassical. 

Our aim in this paper is to demonstrate clearly, by using 
the method of coherent states combined with a universal 
approach for describing both thermodynamic and kinetic 
characteristics of a metal in a constant uniform magnetic 
field, not only the mathematical advantage of such a combi- 
nation, but also to establish the physical reasons for why the 
mathematical description is adequate for the physics of the 
quantum oscillation effects studied. 

The physical nature of oscillations of the kinetic coeffi- 
cients of a metal in a magnetic field (Shubnikov-de Haas 
effect) as well as oscillations of the thermodynamic poten- 
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tials and their derivatives (first and higher order) has been 
established on the basis of Landau's theory of diamagnetism. 
The oscillations are governed by two factors: the presence of 
the Fermi surface and the radical change in the density of 
statesp(&) when the magnetic field is turned on (Ref. 4)." 

Turning on a constant uniform magnetic field H para- 
llel to the z-axis makes the motion of a current-carrying par- 
ticle quasi-one-dimensional and in the process changes the 
behavior of the density of states from p , , ( ~ )  =E'" to 
pld (E)  a 1/~"' (for the three- and one-dimensional situa- 
tions, respectively). Because of Landau quantization of the 
electron energy spectrum this inverse square-root singular- 
ity of p ( ~ )  is repeated many times in the energy interval 
O<E(,U (p is the chemical potential, which at zero tempera- 
ture is equal to the Fermi energy) near the bottom (p ,  = 0) 
of each Landau band located below the Fermi level. When 
the condition 

is satisfied, where w, = eH/mc is the cyclotron frequency, 
m is the effective mass of the current carrier, and c is the 
velocity of light in vacuum, for energies e z p  near the Fermi 
surface the density of s t a t e sp (~ )  is an almost-periodic func- 
tion of the magnetic field. The presence of the characteristic 
energyp and this almost-periodic dependence o f p ( ~ )  on the 
magnetic field H are responsible for the oscillatory character 
of the magnetic field dependence of both the thermodynamic 
quantities ["linear" with respect to p ( ~ ) ]  and the kinetic 
coefficients ["quadratic" with respect to p ( ~ ) ] . ~  It is ob- 
vious that the period of the oscillations is the same for both 
types of quantities and is equal to the oscillation period of the 
function p ( ~ ) .  

We note that the above condition, for p ( ~ )  to be an 
almost-periodic function in a magnetic field, is identical to 
the condition of quasiclassicity. This fact in itself indicates 
that the method of coherent states can be used to describe 
these effects; it is well that this method is used 
successfully to describe quantum states that are as close as 
possible to classical states. 

Hence the implementation of the above program re- 
duces to establishing a relation between the density of states 
p ( ~ )  and the thermodynamic potential and kinetic coeffi- 
cients, introducing coherent states characteristic for the 
problem of the motion of a charge in a magnetic field, and 
calculatingp(~) with the help of these coherent states. 

2. STARTING RELATIONS 

The thermodynamic potential R, = F, - p N  is de- 
fined by the expression15 

which can be represented in the integral form 

a,=-TS dep (a)ln { l + e x p  [ ( p - e ) / T ] }  (2.2) 
0 

with the help of the density of states 

Here F, is the free energy, Nis the total number of particles, 

Tis the temperature (in energy units), Y is the collection of 
all q~an tum numbers characterizing a single-particle state, 
and P i s  the single-particle Hamiltonian. Thus the theoreti- 
cal description of oscillations of the thermodynamic charac- 
teristics of a metal in a magnetic field reduces to calculating 
the thermodynamic potential R, and its derivatives 

etc., where M is the magnetic moment and C is the heat 
capacity. 

AS one can see from Eq. (2.2), the kernel of the integral 
defining RH contains the product of two functions, one of 
which is a logarithm, which, obviously, is not responsible for 
the oscillatory character of the dependence 0, (H). Its pres- 
ence in Eq. (2.2) does not present any fundamental difficul- 
ties for the calculation, which is performed with the help of 
an elegant technique, first proposed by Rumer,16 and is 
based on the use of the two-sided Laplace transform of the 
function In1 1 + ex[. 1 2 3 1 4  

It seems to us, however, that this procedure largely ob- 
scures the decisive role of the use of coherent states in the 
simplification of the mathematical procedure and of the 
purely physical factors on which the simplification is based. 
For this reason, we shall calculate directly, starting from Eq. 
(2.2), the density of states, setting T = 0 for simplicity. In 
the process, p ( ~ )  transforms into p(p) and is related with 
fl, by the simple relation 

As one can easily see from Eq. (2.5), the density of states 
p ( p )  at the Fermi surface is not only related with the observ- 
able quantities presented in Eq. (2.4), but, in a certain sense, 
it is itself an observable quantity (for example, through T, 
from the BCS formula). Its oscillatory part p (p ) contains 
the period of the oscillations, which in turn through the Lif- 
shitz-Onsager relation determines the area of the extremal 
section of the Fermi surface by a plane perpendicular to H. 

