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A comprehensive experimental investigation of the conductivity tensor of n-InSb single crystals 
at liquid-helium temperatures was performed in a wide range of carrier densities (from 1.5. 1015 to 
1.5. 1016 cm - 3,  and magnetic fields up to 72 kOe. It was found that all a H -"and a, a H B ,  and 
as the carrier density increases a decreases from 3 to 2.3 andP increases from 1 to 2 and higher at 
the beginning of the region of the ultraquantum limit (UQL) . As Hincreases furtherP decreases. 
It is shown that the region of quantum screening (QS) occupies the most significant part of the 
region of the UQL. Longitudinal and transverse diffusion were studied theoretically for the 
region of QS on the basis of the single-electron model [previously used for the case of classical 
screening (CS) 1,  taking into account the quasi-1D character of the electron dynamics and the 
possibility of Anderson localization of electrons in the random potential of chaotically distributed 
charged impurities. It is shown that in contrast to the CS region, where all a H -6and a, a H 8'3, 
in the quantum region these dependences should be significantly different, namely, all a H 2and 
a, a H O. In the CS region the theoretical results are not in complete agreement with the 
experimental behavior, while in the quantum region there is complete disagreement. Possible 
reasons for the observed discrepancies are discussed. 

1. INTRODUCTION 

In the last few years there has been a surge of interest in 
new and more careful experimental and theoretical investi- 
gations of the conductivity and mechanisms of localization 
of current carriers in extremely strong magnetic fields, i.e., 
stronger than the field of the transition to the ultraquantum 
limit (UQL). As noted previously in Refs. 1 and 2, the field 
dependence of the different components of the conductivity 
tensor aaB (H) of an entire series of narrow-gap semiconduc- 
tors (CdHgTe, InSb, and others) which are relatively 
strongly doped, sufficiently strongly to obtain semimetallic- 
type conductivity, are observed to have a number of com- 
mon characteristics. As the magnetic field H increases the 
Hall component of the conductivity axy at first increases in 
proportion to H up to the field H I ,  where a,, becomes equal 
in magnitude to the transverse component ax, which re- 
mains virtually constant in these fields. Then, in fields 
H >  H, , the region of classically strong fields starts. Here the 
cyclotron frequency w,, which increases linearly with H, 
now exceeds the frequency l / re  of electron scattering pro- 
cesses and as H increases further both components uxy and 
axx decrease (as H - ' and H - 2, respectively). 

As the field H increases still further quantization effects 
(Shubnikov oscillations) appear, and finally the region of 
the UQL starts in fields H >  H, . Here uxy continues to de- 
crease as H - ', while ax,, on the contrary, starts to increase. 
For sufficiently strong fields ax, again becomes equal to ax, 
and their field dependences can intersect once again. Then, 
at some critical field H, the values of all three components of 
the conductivity tensor, including o;, drop sharply; this in- 
dicates the presence of strong localization, which is usually 
attributed to carrier freeze-out on isolated impurity centers 
or to the formation of large electron drops.' To within a 
logarithmic factor the condition of the metal-to-insulator 
transition can be represented in the form 

where n is the electron density, a, is the Bohr radius, and 
I, = (&/eH) is the magnetic length, which determines 
the transverse size of the wave function of a bound impurity 
state. Collective electronic effects such as Wigner crystalli- 
zation or charge-density waves can appear in this same re- 
gion of magnetic fields3 Since the fact that the motion of 
electrons becomes one-dimensional in the UQL gives rise to 
a tendency toward different forms of localization, it is of 
interest to investigate the conductivity tensor in the entire 
region of the UQL, including also in the region close to the 
critical field H,, as well as to clarify the possible mechanisms 
of localization. 

The region where the components uxx and ax, become 
equal to one another for the second time or even intersect 
also lies in the same neighborhood of H,. In this region, as 
the theoretical estimates presented below show, the condi- 
tion w,~,,  1 continues to hold, while the Fermi energy E,, 

measured from the bottom Landau level, and the collisional 
broadening A/re  become comparable, indicating that there 
is an additional form of localization. 

In addition, the mechanisms of longitudinal and trans- 
verse diffusion in the UQL, as well as the field and tempera- 
ture dependence of all components of the conductivity ten- 
sor, are not completely understood in the entire range of 
temperatures and magnetic fields. In a direction transverse 
to H,  in the UQL the current carriers theoretically become 
localized on a scale I, on account of gyration around the 
magnetic lines of force. Under these conditions electron mo- 
tion along the magnetic field becomes quasi-one-dimen- 
sional, as a result of which Anderson localization, which 
arises in the single-electron problem of quantum interfer- 
ence for an electron moving in the field of the random poten- 
tial of chaotically distributed impurities, becomes possible. 
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Abrikosov and Ryzhkin4 and Murzin5 studied the problem 
of longitudinal and transverse diffusion under conditions 
when the lifetime r ,  of the state of Anderson localization, 
which decays on account of transverse motion, is finite. They 
obtained the following behavior: all cc H (Ref. 4) and 
o; cc H *I3 (Ref. 5) for the longitudinal and transverse com- 
ponents of the conductivity tensor, respectively. The latter 
result follows from the relation 

derived in Ref. 5. 
This entire analysis was performed, however, only for 

the region of classical screening (CS), i.e., in the region 
where A &r, holds (here A is the de Broglie wavelength for 
the longitudinal motion of electrons and r, is the screening 
radius). If H, is defined as the field in which a transition 
occurs into the region of quantum screening (QS), for which 
Asr ,  holds, then it is not difficult to show that in a real 
experimental situation H2 -H3 and the CS region is of insig- 
nificant size. In reality, in the region of the UQL, i.e., in 
fields H > H2 , A increases linearly with H, while 

i.e., r, decreases quite rapidly (herex, is the static permitti- 
vity). Since the field Hz,  taking into account spin splitting, is 
determined by the condition E, = gpoH2, while the field H, 
is determined by the condition r, -A = (2r2nl  ;3 ) - I, for 
the magnetic lengths corresponding to these conditions we 
obtain 

where m* is the effective mass in units of m, andgis the spin- 
splitting factor. The ratio H,/H2 is then found to be equal to 
(m*g) 'I3- (na;r5/4) '/I2.  

