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It is shown that the experimentally observed anomalies of the kinetic, thermodynamic, and 
optical properties of cuprate metal-oxide compounds in the normal metallic state can be 
explained on the basis of a model of a two-band layered metal with degenerate "light" carriers in a 
wide band and nondegenerate "heavy" carriers in a narrow band, if quasiparticle relaxation 
occurs primarily via interaction with acoustic plasmons, whose spectrum in the tight-binding 
approximation is a periodic function of the quasimomentum and lies in the transmission range 
(outside the region of strong Landau damping) in the entire volume of the Brillouin zone. 

1. INTRODUCTION 

It is well known that high-Tc superconductors, disco- 
vered by Bednorz and Miiller,' based on cuprate metal-ox- 
ide compounds (MOC) with a layered crystal 
in the normal metallic state at temperatures T above the 
critical superconducting transition temperature 
T, z 30-125 K exhibit a whole collection of anomalous kine- 
tic, thermodynamic, optical, magnetic, and other properties. 
In particular, the following are typical a )  nearly linear tem- 
perature dependence of the resistivity p ( T) and inverse Hall 
constant R , ' (T)  over a wide range of values of ~ : , ' O , "  b) 
supralinear increase of the electronic heat capacity C( T) at 
high temperatures T;12 C )  violation of Korringa's law 
rS- ' ( T) cc T for the inverse relaxation time of the nuclear 
spin;13 d )  deviation of the high-frequency dependence a (w)  
from Drude's damping law in the infrared-reflection spec- 
trum and the Raman scattering e) symmetric 
relative to the sign of the applied voltage V, linear depen- 
dence of the conductance g,(  V) of tunneling contacts;I6 
etc. 

The analysis of experimental data performed in Ref. 17 
showed that some features of the normal state of cuprate 
MOC can be explained on the basis of the assumption that 
current-carrier scattering or spin relaxation occurs via inter- 
action with collective excitations of the charge or spin den- 
sity, if the damping of these excitations is described by an 
imaginary part of the polarizability (electric susceptibility) 
of the following form ( f i  = k, = 1 ) : 

where N(0) is the unrenormalized single-particle density of 
states at the Fermi level. 

This construction of the dissipative part of the response 
of a Fermi system, on the one hand, implicitly presupposes 
the absence of complete degeneracy of the current carriers 
and spin (conduction electrons, holes) at T # O  and, on the 
other hand, it leads to a logarithmic divergence of the renor- 
malization factor Z(w ) = 1 - a Re Z (w ) /am as w + 0 and 
T-0 [where Z(w) is the single-particle self-energy], i.e., it 
corresponds to an infinitely heavy effective mass of quasi- 
particles on the Fermi surface and a completely incoherent 
ground state of the Fermi system; in Ref. 17 such a Fermi 

system is termed marginal. In Ref. 17 no microscopic justifi- 
cation of the phenomenological dependence ( 1 ) is given, 
with the exception of an indication of the existence of a sin- 
gularity in the amplitude of s-wave scattering in a 2 0  Ferrni 
gas with an attractive interaction.18 It should be noted, how- 
ever, that the negative sign of the quantity 
[Re& - ' ( q, w ) - 1 1, as implied by the Kramers-Kronig re- 
l a t i o n ~ ' ~  for the inverse dielectric response function, does 
not at all signify that there exists near the Fermi surface an 
effective attractive interelectronic interaction, which is 
necessary, in particular, for Cooper pairing. 

In this paper it is shown that all the paradoxes of a 
marginal Fermi liquid" vanish and the dissipative processes 
necessary for an adequate description of anomalous relaxa- 
tion remain in the model of a two-component two-dimen- 
sional Fermi liquid with "light" and "heavy" charge car- 
riers, ' ' if it is assumed that a )  h-carriers are almost localized 
on lattice sites, so that for these carriers the tight-binding 
approximation is applicable, and b) at sufficiently high tem- 
peratures the h-carriers become nondegenerate, while the I- 
carriers remain degenerate. 

This model corresponds, in particular, to a layered 2 0  
metal with overlapping wide and narrow 2 0  bands (Fig. 1 ). 
In this case, as will be shown below, inelastic scattering of 
almost-free I-carriers by low-frequency collective excita- 
tions of the charge density of the h-carriers-acoustic plas- 
mons ( APs) with frequencies w (q)  z q l l  u as qll +O, where qll 
is the longitudinal momentum of the APs in the plane of the 
two-dimensional layers and u is the velocity of "plasma 
sound"2' -makes the main contribution to the kinetic pro- 
cesses. 

If the single-particle spectrum of h-carriers in a narrow 
2 0  band of width W, has the form 

wh 1 
E, ( k ,  k.)  =,[I - - (cos k a + c o s  k.6) 1, 

L 2 
(2) 

where a and b are lattice constants in the plane of the layers 
( a z b ) ,  then the acoustic-plasmon spectrum is a periodic 
function of the quasimomentum qll and lies in the region of 
transmission (outside the region of strong damping) in the 
entire volume of the Brillouin zone, if the following condi- 
tion is satisfied: 
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FIG. 1. The density of states (a) and the spectrum in overlapping wide 
and narrow 2 0  bands in the case of identical (b) and different (c) types of 
carriers. 

where E,  is the permittivity of the ionic lattice and my is the 
longitudinal effective mass of I-carriers in the wide 2 0  band. 

This is attributable to the fact that Landau damping of 
nondegenerate h-carriers in a narrow band with the spec- 
trum (2) ,  as is shown in this paper, is not equal to zero in the 
limited energy range JwJ < Wh sin(q,, a/2), in contrast to 3 0  
and 2 0  metals with wide bands and a quadratic spectrum of 
degenerate I- and h-carr ier~, ,~,~ in which a wide region of 
quantum Landau damping by h-carriers delimits the acous- 
tic-plasmon spectrum at large momenta, i.e., the spectrum 
has a cutoff point q,,, z ah /v,, where Rh and v, are the 
plasma frequency and the Fermi velocity of h-carriers.,' 

The imaginary part of the polarizability, calculated in 
the present paper, of nondegenerate h-carriers in a narrow 
2 0  band with the spectrum (2) has the form 

where the function 9 with qll a 5 1 is a slowly varying quan- 
tity over a wide region of values of w and T, so that for 
I w I S T S  Wh /4 the expression (4) is actually identical to the 
phenomenological dependence ( 1 ) postulated in Ref. 17. 

This makes it possible to explain the almost linear tem- 
perature dependence of the resistivity p ( T) a T (Refs. 10 

and 11) by scattering of I-carriers by low-frequency collec- 
tive excitations of the charge density of h-carriers (h-plas- 
mons), while the weak temperature dependence of the relax- 
ation rate of nuclear spins" can be explained by relaxation 
by excitations of the spin density (paramagnons). By taking 
into account the electron-electron scattering of nondegener- 
ate h-carriers by degenerate I-carriers we can explain both 
the linear temperature dependence of the inverse Hall con- 
stant R , ' ( T )  - T (Ref. 1 1 ) in the case of I- and h-carriers 
carrying charges (effective mass) of the same sign, and the 
inversion of the sign of RH at high temperatures T for oppo- 
sitely charged I- and h-carriers. 