The solution of the problem of finding by a universal 
method the oscillatory p a r t p ( ~ )  of the density of states also 
answers the question of the physical nature of the oscilla- 
tions of the kinetic coefficients in a magnetic field. As is well 
known from the theory of the Shubnikov-de Haas 
the appearance of a nonzero current in the direction of the 
stretching electric field Ellx is attributable to the appearance 
of electron scattering, which under the conditions of the 
Shubnikov-de Haas effect can be assumed to be elastic. In 
this case, using Fermi's golden rule for the transition proba- 
bility per unit time in elastic scattering processes at the Fer- 
mi surface, we have for the transverse electric conductivity 

where f, is the occupation number of the state Y and G(E, E ' )  

is the kernel of the integral. 
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As one can see from Eq. (2.6), summing over the final 
states Y ', averaging over the initial states v, and going over to 
the integral representation with the help of the densities of 
statesf(&) andp(&') gives an expression which is "quadrat- 
ic" in P(E) and whose period of oscillations in a magnetic 
field is determined by the period of oscillations of p(e ) ,  as 
happened in the case of the thermodynamic potential (2.2). 

Thus the oscillatory behavior of both the thermody- 
namic and kinetic quantities in a magnetic field is deter- 
mined by the presence of the Fermi surface and the almost- 
periodic magnetic-field dependence of the density of states 
P(E). The fact that p (&)  in Eq. (2.3) is represented in the 
form of a trace makes it possible to employ any complete set 
of wave functions in the computational procedure. But, ob- 
viously, the mathematical conciseness and simplicity de- 
pend decisively on the degree to which the the set of wave 
functions employed is appropriate for the physical nature of 
the phenomenon under study. The customary use of oscilla- 
tor wave functions, which are essentially the eigenfunctions 
of the number operator of boson excitations of the corre- 
sponding problem (see below) a +aln) = n In) seems ob- 
vious at first glance. It is immediately clear, however, that 
these wave functions do not carry any information about the 
presence of the Fermi surface, while for the coherent states 
la), which are eigenfunctions of the operator a 
(a  la) = a la) ), the average of the particle-number operator 
is equal to 

In addition, the coherent states are characterized by a well- 
defined phase.'.l0 This is related with the existence of a 
phase characteristic (cyclotron period) of the oscillation 
phenomena under study. For this reason, we now introduce 
coherent states for the problem at hand. 

3. COHERENT STATES OF A CHARGED PARTICLE IN A 
CONSTANT UNIFORM MAGNETIC FIELD 

Landau was the first to show2 that the Schrodinger 
equation for the eigenfunctions and eigenvalues for a charge 
in a constant uniform magnetic field has the form of the 
Schrodinger equation for the one-dimensional displaced os- 
cillator. Forty years later, using this fact, Malkin and 
Man'ko8z9 determined the two-dimensional coherent state 
corresponding to this problem. As we have already men- 
tioned in the introduction, such coherent states have been 
used to recast in new terms the theory of Landau dimagne- 
tism and the theory of the de Haas-van Alphen effect for a 
free-electron g a ~ . " , ' ~ . ' ~  Up to now, however, the achieve- 
ments of the physics. of coherent states have not been ex- 
tended to oscillation effects in metals with an arbitrary dis- 
persion relation for electrons or to numerous other quantum 
physical phenomena observed in metals in a magnetic field. 