At the same time it is not difficult to show 
H, /Hz - (na i  ) 'I3, and therefore the observed region of the 
UQL grows with n significantly more rapidly than does the 
CS region, and for sufficiently large n the QS region should 
be much larger than the CS region. In practice, however, the 
chosen electron density n is limited by the experimental pos- 
sibilities of reaching the region of the UQL. Thus for the four 
samples we investigated the ratio H3 /H2 should range from 
1.15 to 1.4, while Hc/H2 ranges from 1.7 to 3. For sample 
No. 5, which has the highest charge-carrier density 
n = 5.6. 1016 cm -' among the samples which have been stu- 
died, the ratio H,/H, is equal to 1.54 and Hc/Hz -4. 

Hence it follows that the previously proposed theoreti- 
cal model must be extended to the case of quantum screening 
(A > r, ), which, in contrast to the classical case, is signifi- 
cantly anisotropic. We study this case below. In determining 
the scattering cross sections it is found that here only the 
long-wavelength harmonics of the Fourier transform of the 
screened Coulomb potential are important; for these har- 
monics the transverse screening radius is equal to the Debye 
radius rD and the longitudinal screening radius is much 
greater than rD and increases in proportion to A. It is found 
that to within a logarithmic factor the Anderson localization 
radius, determined by the mean free path for backscattering, 
is equal to nao/N (here N is the concentration of impuri- 
ties), i.e., it does not depend on H. Although the lifetime of a 
localized state r, = fin/N~, (here E, is the energy of a bound 
state on an impurity center) is found to be identical to that in 
the region A & r,, the field dependences of uII and ul are sub- 
stantially different: cc H and cc H ', respectively. The beha- 
vior predicted for the QS region then agrees with the measur- 
ements. 

2. RESULTS OF MEASUREMENTS 

Since, as is evident from the Introduction, the problem 
of electron localization in the UQL requires a detailed and 
careful analysis, we made a comprehensive experimental in- 
vestigation of the conductivity tensor uaD in strong quantiz- 
ing magnetic fields for indium antimonide crystals with elec- 
tron-type conductivity. This semiconductor compound was 
chosen for investigation because it has an isotropic energy 
spectrum which has been studied in detail, and this spectrum 
can be used as a model spectrum. In order to supplement the 
published data6-9 in the best possible manner we investigat- 
ed four samples, whose lowest and highest carrier densities 
differ by a factor of 10. Samples with dimensions of 
2.5 X 2.5 X 18 mm' were cut on an electroerosion machine 
tool from a single-crystalline ingot and then treated with the 
standard SR-4 etchant. Data on the samples are presented in 
Table I. The high mobility of these samples indicates that 
their compensation is low, and a comparison of the measure- 
ments of the Hall coefficient R on different pairs of contact 
probes together with the sharp quantum oscillations indi- 
cates that the samples are highly uniform. Aside from the 
Hall coefficient, the resistivities in transverse (p,, ) and lon- 
gitudinal (p,) magnetic fields were also measured (H is 
assumed to be oriented parallel to the z axis). From the mea- 
surements of the resistivity p we calculated and constructed 
the field dependence of all three independent components of 
the conductivity tensor aaB (H)  simultaneously for each 

TABLE I. 

*The data for sample No. 5 were obtained by analyzing the results of Ref. 23. 
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FIG. 2. The conductivities uaD and the Hall coefficient R as a function of 
the magnetic field H for sample No. 2 n-InSb (n  = 3.3. l o r 5  ~ m - ~ ) .  
Curve I-R(H); 2-u,,(H); 3-a,,(H) with j(lx and Hllz; 4-a,(H) 
with j(lz and Hllz. The dashed straight line a =  ( H )  a H ' was found by 
linearly extrapolating the longitudinal conductivity to zero temperature. 

FIG. 1 .  The conductivities aaD and the Hall coefficient R as a function of 
the magnetic field H for sample No. 1 n-InSb (n  = 1.5. IOl5 cm-') .  
Curve I-R ( H ) ;  2-a,, (HI; 3-0- ( H )  with jllx and Hllz; 4-u, ( H )  
with jllz and Hllz. 

sample. These data are presented in Figs. 1-4. 
The field H, in which a transition occurs to the region 

of classically strong fields was found to be approximately the 
same ( -  1 kOe) for all samples. In the subultraquantum 
region H < H, characteristic Shubnikov oscillations are ob- 
served in the field dependence of the longitudinal and trans- 
verse components of the conductivity. These oscillations 
agree well with the standard theory taking spin splitting into 
account. In fields corresponding to the passage of the upper 
of the two spin-split sublevels of the bottom (zero) Landau 
level through the Fermi level a dip is observed in the plot of 
the Hall component of the conductivity. This dip corre- 
sponds to a peak in the field dependence of the Hall compon- 
ent. In fields H >  H2 decreasing behavior a,, (H) a H - a  
and increasing behavior a,, (H) a HP, where a varies from 
3 to 2.3 andP from 1 to 2, depending on the carrier density n, 
are observed on the initial section of the UQL. 