On the other hand, the interaction of degenerate I-car- 
riers with acoustic plasmons gives rise to renormalization of 
the single-particle spectrum, which in turn results in a supra- 
linear temperature dependence of the electronic heat capa- 
city C( T )  --, y T  + BT at high temperatures T, in qualitative 
agreement with the experiment of Ref. 12, while the fre- 
quency dependence of the high-frequency conductivity ow- 
ing to relaxation of I-carriers by acoustic plasmons corre- 
sponds to the experimentally observed IR reflection 
spectra. 14'15 

I t  should be emphasized that the assumption that there 
exists a narrow band (peak in the density of states) near the 
Fermi level agrees with the results of numerical band calcu- 
lations for layered-chain-type cuprate MOC of the type 
YBa, Cu, O, (Refs. 27-30) and is consistent with the gener- 
ally accepted ideas of weak hybridization of the d andp orbi- 
tals of Cu2 + copper ions and 0' - oxygen ions (Refs. 3 1 and 
32) and strong direct overlapping of the p orbitals of the 
nearest 0'- ions in the 2 0  CuO,  layer^.^^,^, In this case, d- 
holes strongly localized on Cu2 + ions can play the role of h- 
carriers while delocalizedp holes of oxygen can play the role 
of I-carriers. We note that the model of a very narrow band 
(impurity level) was employed in Ref. 35 to describe the 
linear temperature dependences of p ( T )  and R , ' ( T)  in 
YBa, Cu, O, -, , while in Ref. 36 the two-band model was 
used to explain the anomalous carrier-density dependence of 
RH in La, - , Sr, CuO, . 

2. PLASMON SPECTRUM AND LANDAU DAMPING IN A 
LAYERED METAL WITH A NARROW BAND 

We now study a layered metal (such as cuprate MOC), 
whose quasi-2D electron spectrum contains, together with a 
partially filled wide 2 0  band of width Wl 2 1 eV with a qua- 
dratic spectrum of free I-carriers El (kll  ) = k i /2m7 and an 
almost constant density of states vl z m7/2?r, near the Fermi 
level a narrow 2 0  band of width Wh 4 W, with the single- 
particle spectrum (2) and with a much higher density of 
states v, , v,, depending on the energy E (see Fig. 1 ) : 

0 

2% ( E )  = --- 
x2a2 Wh K(x .  ( E )  ), 

where K ( x )  is a complete elliptic integral of the first kind, so 
that when the band is half filled pinning of the Fermi level 
occurs on account of the logarithmic singularity of the func- 
tion vh (E) at the point E = Wh / 2 .  

Neglecting the weak (on the order of the ratio v l / v h  ) 
hybridization of the spectra of the narrow and wide bands, 
we represent the dielectric response function of such a two- 
band metal in the form 
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where E~ is the permittivity of the ion lattice taking into ac- 
count the dispersion associated with optical phonons and 
interband transitions; V, is the matrix element of the un- 
screened Coulomb interaction in a layered meta137.38 with 
interlayer separation d: 

and II, and II, are the polarization operators of the 1- and h- 
carriers, respectively. If hops (tunneling) of electrons 
between layers and the fluting of the cylindrical Fermi sur- 
face associated with such hops are neglected, then II, and II, 
will depend only on the longitudinal quasimomentum 
qI1 (q,, qy ) in the plane of the 2 0  layers. 

In the region la15 EFI and qll 5 2k,,, where 
EFl = k i, /2m: is the Fermi energy and k,, = (2?rN, ) "' is 
the Fermi momentum of the degenerate I-carriers in layers 
with I-carrier density N, in the 2 0  layer (per unit area of the 
layer), we have 

where v,, = k,/mf is the Fermi velocity of the I-carriers 
and e(x)  is the Heaviside function: 8(x)  = 1 for x > 0 and 
e (x )  =Oforx<o.  

In the limit T-0, when h-carriers are also degenerate, 
the chemical potentials (p, andp, ) and the 2 0  densities (N, 
and N, ) of the carriers in the overlapping 2 0  bands are relat- 
ed (see Fig. 1 ) by 

where 

and the total 2 0  density No is determined by the average 
volume carrier density no - l/vo, where v0 is the volume of a 
unit cell. Thus, for example, in a layered metal like 
La, - , Sr, /Cu04 (Refs. 1-3) with one conducting layer per 
unit cell we have No =nod, while in MOC like 
YBa, Cu, 0, - , ,4,5 Bi, Sr, Can - , Cu, 0, ,6,7 or 
T1, Ba, Can - , Cu, 0, ,8.9 containing several (n>2) cuprate 
layers per cell, the relation between No and no is more com- 
plicated. 

From Eqs. (5) ,  (9) ,  and ( 10) there follows a transcen- 
dental equation for the chemical potential of the h-carriers: 

(1 1) 
whence for values of the parameters W, ~ 0 . 1  eV, Eo =0.5 
eV, a z 4  fi, d z 6  fi and m f z m o  (where mo is the free- 
electron mass), so that Y, = 2. lOI4 eV - ' .cm -' holds, for 
no ~ 4 .  lo2' cm-3 andNo ~ 2 . 4 .  10'4cm-2 we obtain the esti- 
mate 

For T)p,, when the h-carriers become nondegenerate 
and are described by a Boltzmann distribution function 

n. (kll, T) = exp {- EIL(~II)- Ph(T) 
T 

their 2 0  density N, depends on Ton account of carrier redis- 
tribution between bands and is connected withp, ( T) by the 
relation (a  = b)  

where I, (x)  is a Bessel function of imaginary argument. In 
this case, with the help of Eq. (9)  we obtain the following 
equation for N, : 

Figure 2a shows the dimensionless density y-aZNh 
(solid curves), determined from Eq. (14), and the ratio 
4ph / W, (dashed curves) as a function of x- W, /4T while 
Fig. 2b shows y as a function of x - ' for different values of 
the filling factor yo =a2( No - 2vl Eo ) > 0, when the Fermi 
level intersects the narrow band (E,, > Eo ) . One can see that 
for W, ~ 0 . 1  eV and yo = 0.1 the h-carriers become degener- 
ate (p, > T )  when T <  Wh/40z30 K. On the other hand, 
fory, >0, on account of carrier redistribution between bands 
the h-carrier density increases almost linearly with T, while 
for yo < 0 (E,, < Eo ) N, depends exponentially on T: 

The calculation of the real part of II, performed in the 
Appendix makes it possible to find, on the basis of the disper- 
sion equation Re ~ ( q ,  W )  = 0 and taking into account Eqs. 
(7)  and (8) ,  the dispersion relation for long-wavelength 
acoustic plasmons (qI1 a< 1 ) in a layered crystal: 

where 

in the case of degenerate h-carriers ( x ,  =x(ph  1, p, > TJ 
and 

in the case of nondegenerate h-carriers (p, < T or p, < 0). 
Here it is assumed that the frequency of the acoustic plas- 
mons is much higher than all phonon frequencies, so that 
E~ = E, , where E ,  is the optical permittivity of the lattice, 
and a: = E ,  /e2mT. In the limit q+O the intersection of the 
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acoustic branch w(q) =: 1/2qI1 Rh (ayd) 'I2 with the branches 
of optical phonons must be taken into account. 