In what follows a procedure is developed for introduc- 
ing the Fock and coherent states for a charge in a constant 
uniform magnetic field Hllz. The Hamiltonian for a particle 
with mass m and charge e (for convenience we take e > 0) 
has the form'' 

If the only symmetry of the problem-the direction distin- 
guished by the magnetic field (the z axis)-and the physical 
equivalence of the motion along the x and y axes are pre- 
served, then it is natural to choose the vector potential A of 
the magnetic field in the form 

h 

In this case the part Xl of the Hamiltonian that is re- 
sponsible for motion in the xy plane is a sum of the Hamilto- 
nians of two coupled standard one-dimensional oscillators 
(along the x and y axes, respectively) 

Here $ is the momentum operator, p, is the Bohr magneton, 
m, is the mass of a free electron, g* is the effective spectro- 
scopic splitting factor, and w, = eH/2mc is the Larmor fre- 
quency.'9 I t  is interesting to note that the frequency charac- 
teristic of each of the two oscillators in Eq. (3.2) is the 
Larmor frequency-a characteristic classical quantity.I9 
Going over to dimensionless coordinates 

we introduce instead of the four starting operators of the 
coordinates and projections of the momenta for Bose opera- 
tors ii, ii +, &, and & + (Ref. 9)  : 

[a, 51 = . . . = [z+. 6+] -0. 

Then *L assumes the form 

in which a pair of new operators has been distinguished in a 
natural manner: 

a-i5 Z+-ig+ 
a=- a+ = --- 2% * 2% 7 [a, a+] =I. (3.6) 

In accordance with the Stone-von Neumann theorem, the 
complete set of operators contains 2s operators (s is the di- 
mension of the system). For this reason, we introduce, in 
addition to the operators a and a + , the operators b and b + : 

The operators b and b + are obtained from the operators a 
anda + (3.6) by the simple substitution 2-6 (orx-y); this 
reflects the physical equivalence of motion along the x and y 
axes and the symmetry of the gauge chosen for A.  It is easy to 
verify that9 
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where the direct and inverse relations have been employed: 

i z+iy E=-=- Ea=-=- i x-iy 2'" 2'I21L ' 2" 2 ' I Z b '  (3.9) 
E+E* x=- . E-E. LL. 2',* ZL, y=-2 - 2'" 

To complete the picture we introduce the relations be- 
tween the operators a and b and the operators of the coordi- 
nates of the center of an orbit x, and yo and of the relative 
motion x and y:9 

It is clear that the operators b and b + are expressed only in 
terms of the integrals of motion x, and yo and therefore are 
themselves integrals of motion. We note here also that 
L, = ( r  X p), is another integral of motion. 

Thus after the %perators a, a + , b, and b + are intro- 
duced the operator XI assumes the form 

Note that the cyclotron frequency w, = 261, naturally ap- 
peared in Eq. (3.11 ) when the problem of two coupled oscil- 
lators with frequency characteristics w, was reduced to the 
problem of a one-dimensional oscillator or, in other words, 
to the problem of two equivalent, but uncoupled, one-dimen- 
sional oscillators. 

Since the partial motion of an electron in a magnetic 
field in the xy plane is described by the operator (3.11), 
which contains the operators a ,  a +  (3.6) and b, b + (3.7), 
which satisfy the Bose commutation relations, the following 
"two-dimensional" states can be defined in the occupation 
number representation with respect to these operators: 

a )  the vacuum state 100) defined by the relations 

b) the Fock (after V. A. Fock) state Inan,), which is an 
eigenstate of the number operators of boson excitations 
ii, =a iaand i ib  = b +b:  

C )  the two-dimensional coherent state la;O ), which is an 
eigenstate of the operators a and b:9 

The coherent state lap ) can be obtained in an explicit form 
by the action of displacement operators on the vacuum: 

where, for example, 

D ( a )  =exp (aa+-a'a) 
=exp (- ( a l z / 2 )  exp (aa+)esp  (-a'a), 

(3.16) 

The above method of introducing coherent states is 
~tandard. ' ,~ . '~  As a result, we now have a complete normal- 
ized set of wave functions, which are the eigenfunctions of 
nonhermitian operators and for this reason are not orthogo- 
nal to one another. In addition, in accordance with Eqs. 
(3.15) and (3.16), they are a superposition of states with 
different occupation numbers, though they are character- 
ized by a definite phase. It should be specially noted, how- 
ever, that the partial motion of a fermion (electron) in thexy 
plane perpendicular to the magnetic field His  described with 
the help of a boson field and all the properties corresponding 
to it. 

4. OSCILLATIONS OFTHE ELECTRON DENSITY OF STATES 
OF A METAL IN A MAGNETIC FIELD 

In order to calculate p ( p )  (2.3) we employ the com- 
plete normalized set of wave functions 

la,, p,; ap>=L,-'" exp (ip,zlh) %lag) ,  (4.1) 

where 

L, is the normalization length, and 6, is the Pauli spin ma- 
trix along the z-axis. 