Figures 3b and 4b as well as Fig. 5 show the temperature 
dependence a,, ( T) which we measured in the region of li- 
quid-helium temperatures 1.6 < T < 4.2 K for different mag- 
netic fields. In Fig. 5 a,, ( T )  for sample No. 2 is compared 
with the function u,, (T) which we constructed from the 
data of Ref. 8, where such measurements were performed at 
lower temperatures. For all samples studied in the region of 
fields H, < H < H, the a, ( T) dependence is linear right up 
to T = 0.4 K. Below this temperature, according to the data 
of Ref. 9, a nearly square-root dependence a,, (T)  is ob- 
served: a,, ( T )  = a,, (0)  + AT 

The temperature dependence a,, ( T) and a,,, ( T) at li- 
quid-helium temperatures was found to be weaker and is 
manifested only close to H,. The strong difference in the 
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FIG. 3. a )  The conductivities u , ~  and the Hall coefficient R as a function 
of the magnetic field H for sample No. 3 n-InSb ( n  = 7 .  lOI5 cm- j ) .  

Curve 1-o,, (H); 2-oxy(H); 3-R(H) with jllx and Hllz; 4--0, (H)  
with jllzand Hllz. The dashed straight line ozz (H)  a H was found by 
linearly extrapolating the longitudinal dependence to zero temperature. 
b) The temperature dependence of the conductivity uz (7') for different 
magnetic fields: 1 ) 35, 2)  40, 3 )  45 kOe. 

character of the temperature dependence of the transverse 
a,, ( T )  and Hall a,, ( T )  conductivities on the one hand and 
the longitudinal conductivity a,, ( T )  on the other confirms 
the existence in the region of fields H ,  < H < H, of quasi- 1 D 
localization phenomenon of the Anderson localization type, 
gradually vanishing as the temperature increases. It is also 
interesting that the relation ( 1 ) is not satisfied for a, and oli 
at liquid-helium temperatures. 

A distinct break is observed in a, ( H )  for the quite 
strongly doped samples Nos. 3,4, and 5 in the neighborhood 
of the theoretically computed field H3 , corresponding to the 
transition from classical to quantum screening. The fields 
H, , determined for these samples from the break point in the 
experimental field dependence a, ( H )  and computed theore- 
tically, are presented in Table I. For samples Nos. 1 and 2, 
however, the computed values of the fields Hz and H3 are 
found to be so close to one another that the regions of classi- 
cal and quantum screening are not distinctly separated in the 
experimental curves. The computed fields H, and H, pre- 
sented in Table I agree quite well with the experimental data 
for all strongly doped samples. Since the transition to the 
UQL is not sharp, the field H, was determined as the average 
of the fields corresponding to the maximum of the last oscil- 
lation and the minimum value of the transverse conductivity 
in the region of the UQL. In the region of classical screening 
(Hz  < H <  H, ) the conductivity depends on H significantly 
more strongly than linearly, and as the carrier density n in- 

FIG. 4. a )  The conductivities a,@ and the Hall coefficient R as functions 
of the magnetic field H for sample No. 4 n-InSb (n = 1.5. 1016 cm-'). 
Curve 1-ox, ( h ) ;  2-uxy (H);  3-R(H) with jllx and H(lz; 4--a, (H)  
with jllz and Hllz. The dashed straight line uzz (H)  a H - 2.3 was found by 
linearly extrapolating the longitudinal conductivity to zero temperature. 
b) The temperature dependence of the conductivity uzz ( T )  for different 
magnetic fields: 1 ) 40, 2) 50, and 3) 60 kOe. 

FIG. 5. The temperature dependence uzz (7') for n-InSb with jIlz and Hllz. 
The solid lines are our data for sample No. 2 with n = 3 . 3  lo1* cm ' and 
the dashed lines are the data of Ref. 8 for n-InSb with n = 2.2. lot5 cm -'. 
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creases it approaches the predicted dependence a a H 8/3. 

The region of quantum screening requires, however, a spe- 
cial theoretical analysis, to which the next section is devoted. 

3. ELECTRON DIFFUSION ALONG AND ACROSS A 
MAGNETIC FIELD IN THE ULTRAQUANTUM LIMIT 

In the first theoretical treatments electron diffusion 
across a magnetic field H was studied as a sequence of dis- 
crete scattering-induced changes in the position of the center 
of an orbit. The possibility of Anderson localization and 
hopping along H as well as the correlation of such hops with 
transverse diffusion were completely deglected. It was also 
assumed that longitudinal diffusion can be described by the 
standard kinetic equation. Under these assumptions the lon- 
gitudinal diffusion coefficient Dll is determined by the backs- 
tattering mean free path l,,, i.e., D a l , , ~ , ,  where 
v, = d ~ / d ( + i p ~  ) is the velocity of an electron with energy E 

and momentum @, in the direction Hllz. For transverse dif- 
fusion Titeica's semiqualitative formula was later proved 
with the help of the theory of transport in quantum sys- 
tem~. '~" '  In the case of scattering of electrons by impurities 
the result can be represented in the following form: 

dqx dq ,  
Xexp (-q2ZH2/2) ------ , 

uc 

where qZ = qf + q;; VqX,,,, and V,,,,, - ,,= are the matrix 
elements of forward and backward scattering by the random 
potential generated by chaotically distributed impurities. As 
follows from Eq. (2b), on the average an electron diffuses 
across the magnetic field H over a distance I ,  within a time 
TI . 