Figure 3a shows the dependence, obtained from the for- 
2 1/2 mula ( 16), of R, on the parameter 6, = ( 1 - x, ) , and 

Fig. 3b shows the dependence, obtained with the help of Eqs. 
(13), (14), and (17), of ah on x - ' 4 T / W h .  As we can 
see, on the one hand 0, increases rapidly as the narrow band 
is filled (i.e., as 6, decreases and xh increases), which is as 
expected, while on the other hand, for yo >0.05 the quantity 
R, decreases as the temperature increases, in spite of the 
almost linear increase of the h-carrier density (see Fig. 2b). 
The latter fact is attributable to the effective increase of the 
effective mass of h-carriers in the narrow band as T in- 
creases, since the contributions of the h-carriers having ef- 
fective masses of different signs (near the top and bottom of 
the band) partially cancel one another in collective oscilla- 
tions. 

As shown in the Appendix, the imaginary part of 
IIh (ql, ,  W, 7') in the case of nondegenerate h-carriers in the 
narrow 2 0  band for one of the basis directions (for example, 
qll = q,, qy = 0 )  is equal to4' 

FIG. 2. The dimensionless 2 0  density y=aZNh (solid curves) 
and the chemical potential 4ph/ Wh (dashed curves) of nonde- 
generate h-carriers in a narrow 2 0  band (ph <O or p h  >0, but 
T > p h )  as a function of the dimensionless parameter 
x= Wh/4T (a) and y as a function of x -  (b) for different 
values of the band-filling parameter yo = a2 (No - 2v, Eo ) : 
yo =0.1 (1),0.05 (2 ) ,  andO.O1 ( 3 ) .  

in the region. lol<w(q,)=(Wh/2)sin(qXa/2) and Im 
II, = 0 for I w 1 > W( q, ). Along the diagonal of the Brillouin 
zone (q, = qy ) the width of the region of damping is dou- 
bled (Im IIh #O for Iwl< Whsin(qI1a/2). 

In the long-wavelength approximation (q,a < 1 ) under 
the condition Wh /4 >) lw 1,  T the expression ( 18) reduces to 
the expression derived in Ref. 39 for the imaginary part of 
the polarizability, describing quantum Landau damping by 
nondegenerate carriers in a wide band with a quadratic spec- 
trum: 
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FIG. 3. The plasma frequency of h-carriers as a function of the degree of 
band filling 6, = 1 - 2p,/ Wh at T = 0 (a)  and as a function of the tem- 
perature in the case of nondegenerate h-carriers (b) for different values of 
y,:y, =0.10 (1),0.05 (2), andO.O1 (3).  

where m; = 4fi2/ Wha2 is the effective mass of the h-carriers where R, ( 7') = ( T/4?re2N, ) is the Debye screening ra- 
near the bottom (top) of the band. In the classical limit dius and ii, (T) = (2T/mX) is the mean thermal velocity 
(fi-0) the well-known expression for the Landau damping of the  particle^.^' 
rate4' in a Maxwellian plasma follows from Eq. ( 19): Since in the short-wavelength region near the edge of 

n'h o the Brillouin zone (q, = q,, = ?r/a) in order of magnitude 

= 2 qS3Rh3 (T) (20) we have 

FIG. 4. The dispersion CuNeS of acoustic plasmons in 
a layered crystal and the region of Landau damping 
(vertical hatching) in the tight-binding approxima- 
tion for h-camers in a narrow 2Dband (a)  and in the 
case of wide overlapping bands with a quadratic spec- 
trum of I- and h-carriers (b). The oblique hatching 
designates regions where there is an effective attractive 
interelectronic interaction owing to exchange of vir- 
tual acoustic plasmons; in this region Re ~ ( q ,  o) < 0. 
The curves 1 and 2 correspond, respectively, to longi- 
tudinal (q, = 0)  and transverse (q, = n-/d) propaga- 
tion of acoustic plasmons relative to the plane of the 
layers. 
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o ( q )  -- (eZWh/e,a) '" 

(see the Appendix), while the imaginary part II, is different 
from zero in the region 

I o I Wh sin (qlla/2), 

it can be shown with the help of Eqs. ( 15)-( 17) that under 
the condition (3) ,  the acoustic-plasmon branch lies above 
the region of strong Landau damping in the entire volume of 
the Brillouin zone, (Fig. 4a). 

FIG. 5. a)  Im II, (q,, o, 7') as a function 6f t = o/w(q, ) for different 
values of the parameters q,a and x W,,/4T: x = 10 ( 1, l ') ,  4 (2, 2'). 1 
(3,3'); sin (qxa/2) = 0.1 (curves 1-3) or0.5 (curves 1'-3'). b) Im II, as 
a function ofx for different values of q,a, t, and yo : 1 , l ' )  t = 0.5, yo = 0.1; 
2 ,2' )  t=O.l,yo=O.l; 3 ,3' )  t=O.l,yo=O.O1; 3") t=0.1,yo=0.05; 
sin (qxa/2) = 0.1 (curves 1-3) or 0.5 (curves 1'-3', 3"). 

Hence it follows that in the tight-binding approxima- 
tion for h-carriers in a narrow 2 0  band the spectrum of the 
acoustic plasmons in the layered quasi-two-dimensional me- 
tal is a periodic function of the longitudinal quasimomentum 
ql l ,  analogous to the plasmon spectrum in a chain-type 
(quasi-ID) metal with a narrow 1D band26 and in contrast 
to the spectrum of acoustic plasmons in quasi-isotropic 3 0  
or 2 0  metals with wide overlapping bands and a quadratic 
spectrum of degenerate I- and h-~arr iers ,*@~~ in which the 
region of transmission is bounded at large momenta by a 
wide region of quantum Landau damping (Fig. 4b). The 
periodicity of the acoustic-plasmon spectrum in the case of 
the narrow band is related to strong localization of h-carriers 
on lattice sites (for example, d holes on Cu2 + ions), so that 
the propagation of h-plasmons occurs in the system with an 
electron density periodically modulated in space. 

It must be stressed that in the region 

for any qll the condition Re ~ ( q ,  w) < 0 is satisfied (Fig. 4a), 
i.e., in the entire volume of the Brillouin zone there exists a 
retarded attractive interelectronic interaction 
V, (q)Re&- ' (q, w) < 0, which is governed by exchange of 
virtual acoustic plasmons and should give rise to much more 
effective Cooper pairing of degenerate I-carriers than in 
transition metals and doped semiconductors and semimetals 
with wide bands (valleys), for which the possibility of the 
"plasmon" mechanism of superconductivity was studied 
previously .22-25,41-43 

Figure 5 shows Im II, (q,, w, T) as a function of 
t rw/w (q, ) and x E Wh /4T for different values of the para- 
meter q,a. One can see that over wide regions of values of w 
and T Im II, depends almost linearly on w and T '; this 
actually agrees with the phenomenological dependence 
Im n, a w/T for lo1 < T, postulated in Ref. 17. We note in 
this connection that all basic results concerning relaxation in 
the model of a marginal Fermi liquid1' remain valid, if in Eq. 
( 1 ) we set Im II = 0 for sufficiently large Jw 1 > T. The model 
of a narrow 2 0  band proposed in this paper corresponds 
precisely to this case-the absence of strong damping in the 
region Iwl> W,, where there remains only weak quantum 
Landau damping by degenerate I-carriers [see Eq. (8)  1 as 
well as Drude damping owing to elastic scattering of I-car- 
riers by lattice defects and irnpuritie~.~' 