Using Eq. (4.1) in taking the trace in Eq. (2.3), we 
obtain 

where d 'P= d(Re ;O)d(Im 0). Keeping in mind the fact 
that aJ three terms appearing in the definition of the opera- 
tor % (3.1) commute with one another, we perform the 
calculations successively, using the following relations: 

L, L,, 

[see Eq. (3.10) 1; 
m 
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FIG. 1. The contour of integration in the complex t-plane for calculating 
the integral in Eq. (4.9). 

In the calculation of Eq. (4.7) we have used the condition 

expressing the fact that the set of "one-dimensional" Fock 
states is complete, and the expression for the scalar product 
of the Fock and coherent states: 

Using the relations (4.4)-(4.7) we obtain for the den- 
sity of states p (p) at the Fermi surface an expression in the 
form of a single integral; 

which can be calculated with the help of the residue theorem 
by integrating along the contour shown in Fig. 1. 

It is easy to see that the oscillating part of the density of 
statesp (p) is determined by the contribution to the integral 
of the poles located on the real axis at the points 

and has the form 

As one can see from Eq. (4.1 1 ), the period of the oscillations 
ofb(p)  with respect to the inverse magnetic field is 

The expression (4.1 1 ) is, naturally, identical to the corre- 
sponding expression for - (6' 2fi,/6'p2) .=, from Ref. 4. 

The extension to the case of current carriers with an 
arbitrary energy spectrum is made in the spirit of the On- 
sager-Lifshitz-Kosevich theory4.' by making the substitu- 
tion p-+Ss/2.rrm, where S, is the area of the sth extremal 

section of the Fermi surface by the planepls' = const, and by 
introducing an additional summation over the numbers .s of 
the extremal sections. Taking into account T # O  does not 
change the period of the oscillations and is only reflected in 
the form of the oscillations, in particular, their amplitude. 

5. DISCUSSION 

Our approach to the analysis of oscillation effects in a 
metal in a magnetic field--calculation of the density of states 
p ( E )  using the wave functions (4.1 ) , which include the co- 
herent states (3.14)-(3.16), as the basis-makes it possible 
not only to substantially simplify the mathematical proce- 
dure as compared with the traditional method of analyzing 
these phenomena,435 but it also to study in a universal man- 
ner both the thermodynamic and kinetic effects, to easily 
extend the analysis to the case of current carriers with an 
arbitrary energy spectrum and nonzero temperature, and to 
include the effect of scattering on the form of the oscillation 
dependence. 

The physical reason for the simplification achieved in 
the mathematical procedure is that the coherent states em- 
ployed in the calculations best describe quantum macro- 
scopic and therefore also quasiclassical phenomena, which 
the Shubnikov-de Haas and de Haas-van Alphen effects in 
metals, semimetals, and degenerate semiconductors are.20,2' 
On the basis of the indicators indicated these oscillation ef- 
fects in metals are related with macroscopic quantum phe- 
nomena, such as superconductivity, weak-link supercon- 
ductivity, lasing, von Klitzing's effect, etc. 

Extending this analogy and keeping in mind the oscilla- 
tory character of the dependence of the observed quantities 
on H, it is logical to determine the Shubnikov-de Haas and de 
Haas-van Alphen effects as manifestations of the macro- 
scopic quantum interference. In this case the macroscopic 
quantum interference has an entire series of specific features, 
the main one being that the elementary excitations initially 
responsible for the observed effects are fermions (electrons 
and holes in the metal). When a magnetic field H is turned 
on, however, the motion of the fermions in a plane perpen- 
dicular to H is described with the help of elementary excita- 
tions of the boson type, for which the possibility of coherence 
(matching with respect to phase characteristics) and macro- 
scopic quantum interference resulting from it are also typi- 
cal. The possibility of interference of the contributions to the 
oscillatory dependences of the observed quantities resulting 
from different extremal sections of the Fermi surface also 
contribute their own distinctive characteristics. 

I '  In 1913 Kamerling-Onnes prophetically ascribed superconductivity to 
quantum phenomena, while in 1950 F. London" emphatically intro- 
duced into the definition of superconductivity its macroscopic nature 
also, defining in this manner superconductivity as a "quantum phenom- 
enon on a macroscopic scale." Thus London was the first one to identify 
the new class of physical phenomena. 

'' It is interesting tocompare this with the fact that the presence ofa Fermi 
surface is also a necessary condition for the existence of the supercon- 
ducting state, and the density of states at the Fermi surfacep(,u) enters 
directly into the expression for the superconducting phase transition 
temperature T, in the Bardeen-Cooper-Schrieffer t h e ~ r y . ~  
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