In the case when the range of the potential of a separate 
impurity is much shorter than I,, the potential can be as- 
sumed to be short-ranged and can be replaced by a delta 
function. In this case the matrix elements of V(q) do not 
depend on q and the exponentials in Eq. (3)  cut off the inte- 
grands for q 2 1; '. As a result, here we have r,, =: r , .  For 
the long-range Coulomb potential of an impurity the screen- 
ing radius r, in the UQL is greater than I,, and the exponen- 
tials in Eq. (3)  can be neglected, since the matrix elements 
cut off both integrals for q 2 r,- '. Introducing the parameter 
y = rbO/rl we obtain 

It should be noted that r, cc H - ', i.e., it decreases as H in- 
creases much more rapidly than does 1, a H - However 
it is not difficult to show that in the UQL the relation r, > 1, 
should be satisfied right up to the critical field H, at which 
electrons freeze out on separate impurity centers, corre- 
sponding to the condition na,l - 1. 

Thus for a long-range impurity potential an electron 
can be reflected many times parallel to the magnetic field 

before being displaced laterally by a distance I,, and in addi- 
tion in this case y characterizes the degree to which the mo- 
tion of the electron in the magnetic field is one-dimensional. 

a) Anderson localization 

Abrikosov and Ryzhkin4 found, using the diagramatic 
technique for Green's functions, that for a short-range po- 
tential (i.e., for y=: l )  the longitudinal diffusion coefficient, 
as expected, differs fiom Eq. (2a) only by a numerical fac- 
tor. For a long-range impurity potential, however, when 
y < 1 holds, the motion of the electron can be considered to 
be virtually one-dimensional on the time scale t < 7, , and 
Anderson localization should arise on account of quantum 
interference accompanying scattering by the total potential 
of the impurities," and in addition the radius of such locali- 
zation is of the order of I,, . In this case, starting from the 
hypothesis of scale invariance Abrikosov and Ryzhkin pro- 
posed that if for y z  1 the diffusion coefficient Dl, is deter- 
mined by the expression (2a), then for y < 1, on account of 
partial Anderson localization, Dil should differ from it by 
the factor y, i.e., 

Abrikosov and Ryzhkin, however, failed to note that 
over short time intervals the transverse displacement of such 
a quasilocalized state (QLS) is not diffusive, but rather of a 
drift nature.I3 For this reason the agreement between their 
result and those obtained more rigorously later must be acci- 
dental. This relation can be proved with the help of the 
expression for the diffusion coefficient of a one-dimensional 
disordered system, in which for nonzero T and w the QLS 
have a finite lifetime 7, (Ref. 14): 

[in the derivation of Eq. (5)  the inequalities wr,, < 1 and 
rbO gru were taken into account]. This result agrees for 
small values of w with the result of Abrikosov and Ryshkin, 
if in Eq. (5 )  the time T, for transverse displacement by 1, is 
substituted for the lifetime of the quasi-1D state 7,. This 
substitution requires, however, additional justification. Up 
to now no such justification has been published, but Polya- 
kovI3 studied a similar problem by using the classical 
method of the drift approximation, which is valid for I, g r ,  
(it is precisely under this condition that in the UQL we have 
y g 1 ). In Ref. 13 it is shown that the transverse displace- 
ment p of an electron in this case occurs not as a result of 
diffusion, for which p ( t )  a t 'IZ holds, but rather as a result 
of electric drift in the random total field E ( r )  of the impuri- 
ties, i.e., much more rapidly, p cc t, with the velocity 

over times t shorter than some time to ( c  is the velocity of 
light). 

The mean-square transverse displacement in this case is 
equal to 

(here the velocity correlation function is averaged twice: 
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once over the random potential of the impurities and then 
over the "spread" of the electron over the localization length 
I,, with the probability density P- 1/1,, ) . It is easy to cal- 
culate the correlation function of the random field, generat- 
ed by randomly distributed screened Coulomb impurities 
with concentration N: 

(x, is the static permittivity). 
After substituting into Eq. (7 )  the expressions (6)  and 

(8)  it is not difficult to derive an equation forp ( t )  similar to 
that derived in Ref. 5: 

Equation (9)  can be easily solved, neglecting, in a first 
approximation, the logarithmic factor. The result, to within 
this factor, can also be obtained by a different method from 
qualitative physical considerations. Consider a cylindrical 
region of length I,, and transverse radius r,. The average 
number of particles in this region is - Nr?I,,, and the fluc- 
tuation from this value is equal to the square-root of this 
number. The concentration of excess impurities is 
(Nel,, ) '/2/1b0(. Noting that only the impurities contained 
in the volume r: contribute to the fluctuation of the electric 
field and each such impurity creates the excess field e/x,e, 
we obtain for the rms fluctuation of the electric field 

This field, according to Eq. ( 6 ) ,  gives rise to drift of a 
localized wave packet with the velocity 