Figure 6 shows the quantity 3+-=-1rn 
II, /sinh (w/2T) as a function ofw and T taking into account 
the temperature dependence of the h-carrier density (see 
Fig. 2) for different degrees of filling of the narrow 2 0  band. 
One can see that under certain conditions (in particular, 
when q,a 5.1 ), neglecting the statistical factor sinh(w/2T) 
the frequency and temperature dependences of Im II, are 
comparatively weak in wide regions of values ofw and this 
also indicates a dependence close to Im II, a w/T for 
IwI < T, as is required for a qualitatively correct description 
of relaxation processes in cuprate MOC. We call attention to 
the rapid (exponential) decrease of the function .7 
= - Im nh/sinh(w/2T) at low temperatures T<  W h / 4  
(Fig. 6b). This decrease is associated with the exponential 
decrease of Landau damping in the region lw 1 > q,ij, ( T) 
(see Fig. 5a) in the classical limit. For the same reason, in 
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FIG. 6.  a) b = - Im II,(q,, w, T)/sinh(w/2T) as a function of 
t = o/w(q, ) for different values of x= Wh/4T and q,a: 1 )  x = 2, sin 
(q,a/2) = 0.1; 2 )  x = 2,sin (q,a/2) = 0.5; 3) x = 0.4, sin (qxa/2) 
= 0.1-0.5; b) F as a function of x - '  for t = 0.5: 1) yo = O.l,sin 
(q,a/2) = 0.2; 2) yo = 0.1, sin (q,a/2) = 0.5; 3) yo = 0.05, sin (q,a/2) 
= 0.6. 

the region I w 1 < q, E, ( T) for q, a < 1 the dependence Im 
n, a w/T changes to Im II, cc w/T3l2 [see Eqs. ( 19) and 
(20) 1. 

Thus, as will become evident in the subsequent analysis, 
in the tight-binding approximation Landau damping by 
nondegenerate h-carriers in a narrow 2 0  or 1D band could 
be responsible for the anomalous relaxational properties of 
cuprate metal-oxide compounds, if electron-electron scat- 
tering is the principal relaxation channel. 

3. ELECTRON-PLASMON INTERACTION ANDTHE SELF- 
ENERGY OF/-CARRIERS 

Optical  measurement^'^,'^ and ca l c~ la t i ons~~  of the 
anisotropic plasma frequency of free current carriers (oxy- 
genp holes) in single crystals of cuprate MOC indicate that 
the longitudinal effective mass is relatively small7' and band 
c a l c ~ l a t i o n s ~ ~ ~ ~ ~  yield a quite large width for the 2 0  bands 
( W, > 1 eV). In this connection, for I-carriers with densities 
no k lo2' cmP3 (i.e., No 2 6. lOI4 cmP2  and k,, 2 2- 10' 
cm - ' for d 2 6 A)  the dimensionless density parameter in 
2 0  layers is 

2 ! h e 2  2% 
- rs=--- - (21) 

E , U X L  k ~ ~ a r '  

for my 5 2m0 and optical permittivity of the crystal E ,  2 4 
(Refs. 14 and 37) falls into in the range of typical values of 
the electron density of the metal ( r ,  5 6). Hence it follows 
that the properties of I-carriers can be described by means of 

the standard Fermi-liquid approach'9244 taking into account 
the quasi-two-dimensionality of the electronic spectrum in 
layered metals with a cylindrical topology of the Fermi sur- 
face. 

The screened Coulomb interaction between the I-car- 
riers, taking into account retardation effects associated with 
the exchange of virtual plasmons, is determined by the equa- 
tion45,46 

where fi = II, + II, is the total electronic p~larizability.~' 
In the frequency range Iwl> W,, where there is no strong 
Landau damping by h-carriers ( Im II, = 0) , for qil d 2 1 and 
q,, v, 2 I W  I, according to Eqs. (6)-(8) and ( 15), we obtain 

As can be seen, Re ~ ( q ,  W)  < O  holds in the region Iwl 
<ah [qI1d/ (  1 + 2/ql,a:)]'/' (but Iwl> whsin(qlla/2) 1. 

In the static limit (w + O), in the case of nondegenerate 
h-carriers we find 

where E~ is the static permittivity of the lattice, and 
R ,  ( T )  = [E, T/4?re2Nh ( T) ] '/2 is the Debye radius of 
screening by nondegenerate h-carriers. 

In order to describe the retarded interaction of degener- 
ate I-carriers with acoustic plasmons we introduce the plas- 
mon Green's function 

where w,,, %ah, but w,,, 5 min{E,, , a,), since for ener- 
gies in the range Iw 1 2 E,, rapid damping (decay) of quasi- 
particles occurs on account of the Fermi-liquid interac- 
t i ~ n , ~ ~  while in the region Iwl2 0, (where a, is the plasma 
frequency of I-carriers) strong quantum Landau damping 
by I-carriers occurs. 

Since the Kramers-Kronig relationI9 
rn 

is valid for the response function E - ' (q, w) for any q  and^, 
the Green's function (25) satisfies the dispersion relation 

if in the region w-w,,, the damping is weak: 
I ~ E - ' ( q ,  umax)+O. 

The single-particle self-energy of I-carriers 2,, , asso- 
ciated with the electron-plasmon interaction, in a layered 
metal with a slightly fluted and isotropic (in the plane of the 
layers) cylindrical Fermi surface and with a quadratic spec- 
trum in a wide 2 0  band for T # 0, taking into account Um- 
klapp processes with respect to the transverse quasimomen- 
tump,, can be represented in the following form: 
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where w, = (2n + 1 ) r T  are the discrete imaginary "fre- 
quencies" (n = 0, f 1, f 2, ... ), e, is the angle between the 
momenta pll and pi of the interacting electrons in the plane 
of the layers, GI is the Green's function of the I-carriers, 6, is 
the energy of the I-carriers relative to the Fermi level, and 
p, =p,d. Transforming to real continuous frequencies w and 
separating from Eq. (28) the odd part as a function of o 

the pole part of GI can be put into the form9' 

where 

Zp1(o)= 1 - Re f P l  ( 0 )  
0 

, yPl ( o )  = -Im fpl  (a), (30) 

and T I  (A ) is the Fourier component of the transverse part 
of the wave function Y ,  ( z )  of the I-carriers, localized in 2 0  
layers of thickness do.  Note that in order to take into account 
the electron-phonon interaction the corresponding phonon 
function f,, (w), which contributes to the renormalization 
of the quasiparticle spectrum and to the damping of quasi- 
particles in the frequency range Iwl5 w, (where w, is the 
Debye frequency of the phonons) , must be added to f,, ( a ) .  
For R, SwD, however, in the frequency range Iwl2 R, the 
effects associated with electron-phonon interaction can be 
neglected. 

As a result we find from Eqs. (28) and (29), perform- 
ing the averaging over the cylindrical Fermi surface of the I- 
carriers, 

= 1 jdw' { [He Q., (0'-0)- R~Q.L (w'+w) I 
2 "  

do' Im Qpl (of) 
@,,(a, T)= - f --- 

n o-o' 
cth($); (34) 

- m 

and GI is the renormalized (owing to Umklapp processes 
with respect top, ) effective density of states, equal in order 
of magnitude to Cl z v l d  /do.  It should be noted that, gener- 
ally speaking, the kernel of the interaction Q,, (w), just like 
the polarization operators II,  and I I ,  , should contain a Cou- 
lomb vertex part rc (p, r ;  p', w'), which describes the ef- 
fects due to the local field5' and satisfies, on the Fermi sur- 
face with zero transferred energies and momenta 
( Iw' - w 1 + 0, Ip' - pl + O), the Ward-Pitaevskii iden- 
tity:52S3 

Since, however, rC decreases quite rapidly as Iw' - w 1 and 
q I p' - p I increase and since on account of the square-root 
singularity large values of qll z 2k,, make the main contribu- 
tion to the integral (33), to a good approximation we can set 
rc = 1. This gives an electron-plasmon interaction constant 
that is somewhat too low, while substituting into the inte- 
grand of the expression (33) and into fi = II,  + IIh the va- 
lue of rc determined by the relation (35) gives values of 
Qpl (w) that are too high. 

Near the Fermi surface (w-0), taking into account 
(7), for qll d > 1 we obtain from Eq. (3 1 ) 

where 

The dimensionless positive quantity 

hp~--p.-po>O (39) 
is the electron-plasmon interaction constant, so that 
z,, (0) = 1 + A,, .I0' 

For frequencies in the range Iwl> Wh sink,, a, where 
- [mpl (of--w, T) - Bp, (or+o,  T) I ) ,  there is no strong Landau damping by h-carriers 

(Im n, = 01, the real part of the kernel in Eq. (33) can be 
(31) approximated by the simple expression 

m 

where 

where, according to Eq. ( 15 ), for qll z2k,, > d - ' we have 

(32) 
Thus, in contrast to the hypothetical marginal Fermi 
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liquid," in the case at hand we have a standard charged 
Fermi liquid with a well-defined single-particle spectrum 
[see Eq. (29) ] and with a finite effective mass of quasiparti- 
cles on the Fermi surface. Taking into account the electron- 
plasmon and electron-phonon interactions this effective 
mass is determined by the expression 

4. ELECTRON-PLASMON INTERACTION AND ANOMALIES 
OF THE THERMODYNAMIC, KINETIC, AND OPTICAL 
PROPERTIES OF CUPRATE MOC 

a) Electronic heat capacity 

We assume that degenerate I-carriers in a wide 2 0  band 
make the main contribution to the temperature dependence 
of the electronic heat capacity of MOC. 'I '  To calculate their 
heat capacity C, (T)  at constant volume Vwe determine the 
thermodynamic potential of the Fermi gas of quasiparticles 
with the spectrum E, (g), which is determined by the pole of 
the Green's function (29) in the limit yp, + O  (compare with 
Ref. 54): 

where B = 2+,SN, S is the area of one 2 0  layer, and N is the 
number of conducting layers of CuO, in the crystal (we have 
in mind an ideal single crystal with the volume V = SNd). 

Neglecting the damping of quasiparticles (Im Qpl 
= O), we use the approximate formula (40) to calculate 

Re fpl ( a ) .  At sufficiently low temperatures T (a ,  we find 
from Eqs. (3 1) and (40) 

m m 

1 
~ e f ~ ~ ( a ) =  [ I  dmf R ~ Q , ,  ( a ' ) - j  da r  ~e Q,, ( a ' ) ]  

-0 0 

The expression (43) satisfies the asymptotic relation 
(36), and the logarithmic singularity at the point w = fi, is 
suppressed by finite damping (see below). 

Expanding the expression (43) in powers of the ratio 
w/a, and substituting the series into Eq. (42), we obtain to 
within terms of order ( T/G, ) 

n2 z2 
Q ( T )  --BT2 [ ( ~ + h , ~ ) + - i ~ ~ ~ ~ i f i ~ ' ] .  (44) 

12 2 

Hence we obtain the following expression for the en- 
tropy S, ( T) and heat capacity C, ( T) of I-carriers (for 
p, = const and V =  const): 

As we can see, a supralinear temperature dependence of 
the electronic heat capacity ( - T 3 ,  should be observed at 
sufficiently high temperatures T 2  0.1 6, ; this agrees quali- 
tatively with the experiment of Ref. 12. 

b) Conductivity and resistivity 

The conductivity of a two-band metal with wide and 
narrow bands is equal to 

a ( T )  =a[ ( T )  +ah ( T )  , (47) 

where a, and a, are the partial conductivities of I- and h- 
carriers. 

Let us assume that the inelastic scattering of I-carriers 
by collective excitations of the charge density of h-carriers 
with characteristic time 7, -- y; I (O), where y,, (0) is the 
damping rate of quasiparticles on the Fermi surface and is 
related with the Landau damping of I-plasmons by h-car- 
riers, makes the main contribution to a,. 

According to Eq. (32), we obtain - 

where, taking into account Eq. ( 15) and the square-root 
singularity in the integrand in Eq. (33) at the point q = 2k,, 
to a good approximation we can set 

211 

e2 V, drp 
1m~~(a)=-- j - -1me-~(2k, , , rp ,  w ) .  (49) 

2 v F l  v1 2n 

Taking into account the fact that IIm II, 1 )  IIm H, I, 
and representing the quantity Im E - I  a I m  II, averaged 
over p, in accordance with Eq. ( 18), in the form of the pro- 
duct sinh(w/2T)F ( a ,  T), we can put Eq. (48) into the 
following form: 

@(x' T ,  dx=TP ( T )  , Y.L(O)=T! 

where the function P (T)  is virtually independent of T, i.e., 
Pzconst,  in a wide range of temperatures T 2  Wh/40.'2' 
This is confirmed by the relatively weak w and T dependence 
of the quantity Im II,/sinh (w/2T) in wide intervals of w 
and T (see Figs. 6a and b)  and the almost linear tempera- 
ture dependence of the quantity I Im II, (q, , w, T )  I/ 
sinh(w/2T) cosh(w/2T), integrated over w, for different 
values of the parameters q,a and yo =a2(No - 2v,Eo ) 
shown in Fig. 7. It  follows from Eq. (50) that the partial 
conductivity of degenerate I-carriers, which is governed by 
the scattering of these carriers by damping acoustic plas- 
mons, is inversely proportional to T: 

Qr2ar 
0, = - cc yp l - i (0 )  Q T - ' .  

4n 
(51) 

The temperature dependence of the conductivity of 
nondegenerate h-carriers a, T, /477 is determined by 
the temperature dependence of the relaxation time r, and 
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Figure 8 shows curves of f l i  versus T for different va- 
lues of yo as well as the dependence of the quantity 
(a: rh ) - a u c  I on T, which to a good approximation is 
linear in the entire temperature interval studied, 
0.025 Wh < T < 0.6 Wh , corresponding for Wh z 0.1 eV to 
30 < T <  700 K. Hence it follows that in this interval we have 
u h ( T ) a T - ' .  