- 
As a result the mean displacement of the packet p ( t )  ~ u , t  
agrees, to within a logarithm, with Eq. (9).  As Murzin 
~ h o w e d , ~  in order to obtain the result of Abrikosov and 
Ryshkin4 forpFrs >) 1 it must be assumed that the Anderson- 
localized state decays for lateral displacement by an amount 
equal to the wavelength of Fermi electrons il = p, I, which 
in the UQL exceeds I,. Indeed, it then follows from Eq. (9)  
that the lifetime of a localized state is equal to 

and, to within a logarithmic factor, it is equal to r, [here we 
have used the facts that p, ~ 1 & n  and that Eq. ( 3 )  implies 
1, , z aip:/N and also that a, and E, = e2/x0 a, are, respec- 
tively, the Bohr radius and energy of the Bohr state of an 
electron on an impurity center]. 

b)De\ocalization induced by transverse drift of the wave 
packet 

Since the electron motion along H is not strictly one- 
dimensional, localization is possible only in the case when 

the displacement of an electron transverse to the field over 
the traveling time between backward reflections is signifi- 
cantly smaller than the transverse size I, of the wave func- 
tion. In the case at hand, y < 1, this condition is satisfied, and 
we can say that on some time scale and corresponding length 
scale p, QLS drifts occur in the direction transverse to H, 
wherep, is determined by the condition of decay of the QLS. 

The condition p ,  -A, adopted by Murzin5 without 
proof, can be justified as follows. Electron scattering by a 
Coulomb center in a quantizing magnetic field depends sig- 
nificantly on the impact parameterp, . Forp % I, an electron 
passing a Coulomb center drifts around the center with velo- 
city u, and virtually no change in p = (9 - z ~ ) " ~ ,  i.e., p 
remains equal top,. For this reason, the three-dimensional 
scattering problem reduces here to a one-dimensional scat- 
tering problem with the effective potential 
V(r) = V( (P2 + z2)  with p = const.I5 For the Cou- 

lomb potential the width Az of such a one-dimensional well 
forp < r, is also equal top. As a qualitative model of this well 
we can use the potential V,cosh 2(z/x) with width x = p  
and V, = e/x,p, for which the scattering problem can be 
solved exactly. According to Eq. ( 16), the corresponding 
reflection coefficient is equal to 

The conditions Nai  % 1 and r, <a, imply that in semi- 
metallic semiconductors this well is shallow, since in our 
case we have x-p and as a result of screening only p < r, is 
important. Therefore we have 

In this case Z = 2np/a0 holds, and the reflection coefficient 
satisfiesR(p) a ( ~ , a , ) - ~ < l  forp<il  =p;'anddoesnot 
depend on p, while for p >A it decreases exponentially a sp  
increases. For this reason the displacement of the QLS by an 
amount il transverse to H should lead to a change in the 
reflection coefficient and, as a consequence, to a change in 
the conditions of interference and to delocalization. A new 
QLS arises at a different location, displaced from the pre- 
vious location by a distance of the order of I,, , so that the 
process of delocalization and formation of a new QLS can be 
thought of as hopping of the state over the distance I,, . 

It should be noted that the resulting lifetime r, does not 
depend on H, and the delocalization parameter 
y = T, ,, /rl - T, , /T,, - ( p ,  1, ) cr H - ' decreases rapidly as 
H increases. This leads to the following strong power-law 
field dependence: 

The Einstein relation 

where P ( ~ )  - ( I $  V , )  = m(nl$)  is the density of 
states at the Fermi level E ~ ,  was employed in the second 
expression in Eqs. ( 14). 

Since at T = 0 K delocalization occurs with transverse 
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displacements by an amount A and since in the case of classi- 
cal screening studied here R < r, holds, before transverse dif- 
fusion is established the QLS can return repeatedly to the 
same region in space because diffusion is significantly more 
rapid along H than across H. As a result of longitudinal 
diffusion the QLS is "spread out" now not over the quantum 
localization length I,, but rather in a purely classical man- 
ner over the diffusion length ( D l  t )  '/'. In this case, as Polya- 
kov showed," the transverse displacement satisfies 
p ( t )  a t 3/4, and the transverse conductivity, as follows from 
Refs. 5 and 9, must be related with the longitudinal conduc- 
tivity by the relation ( 1 ) . Hence it follows, taking into ac- 
count Eq. ( 14), that a, a H 'I3. At temperatures T> 0 K the 
conditions under which the relation ( 1) is valid should be 
satisfied even better. 

c)The case of quantum screening 

In the general case for the UQL the dielectric response 
function, taking into account the spatial dispersion in the 
random-phase appr~ximation,",'~ has the following form: 

where 
p,  e x p  ( - q , l ~ ~ / 2 )  

tia2(q) = 
rs2 I q z  I 

If the low-frequency harmonics of this potential are studied 
by smoothing it over distances &>A and hp> I,, then in 
this case only q, < I, ' and q, <p, are important. Expand- 
ing the logarithm and the exponential in Eq. ( 16) in powers 
of the small parameters q,/p,, and (q, I, ), we obtain the 
following expression for the Fourier transform of the 
screened Coulomb potential of an impurity center: 

Hence it follows that in the classical region (p,r, > 1) the 
potential is screened isotropically with radius r,, while in the 
quantum case only the transverse screening radius is equal to 
r, and the longitudinal screening radius is equal to R /2.3'/', 
i.e., it is significantly greater than r,. This result agrees with 
the results of Refs. 19 and 20 and is explained by saying that 
the free electrons can screen the potential relief along H only 
on a scale greater than the de Broglie wavelength A, which 
determines the quantum uncertainty of the position of an 
electron. 