Thus we obtain a nearly linear temperature dependence 
for the resistivity at temperatures T >  T,: 

P ( T )  = [ c ~ r ( T )  + oh(T)  ]-l=po+BT. (52) 

This agrees with the experimental data of Refs. 10 and 11 for 
most superconducting cuprate MOC in the normal (metal- 
lic) state.14' 

c) Nuclear-spin relaxation and magnetic susceptibility 

In a normal paramagnetic metal the inverse nucelar- 
spin relaxation time caused by the creation of virtual excita- 
tions of the spin density (paramagnons) is determined, as is 
well known, by the expression 

FIG. 7. The integral I=$," [(ImII,  (q , ,  w, T ) l d w ] /  
[sinh(o/2T)cosh(o/2T) ] as a function of  T for different values o f  the 
parameters qxa and yo : a )  the curves 1-3 correspond to yo = 0.1,0.05, and 
0.01 with sin (qxa /2 )  = 0.1; b )  the curves 1,2,3,  and 4 correspond to sin 
(q ,a /2)  =0.1, 0.5,0.7,and0.9withy0 =0.05. 

their plasma frequency flh (see Fig. 3b). 
The relaxation of h-carriers is determined primarily by 

their Coulomb scattering by I-carriers, since the electron- 
phonon interaction and the Drude scattering by defects and 
impurities are significantly suppressed for them (because of 
strong localization near lattice sites). In this case the relaxa- 
tion time can be estimated from the formula rh zlc/ijh (T) ,  
where I, is the temperature-independent Coulomb mean 
free path of a charged particle in the degenerate Fermi liquid 
of I-carriers, and iTh a TI" is the mean thermal velocity of 
nondegenerate h-carriers,13' so that rh a T - 

FIG. 8. as a function of  T for different values of  yo (curves 1-3) and 
uc ' a ( f l : ~ ,  ) as a function of  T (curves 1'-3') for nondegenerate h- 
carriers in a narrow 2 0  band: yo = 0.1 ( 1 ,  l ' ) ,  0.05 ( 2 ,  2'1, and 0.01 (3 ,  
3 ' ) .  

Here the imaginary part of the paramagnetic (spin) suscep- 
tibility x has the same structure as the imaginary part of the 
electronic polarizability: 

Imx ~ I r n  Ilk=-sh ( o / 2 T )  S ( q , , ,  o, T ) ,  

where F ,  according to Eq. ( 18), at w = 0 and in the limit 
ql, = qx -0 has the form 

N h  ( T )  ch (Wh/4T) 
F,=F(q,, 0, T )  = 2 

I ,  ( W h / 4 T )  W h  sin (q,a/2) 
. (54) 

Figure 9 shows plots of the function (54) versus T, tak- 
ing into account the temperature dependence of Nh ( T) for 
different degrees of filling of the narrow band (see Fig. 2b). 
It should be kept in mind that since in the limit o -0 3 has a 
singularity at the point qll = 0, the region of small values of 
qll a( 1 makes the main contribution to the integral over qll 
in Eq. ( 53 ), so that the variables T and qll in Im x separate 
for any directions, analogously to Eq. (54). For this reason 
the temperature dependence shown in Fig. 9 actually deter- 

FIG. 9. The temperature dependence of  the function F ( q , ,  0 ,  T )  in the 
limit q, -0,  determining the temperature dependence of  the inverse nu- 
clear-spin relaxation time T; ':yo = 0.1 ( 1 ), 0.05 ( 2 ) ,  and 0.01 ( 3 ) .  
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FIG. 10. The Hall constant R ,+ (a) and 1/R ,f (b) 
for I- and h-carriers of the same type for yo = 0.05 and 
u,/u,, = 4  (curves 1 and 1') and for yo = 0.1 and 
u,/u, = 2.5 (curves 2 and 2'). 

mines the temperature dependence of r~ '. One can see that 
this dependence differs significantly from Korringa's law 
rS1 K T for normal metals; this agrees qualitatively with the 
experimental data for 6 3 C ~  and 6 5 C ~  nuclei in cuprate 
MOC.13 

On the other hand, a nearly linear temperature depen- 
dence 7; (T) is observed for 1 7 0  nuclei in YBa, Cu, 0, . I 3  

This could indicate that h-carriers (d-holes) and the spin- 
density excitations associated with them are localized near 
the copper ions Cu2+,  while the density of delocalized I- 
carriers (p-holes) predominates in the neighborhood of the 
oxygen ions 0,- thanks to the direct overlapping ofp-orbi- 
tals in the CuO, cuprate 

Note that the experimentally observed55 weak tempera- 
ture dependence of the magnetic susceptibility x ( T )  in 
YBa, Cu, 0, - , in the temperature interval T = 100-300 K 
can be explained by the contribution tax( T) of the tempera- 
ture-independent Pauli susceptibility X, of degenerate I-car- 
riers in the wide 2 0  band as well as by the weak temperature 
dependence of the paramagnetic susceptibility of nondegen- 
erate h-carriers in the narrow 2 0  band xh (T) a N, (T)/T 
thanks to the almost linear temperature dependence of N, 
(see Fig. 2b). 

d) Hall Effect 

The Hall constant R, of a two-band metal is expressed 

temperature dependence of n, (T) ,  which is shown in Fig. 
2b. 

Figure 10 shows, respectively, the temperature depen- 
dences of R & ( T )  and 1/R & ( T )  in the case of I- and h- 
carriers of the same sign (p and d holes, see Fig. lb).  These 
dependences were obtained from the formula (55 ) using the 
curves in Fig. 2b for yo = 0.05 with al/ah = 4 (curves 1 and 
l', respectively) and for yo = 0.1 with al/a, = 2.5 (curves 2 
and 2') under the condition that the density of I-carriers 
corresponds to one I-carrier per unit cell. As we can see, for 
Wh ~ 0 . 1  eV the temperature dependences 1/R ,+ ( T )  are 
nearly linear in the temperature interval 100 < T < 700 K; 
this is in good agreement with the experimental 

Note that for oppositely charged 1- and h-charge car- 
riers the sign of the Hall constant R ; (T )  can change, de- 
pending on the temperature. 

Thus the two-band model, combined with electron- 
electron scattering of nondegenerate h-carriers by I-carriers 
and inelastic relaxation of degenerate I-carriers by acoustic 
plasmons, makes it possible to describe different tempera- 
ture anomalies of the Hall effect in cuprate MOC. 

We note that the anomalous carrier-density depen- 
dence of R, is also explained on the basis of the two-band 
model with wide and narrow 2 0  bands which overlap near 
the Fermi level.36 

.. 

in terms of the partial conductivities (a, and a, ) and the Optical conductivity 
average number densities of the carriers in the bands ( n, and 

Taking into account both elastic scattering of I-carriers 
n, ) as follows: by defects and impurities with characteristic time r, 

(55) (Drude damping) and inelastic relaxation of quasiparticles 
by h-plasmons with the damping rate y,, (w) owing to Lan- 
dau damping by h-carriers, the w-dependent high-frequency 

where the plus and minus signs correspond, respectively, to conductivity a (w) ,  which determines the IR reflectance, has 
I- and h-carriers with the same and different signs of the the following form: 
effective masses (charges), and the resulting sign of R, is e2nr 

o(0)  =- 
f p l ( ~ ) +  TD-'  

determined by the sign of the charge of those carriers (elec- El '(o) o2 + [vpl (0 )  + T ~ - ~ ] ~  ' 
(56) 

trons or holes) that make the main contribution to the Hall 
effect. where, according to Eqs. (29) and (30), the renormalized 

Since, as shown above, 0, and ah have virtually identi- mass and damping rate are equal to 
cal temperature dependences (a , ,  a T - ') and n, =const, 
the temperature dependence of R 2 is determined by the f%'(a)=ml*Z~l(u), Y P I ( O )  =rpl(o)/ZP,(o). (57) 
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If the finite Landau damping of virtual h-plasmons in 
the region w > W, by I-carriers as well as the Drude damping 
owing to scattering of I-carriers by lattice defects and acous- 
tic phonons are taken into account, then the real part of the 
electron-plasmon interaction kernel assumes the following 
form under the condition a,,, )6, [compare with Eq. 
(40) 1 :  

where y, is the damping rate of h-plasmons in the resonance 
region (w z 6, > y, ). In this case, instead of Eq. (43) we 
obtain, accurate to the leading-order (logarithmic) terms, 

Figure 1 la  shows the curves of Zpl (w ) = 1 - Re fpl (w )/w 
versus w for different values of y, . 