In Ref. 17 Shklovskii and ~ f r o s  showed that at z = 0 the 
contribution of large q, - (P,,r, ) '12 E r ' to the Fourier in- 
tegral, which determines the resulting screened potential, 
gives exponential decay only at distances r > r, , and in addi- 
tion the radius satisfies r, ) r, and does not depend on H. It 
can be shown, however, that this contribution oscillates as a 
function of z with period r, . It vanishes (it is cancelled) for 
the potential of a charged string; this potential is screened in 
the transverse direction once again at r, and not r,. The 
oscillating parts also do not contribute to electron scatter- 
ing, since the oscillating parts are not in resonance with the 
Fermi electrons, for which in our case A >  r, holds. As a 
result the electron forward and backward scattering ampli- 
tudes remain the standard Born amplitudes, i.e., they are 
equal to, respectively, 

In the second expression the spread of the logarithmic Kohn 
singularity at q, = 2pF on account of the broadening of the 
electronic states by the amount fir, ' = f i r5  ' + fir;' (Ref. 
21), where rf0 and rb0 are the relaxation times for forward 
and backward scattering, is taken into account. Taking this 
spread into account results in an integral equation for re .  
This equation can be solved, neglecting, as always, to lowest 
order, the logarithmic term. Then from Eq. (3a) for 
p,,<r, ' we obtain 

Thus in the QS region the forward-scattering time is 
equal to the backward-scattering time, to within a logarith- 
mic factor, while the mean free path for backward scattering 
or the Anderson-localization radius for weakly compensat- 
ed semiconductors are equal, in the same approximation, to 
the Bohr radius. The same result can be obtained by express- 
ing I,, in terms of the backscattering cross section, defined 
as the integral 

cm 

S*=n S R ( P ) P  dp .  (20) 
0 

where the reflectance R (p) can be calculated using Eq. ( 13). 
As shown above, R(p)  =: (p,a, ) - holds in the reg ionp~r , ,  
while for p > r, both the impurity potential and R (p)  are 
exponentially small. Hence S, -- rf/(p,,a, ) ,-- l/nao and 
I,, = (NS, ) '. Thus the cross section for electron scatter- 
ing by a screened Coulomb center in the QS region is limited 
by the transverse screening radius and is independent of the 
longitudinal screening radius. 

d )  Fluctuations in the region of quantum screening 

It follows from Eq. ( 19) that under conditions of quan- 
tum screening rbO a H, in contrast to the classical region, 
where rbO a H holds. However before analyzing the con- 
sequences of this radical change in the field dependence 
T,, (H),  we study the question of the large-scale fluctuations 
of the potential relief of the bottom of the band under condi- 
tions of quantum screening. This question is of interest in 
itself. 

The probability that a definite number of impurities are 
contained in a prescribed volume is determined by the Pois- 
son distribution function, which near its maximum is close 
to a Gaussian distribution. According to Ref. 22 the logar- 
ithm of the probability for the appearance of an excess in the 
number of impurities Z in the volume So is equal to 

Since quantum screening is anisotopic, we separate an arbi- 
trary cylindrical region with radius r, and length L and vo- 
lume So =:<L, and find the potential generated by the excess 
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impurities in this volume. If L < r, holds, then the excess 
potential U is equal to 

If, however, we have L > r, ,  then 

Substituting Eqs. (23 and ( 2 2 )  into Eq. ( 2  1 ) , we find that 
the function In W ( L )  for L < r, and constant U is negative 
and increases as L increases, while for L > r, it decreases. 
This means that W ( L )  has a maximum at L z r ,  and there- 
fore the most probable fluctuations are isotropic, i.e., they 
have a three-dimensional scale -r ,;  this corresponds to a 
fluctuation depth U-e2(Nrs ) L / 2 / ~ ,  . In addition to the most 
likely spherical fluctuations, cylindrical fluctuations of 
length L are also present. Among these fluctuations the fluc- 
tuations with L -AF have the longest wavelength, since all 
fluctuations with longer wavelengths are effectively 
screened. The depth of such fluctuations, equal to 
e 2 ( N / L )  1 ' 2 r s / ~ 0 ,  decreases as L increases. 

e) Electron scattering by large-scale fluctuations 

The reflection coefficient R, and the reflection cross 
section S, of cylindrical fluctuations can be estimated by 
constructing, as done above, the model potential 
V, cosh - ' ( z / L  ), where V, = e2 ( N  /L  ) 1/2rs / x ,  . AS long as 
this potential can be considered to be shallow, it follows from 
Eqs. ( 1 3 )  and ( 2 0 )  that 

If the fact that the density of such fluctuations 
-r,- ' L  - ' is taken into account, then the mean free path for 
scattering by them does not depend on L and is equal to Eq. 
( 19),  to within a logarithmic factor. The fact that the results 
of scattering by Coulomb centers are the same as the results 
of scattering by a smoothed fluctuation potential is ex- 
plained by the significance of the contribution to scattering 
made by regions far from the center of the long-range Cou- 
lomb potential of the impurity. 

The following relations follow from Eqs. ( 1 9 )  and 
( 2 4 ) :  

whence it follows that in the region of quantum screening the 
product o,r, should increase while the parameter &,re de- 
creases, in the process, inversely as the magnetic field and 
can ultimately approach unity when n2a,I i / N -  1 .  Accord- 
ing to Ref. 17, this condition is identical to the condition of 
localization in large-scale fluctuations with L = A F .  This 
agreement is to a certain extent accidental, since near the 
critical field for localization the scattering potential can no 
longer be regarded as shallow and the expansion in powers of 
the small parameter in Eq. ( 13 ) cannot be employed. It fol- 
lows from Eqs. ( 13 ), however, that when E, becomes com- 
parable to the depth of fluctuations of the localization length 
L -AF, the reflectance becomes close to unity. Then the elec- 
tron mean-free path becomes equal to A,, i.e., the Ioffe-Re- 
gel' localization condition I,, -AF is satisfied. 