According to Eq. (32), at low frequencies ypl (w) is a 
quadratic function: 

while at high frequencies (w 1 %  Wh terms with a small fre- 
quency difference Iw' - w 1 5 W, make the main contribu- 
tion to y,, ( w  ), since in the region Iw' + w 1 > W, there is no 
strong Landau damping by h-carriers. For this reason, to a 
good approximation in the high-frequency region we can set 

Comparing the expression (61 ) with Eq. (48), we can 
see that the integrand in the expression (61) contains the 
additional factor coth2(w'/2T), which is always greater 
than unity and rapidly increases as w' increases. For this 
reason, in spite of the factor 1/2, for finite w the inequality 
ypl (w) > ypl ( 0 )  is always satisfied, and as w increases 
yp, (w) approaches its limiting value y _  =ypl (w ). 

Figure l l b  shows y,, (dot-dashed curve) and ppl 
rypl /Zpl  (solid and dotted curves) as a function of w for 
different values of y, . Figure 1 lc  shows the corresponding 
u(w) dependence. One can see that at plasma resonance 
w = a , ,  where the renormalization function Zpl (w) has a 
maximum (Fig. l l a ) ,  the frequency dependences y,, (w) 
and o(w ) have a minimum, which can be compared with the 
corresponding features in the experimental depen- 
d e n c e ~ . ' ~ . ~ ~ ' ~ '  The appearance of such a minimum at the fre- 
quency 6, of the h-plasmons owing to the electron-plasmon 
interaction is analogous to the Holstein at phonon 
frequencies owing to the electron-phonon interaction. 

When comparing theory with experiment it is necessary 
to take into account the fact that in the case when ionic bond- 
ing predominates in the crystal lattice of the MOC hybridi- 
zation of acoustic h-plasmons with longitudinal (LO) and 
transverse (TO) optical phonons with frequencies w,, and 
w,, should occur (see Refs. 48 and 49). In this case, the 
characteristic frequency of the coupled phonon-plasmon os- 
cillations, which determines the Holstein singularity in the 
dependence a (@) ,  is equal to 

- 
FIG. 11. a)  A(o) =Z,, 1 as a function of o for yh/R, = 0.01 
(solid curve) and yh/R, = 0.1 (dotted curve). b) y,, (w) as a 
function of w (dot-d_ashed curve) and 
-~/n?(w)= ypl (w)/Z,, (w)  for yh/flh = 0.01 (solidcurve) and 
y,/Rh = 0.1 (dashed curve). The interpolation formula 
y,, (w) = yo + y, [ l  - exp( - oZ/62,) 1 was employed for y,,; 
y, = yo + y, . c)  o(w) as a function of w in accordance with 
Eqs. (56) and (z7) in thelimit T, - m for yh/Rh = 0.01 (solid 
curve) and yh/flh = 0.1 (dotted curve). The dashed curves 1 
and 2 are plots of the functions u ( o )  corresponding-to Drude's 
law with relaxation time constants y, ' and y; = y,; ' (O), re- 
spectively. 
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for a,, %a,, [compare with Eq. (41 ) 1. 

5. CONCLUSIONS 

Thus the simple model of a band spectrum containing 
only two overlapping 2 0  bands near the Fermi level-a wide 
band ( W, R 1 eV) and a narrow band ( Wh 5 0.1 eV)- 
makes it possible to explain qualitatively a large number of 
anomalous physical properties of cuprate MOC in the nor- 
mal state in terms of the interaction of charge (spin) carriers 
with low-frequency collective excitations of the charge 
(spin) density of nondegenerate h-carriers in the narrow 
band. 

Of course, the real band structure of cuprate MOC is 
much richer and contains a large number of overlapping 
wide and narrow bands (see, for example, Refs. 27-30), and 
this must be taken into account when making a more de- 
tailed quantitative comparison of theory with experiment. In 
particular, the model of two bands of different width cannot 
explain the symmetric (relative to the sign of the applied 
voltage V) quasilinear dependence of the tunneling conduc- 
tance g, ( V) z go + gl I V I (Ref. 16). This dependence can 
be obtained, for example, in a model of two close-lying iden- 
tical narrow bands above and below the Fermi level super- 
posed on a wide band. 

Additional features should also arise in the carrier-den- 
sity and temperature dependences of the Hall constant, the 
thermal-emf, and other characteristics. However, the main 
results obtained in this work and indicating the important 
role of low-frequency collective electronic excitations with a 
quasiacoustic spectrum in relaxation processes do not de- 
pend on the fine details of the band spectrum and apparently 
correctly reflect the physical nature of the electron-electron 
scattering and interaction in layered cuprate MOC at high 
temperatures. 

In conclusion it should be noted that the interaction of 
acoustic plasmons with degenerate I-carriers in the wide 
band, as pointed out above, results in an effective attractke 
interelectronic interaction in the energy range Wh < w < Kth 
in the entire volume of the Brillouin zone. This attractive 
interaction should give rise to Cooper pairing of I-carriers 
and should increase T, while at the same time suppressing 
the isotopic effect, as is observed in superconducting cuprate 
MOC.6g62 The question of the role of the electron-plasmon 
interaction in the mechanism of high-temperature supercon- 
ductivity is examined in Ref. 63. 

We thank V. F. Gantmakher, V. B. Timofeev, L. I. 
Fisher, and G. M. ~ l i a s h b e r ~  for helpful discussions of a 
number of questions studied in this paper. 

APPENDIX 

In this section we calculate in the random-phase ap- 
proximation the real and imaginary parts of the polarization 
operator of h-carriers in a narrow 2 0  band with the spec- 
trum (2 ) :  

where f(E) is the Fermi distribution function. In the case of 

degenerate h-carriers, in the limit T+O the expression for 
the polarization operator is found to be in many ways analo- 
gous to the expression for the polarization operator for elec- 
trons II,, (qll ,  w )  in a quasi-1D (chain-type) metal with a 
narrow 1D band.26 Thus, for example, along the diagonal of 
the Brillouin zone (q, = q, ) the expression (A1 ) for the 
polarization operator of a quasi-2D (layered) metal 
II, = II,, can be represented in the following form: 

Here II,, differs from the expression obtained in Ref. 26 for 
Ill, in that the parameters k,  and 2sin Q are replaced by 
A (v) = cos - '(6, /cos v) and 2sin Q cos v, respectively, 
where Q =  (q, +q,,)a/4, 6, = 1 -2,uh/Wh, Kt=2w/Wh 
and I%, = arccos 6,. 

In order to calculate the real part of the polarization 
operator in the long-wavelength approximation we expand 
the integrand in Eq. (A2) in powers of Q through terms of 
fourth order, and performing the integration over v we find 

(A31 
where 

K(xh ) and E(xh  ) are complete elliptic integrals of the first 
and second kinds. Hence we obtain, taking into account Eq. 
(7), the following dispersion relation for the long-wave- 
length plasmons in a layered metal with a narrow 2D-band 

2 1/2 ( 4 = ( q i + q z )  1: 

When the contribution of the polarizability (8)  of degener- 
ate I-carriers in the wide 2 0  band to the permittivity is taken 
into account, we obtain instead of Eq. (A7) the spectrum of 
acoustic plasmons ( 15) with the plasma frequency ( 16). 

On the other hand, by expanding Eq. (A2) near the 
corner of the Brillouin zone (Q = ~ / 2 )  the plasmon spec- 
trum in the short-wavelength limit (ql, z r / a )  can be ob- 
tained. In so doing it should be kept in mind that the expres- 
sion (7)  for the Coulomb matrix element is, generally 
speaking, not applicable in a layered crystal, since here the 
spatial localization of h-carriers near the lattice sites must be 
taken into account explicitly. In order to estimate the addi- 
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tional momentum dependence V, (q) associated with the 
periodic distribution of the electron density in the plane of 
the 2 0  layers, we employ the model potential 

which for qll a 4 n- transforms into the Coulomb potential of a 
2 0  system V2, (qll ) = 2re2/qll (Refs. 37, 38) [see also the 
potential (7 for qll d% 1 1. We note that in Ref. 26 the locali- 
zation of the electron density on lattice sites was approxi- 
mated by Gaussian functions. 

The result is the following expression for the squared 
plasmon frequency near the corner of the Brillouin zone in 
the high-frequency approximation (wZ$ Wi  ; &r/2 
- Q 4 ~ / 2 ) :  

25'2e2Whk~ sin B 
a"?) )" 

3ZE-u 

Thus for k, - 1 the frequency satisfies Z(0) > Wh for 
Wh < e2/&, a. 

In the case of nondegenerate h-carriers the polarization 
operator (A1 ), with Eqs. (2)  and ( 12) taken into account, 
assumes the form 

qxa 
2 

x e r p  {% [cos (k=a) cos - + cos (kua) cos - 
2 

where 
qxa 'I ,a 

u (k,, k,, q,, q,)= sin(kxa)sin - + sin(k,a) sin -. 
2 2 

The real part of the polarization operator (A10) in the high- 
frequency approximation, to within terms of order 
(W, /U)~ ,  isequalto 
Re (q=, q,, a )  

where I, ( x )  is a Bessel function of imaginary argument of 
the first kind, whence Eq. ( 17) is obtained in the limit qI1 + 0. 

The imaginary part of the polarization operator, deter- 
mined by the residues of the poles of the integrand in Eq. 
(A12), assumes the following formI5' after the change of 
variables sin (ky a )  = t: 
Im lTh(qxr q,, a )  

= - 
4 sh (o/2T) 

n2u2 e~~ ( ' h - y 2 ) ~ ( q x ,  q,, u ) ,  ( ~ 1 2 )  

where 

2 101 9 a  I d t F  ( t ;  qx, qy, w), - < sin (y) - sin (bj w,, 

I S d t  F ( I ;  qx, qy, a), sin (7) --sin (%$-I (A131 
- - - A(qX3 g 2 0) 

2 ' 0 '  s i n  ) ] / i n ( ) ,  (A14) a(q=. qI. w)= [x- 

For q, = 0 and qll = q, Eq. (A12), substituting Eqs. (A13) 
and (A15), reduces to the expression ( 18). From Eqs. 
(A13), (A14), and (A151 it follows that when the direction 
of the wave vector qli changes the width of the region of 
Landau damping (in which Im IIh # O )  changes from 
1/2 Whsin(qll a/2) at q, = 0 to Wh sin (qll ~ / 2 ~ ' * )  along the 
diagonal of the Brillouin zone (q,  = qy = qll /21'2). 

We note that averaging over the directions of ql, spreads 
the square-root singularity in the expression (18) at the 
point Iwl = + Whsin(qxa/2) over w into a peak of width 
Aw Z+ Wh sin(k,,a) at qll z 2k,, . 

" In what follows, for brevity, we shall denote them as I- and h-carriers, 
from the English words light and heavy. 

2'The possibility of the existence of acoustic plasmons was studied pre- 
viously in Refs. 20-23 for 3 0  multiband transition metals, semimetals, 
and multivalley semiconductors and in Ref. 23 for two-band layered 
metals like cuprate metal-oxide compounds. 

'' In Ref. 23 it is incorrectly asserted that in 2 0  systems wide transmis- 
sion windows occur in regions of quantum Landau damping at frequen- 
cies Iwl< qll u F ~ q l  /2kF - 1 I, where k, is the Fermi momentum. Such 
transmission windows exist only in 1D metals.26 

4' This expression is valid both in the case of a narrow ID band with 
nondegenerate carriers in conducting chains and for a narrow 3 0  band 
along the principal axes of a cubic crystal. 

" Here it is presumed that passage to the continuous limit, when a-0 but 
fi/a = const and mX = const, is made. 

6' For almost localized h-carriers Drude damping should be largely sup- 
pressed, but the electron-electron scattering can be significant (see be- 
low). 

"The optical longitudinal mass in the plane of the layers satisfies 
m i  -m,, while the transverse mass (along the c axis, which is parallel 
to the z axis) satisfies m: > 102mi;, since the ratio of the longitudinal 
and transverse plasma frequencies satisfies 01, /wk, > 10. Thermodyna- 
mic, kinetic, and magnetic measurements give too high values of m;i on 
account of the renormalization of the spectrum of quasiparticles near 
the Fermi surface (see below). 

" On the basis of the "plasma" model of a meta145.46 or in the polar model 
of an ionic the polarizability of the ionicjattice, i.e., ex- 
change of virtual optical phonons, is also included in n. 

9'The even part of 2,, ( o )  as well as the Coulomb self-energy PC, which is 
determined by the screened matrix element of Coulomb reprrlsion 
V,  (q)/~(q,w,,, ), are included in the renormalization of the chemical 
potential p, and the effective mass m: in the energy of the I-carriers 5,. 

lo' When the electron-phonon interaction is taken into account, the renor- 
malization of the effective mass at the Fermi surface is determined by 
the renormalization factor Z(0) = 1 + A,, +A,, , where A,, is the 
electron-phonon interaction constant. 

' I '  The heat capacity of the nondegenerate gas of h-carriers in a narrow 2 0  
band Ch (T )  - k,N,  ( T ) ,  at least for T 5  Wh/4, i.e., C, < C, for 
Nh 0 , .  

I2'For T< Wh/4, when the expression (19) can be used for Im Ilk,  we 
have P( T)  a T - 'I2 and yPl (0) a TIfZ. 

13)  In a narrow 2 0  band with the spectrum (2)  the exact dependence has 
theformZh(T)a4T sinh(Wh/4T)/WhZ,(Wh/4n;for T( W,/4we 
obtain Z,, a T 

14' If y,, (0) a TIf2 and u, <oh ,  then p ( T )  a This is characteristic 
for intermetallic compounds of the form V, Si and Nb, Ge.11,23 

15'  A more detailed discussion of the calculation of Re Ilh and Im II, is 
given in Ref. 64. 
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