For samples of a weakly compensated semiconductor 
the critical field Hcl for such localization and the field H,, of 
magnetic freeze-out on separate impurities are close parame- 
trically, i.e., to within a numerical factor. For this reason, 
even for N = n the fields He, and Hc2 may be different. In 
this case, when He, < H < Hc2 holds the electrons are loca- 
lized in valleys between "humps" extending above the Fermi 
level. In addition, the localization radius L increases as H 
increases together with the wavelength A, ccH, starting 
from L - A ,  - n a , / N  at H = H,., and up to L -AF -a, at 
H = H,., . On the humps themselves, however, the electrons 
are localized on separate impurities, as a result of which in- 
sulating islands arise in the bulk of a semimetallic sample. 
The number of free electrons in the semimetallic part de- 
creases correspondingly as the volume of this part decreases, 
but their density in these parts remains constant. In the pro- 
cess, the conductivity should remain finite at T = 0 K until 
all insulating parts overlap. The problem of calculating the 
conductivity reduces here to the percolation problem of dif- 
fusion of electrons trapped between insulating regions. This 
problem requires a separate analysis, which falls outside the 
scope of this paper. 

f) Lifetime of a localized state and diffusion coefficients 

Thus the transition to quantum screening is accompan- 
ied by a sharp change in the dependence r,, ( H )  : rapid de- 
cay as H - 9 s  replaced by growth as H. In addition, the 
mean free path no longer varies (for a weakly compensated 
semiconductor, I , ,  -a, ). Since in the QS region we have 
rs <A, the condition of delocalization becomes displacement 
of the packet by a distance r, transverse to H .  Using this 
condition, together with Eq. ( 11 ), it is easy to obtain as a 
result that T,, is equal to ( 12) in this case also and therefore it 
does not depend on H. Then for the diffusion coefficient and 
the conductivity along the magnetic field H we have 

lao2 nao2 
DIl N-=-  co con st, oII =HZ. ( 2 5 )  

T, NA 

In the absence of inelastic processes which would decrease T,, 

for T> 0 K, the relation ( 15) should not be satisfied. Here 

Although, as indicated above, the relation ( 1 ) is not satisfied 
here, the product a,al m H 2 / 3  has same field dependence 
as in the case of classical screening. 

Thus in the region of quantum screening the a,,, ( H )  
dependence should differ strongly from the analogous de- 
pendence in the case of classical screening. In the experimen- 
tal situation at hand, however, such a sharp transition 
should be significantly smeared primarily because the back- 
scattering matrix element contains not r, and not A, but 
rather a parameter of the form 

E-" ((2pZa) 2 +  [ln ( 8 f i - l ~ ~ ~ ~ )  ] /2rS2,  ( 2 7 )  

which, for this reason, should actually play the role of a 
critical transverse length; a displacement by this distance 
leads to delocalization. If it is assumed that in the transi- 
tional region we have <=const, then we obtain from Eq. 
( 2 0 )  
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In the process r ,  does not change, and for the diffusion coef- 
ficient and the components of the conductivity tensor we 
have, taking into account Eq. ( 1 ), 

Since the field dependence for the transverse conducti- 
vity a,, is increasing or, at least, not decreasing, as follows 
from Eqs. (26) and (29), there arises the possibility of a 
second intersection of the components ox, and ox,, of the 
conductivity tensor. Although the first intersection indicat- 
ed that the condition wcr, - 1 is satisfied, here, as was shown 
above, the strong-field condition should be satisfied well, in 
spite of the possible convergence and intersection of the de- 
pendences ax, (H)  and a,, (HI. If Eq. (26) and the Einstein 
relation ( 15) are employed, then a,, /axx - n2ao 1  L/N. 
Thus the second intersection of the components ax, and a,, 
also occurs in the region of fields H,, of large-scale localiza- 
tion. 

4. DISCUSSION 

In order to compare experiment with the theoretical 
field dependences aaD (H) for the case of Fermi degeneracy 
it is necessary to have an estimate of the values of the com- 
ponents of the conductivity tensor at T = 0 K. Such an esti- 
mate can be obtained by extrapolating the u, (TI depen- 
dence to zero temperature. Since the transverse component 
of the conductivity a, at temperatures 1.4 < T <  4.2 K in the 
subcritical region of magnetic fields H < Hc is virtually inde- 
pendent of T, the value of a, at T = 1.4 K can be taken as the 
value of ai extrapolated to T = 0 K. In contrast to the trans- 
verse component of the conductivity, all (T)  does not satur- 
ate right down to the lowest temperatures. The dashed lines 
in Figs. 2-4 show a,, (H) obtained by linear extrapolation. 

The field dependence azz ( H )  at T = 0 K obtained in 
this manner for all samples disagrees completely with the 
dependence predicted by the proposed theoretical model 
both for the CS region, where the dependence H - was pre- 
dicted, and for the quantum region, where the conductivity 
should increase as H 2. Of course, the entire region of the 
UQL can be essentially regarded as transitional, since 
neither the condition A <r,  nor the condition A % r, is satis- 
fied sufficiently well. The case of a transitional region was 
studied above. It follows from Eq. (29) that here the depen- 
dences a, a H 4/3 and a,, a H - 2, which are quite close to the 
experimental dependences for sample No. 4, which has the 
highest carrier density among all samples studied, can be 
observed. However if the field dependence of the compon- 
ents of the conductivity tensor is traced as a function of the 
electron density n, then a boundary between the regions of 
classical and quantum screening can indeed be seen well in 
a,, (H)  (starting with quite large values of n).  Conversely, 
such a boundary is not seen in a,, (H) and, moreover, there 
is no tendency for a,, to increase. For this reason, it cannot 
be stated unequivocally that the observed field dependence is 
explained only by the transitional character of the region 
under study. 

It should also be kept in mind that starting at Tz0 .4  K 
as T approaches zero the character of a,, ( T) and a, ( T) 

changes sharply to a square-root dependence (Refs. 8 and 9)  
or even a logarithmic dependence (Ref. 23). In Ref. 23 the 
appearance of such a logarithmic singularity was explained 
by invoking quantum corrections to interelectronic scatter- 
ing.24 These corrections, however, should vanish in a strong 
magnetic field, so that the singularities in a, (T) and all ( T) 
at low temperatures more likely indicate the existence of a 
gap A ~ ~ 0 . 0 0 5 - 0 . 0 1  K near the Fermi surface. The existence 
of such a gap can be explained by collective electron effects 
in the form of charge-density waves.3s25 Indeed, the forgoing 
analysis was performed using the Thomas-Fermi model, on 
the basis of which the many-electron problem reduces to a 
single-electron problem, and the role of the other electron 
reduces merely to screening. Quasi-one-dimensionality was 
assured here by the smallness of the parameter y, i.e., by the 
condition that scattering along the z axis in the time interval 
of displacement transverse to z by an amount I ,  is of a multi- 
ple-scattering nature. 

The overlapping of the local states which arise here, 
however, will be quite strong, since the localization radius 
satisfies I,, - Na,/n) ro = ( 3 / 4 ~ n )  where r, is the 
average distance between the conduction electrons. Under 
these conditions, as shown in Ref. 25, the electronic system 
at zero temperature consists of a series of electron chains 
which are oriented parallel to H and which break down at 
T >  0. As T decreases and H increases the length of such 
chains as well as the number of electrons in them should 
increase. The Hall drift of the chains in the transverse direc- 
tion is in no way limited as long as I ,  > r, holds, i.e., order- 
ing of chains transverse to H does not yet arise. The longitu- 
dinal conductivity, however, should decrease owing to the 
increase in the number of electrons localized in a chain. In 
the process, the transverse conductivity also decreases be- 
cause the length of the chains increases and, therefore, the 
mean random field giving rise to transverse diffusion should 
decrease in the process. 

The region near the critical localization field requires a 
special investigation. We determined the magnitudes of the 
critical fields Hcl , presented in Table I, based on the point at 
which the dependence a,, (H) a H - first breaks down and 
a,, starts to depend on the temperature. They can all be fit 
by Hc ( n )  a no *'. It should be noted that the temperature 
dependence a,,, (TI becomes appreciable only for H > H,, , 
and in addition extrapolation of a,, (T)  to T =  0 gives 
a,, (0) = 0 only starting with the field Hc2. This is because 
in the large-scale fluctuations electron localization should 
start, as indicated above, in fields Hc, less than the field H,, 
of electron freeze-out on separate impurity centers. Indeed 
the dependence ln(n) a H - which is characteristic for 
magnetic freeze-out, is observed only in fields above H,,. 

The fields H,, could be observed only for the two sam- 
ples with the lowest carrier densities, for which, as one can 
see from the table, the values of H,, are approximately two 
times higher than H,, . If it is assumed that H,, ( a )  and 
Hc, (n)  are the same, then it can be asserted that they are 
close to the theoretical estimate noS6, made in Ref. 26 for 
magnetic freeze-out on isolated impurities. This estimate 
follows from the condition na(H, )IZHc - I ,  where the de- 
pendencea(H1 a H is taken into account. The field de- 
pendence of the longitudinal and transverse mobilities is also 
interesting. If we assume that the Hall component of the 
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conductivity in fields H >  Hc, still reflects the current car- 
rier density n (H) ,  then, dividing the remaining components 
of the conductivity by n(H) ,  we can obtain the H depen- 
dence of the longitudinal and transverse mobilities in this 
region. The transverse mobility remains increasing right up 
to H,, and the derivative of the longitudinal mobility 
changes sign and starts to increase with H also up to Hc, , 
after which these dependences interchange with one an- 
other. 

Wigner crystallization can also be studied as a possible 
reason for localization. From the condition of uncoupling of 
the chains, which leads to Wigner ~rystallization,~ 

it follows that in this case we have Hc (n )  cc n2I3, and from 
the condition of transition to the UQL 

it is found that H,/H, ~ 4 .  This relation is numerically ap- 
proximately the same as the relation obtained experimental- 
ly, but the carrier-density dependence differs somewhat 
from the experimental dependence. This difference can be 
explained by the broadening (which is neglected here) of the 
electronic states at the Fermi level. It can thus be asserted 
that near Hc interelectronic interaction should play a defin- 
ite role. This fact also confirms the proposition stated above 
that the difficulties, which we have discussed, of achieving 
agreement between the single-electron theory and the exper- 
imental data can be explained by noting that collective ef- 
fects, which were studied qualitatively above, must be taken 
into account. 
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