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A hydrodynamic model is proposed for finding a self-consistent description of the space-time 
evolution of low-frequency electromagnetic fields in an inhomogeneous plasma with an 
anisotropic electron distribution. An ionization source and collisional dissipation are taken into 
account. This model is used to calculate the electromagnetic fields in a plasma slab formed in a 
medium after the passage of a pulse of ionizing radiation through it. The mechanism for the 
excitation of electromagnetic fields involves the combined effects of two factors: the 
inhomogeneity of the plasma density and the anisotropy of the electron energy distribution. 
Under certain conditions the energy of the electromagnetic field may be comparable in magnitude 
to the thermal energy of the plasma which is produced. The duration and spectrum of the 
electromagnetic pulse are evaluated. 

1. INTRODUCTION 

As pulses of hard electromagnetic radiation or particles 
pass through a medium, a plasma wake forms and electro- 
magnetic waves are excited in the microwave and rf ranges, 
at frequencies well below the plasma frequency. This process 
was examined in Refs. 1 and 2 for the case of a pulse of y 
radiation in the earth's atmosphere. In the present paper we 
wish to point out that the efficiency with which the energy of 
the ionizing pulse is converted into microwave radiation can 
be raised significantly. The idea is to make use of the fact that 
the plasma which is produced in the wake of the ionizing 
pulse is a nonequilibrium, anisotropic plasma and to arrange 
conditions for the conversion of the nonequilibrium plasma 
energy into electromagnetic radiation. 

Deriving a complete self-consistent kinetic description 
of the excitation of low-frequency electromagnetic waves in 
an anisotropic plasma runs into serious difficulties and re- 
quires extensive numerical calculations. A simpler model of 
anisotropic rotational electron hydrodynamics was pro- 
posed in Refs. 3 for the purpose of describing self-consistent 
electromagnetic structures in plasmas with an anisotropic 
pressure. That model is based on a system of equations for 
the quasistatic magnetic field and the stress tensor. That 
model follows from the equations of the ten-moment ap- 
proximation (the density, the velocity, and the stress tensor) 
and Maxwell's equations when the higher-order moments 
(the moments of third and higher orders) of the electron 
distribution are ignored. The theory derived in Refs. 3 has 
been used to study the excitation of electromagnetic fields as 
a result of the Weibel instability of an anisotropic, spatially 
homogeneous p l a ~ m a . ~  

In an inhomogeneous plasma, the instability mecha- 
nism is joined by another mechanism which excites electro- 
magnetic fields. This other mechanism stems from the aniso- 
tropic thermopower. It corresponds to an increase in the 
amplitude of the magnetic field which is linear in time, so if 
the inhomogeneity and the anisotropy are sufficiently pro- 
nounced this other mechanism may be more important than 
the instability mechanism, for which the increase in the 
fields with the time is exponential. In a plasma with an iso- 
tropic pressure, the thermoelectric effect stems from the 

presence of crossed gradients of the temperature and the 
density. In an anisotropic plasma, it would be sufficient for 
only one of these quantities to be inhomogeneous. For exam- 
ple, Aliev et al.' have examined the excitation of a magnetic 
field due to the existence of an angle between the anisotropy 
vector and the temperature gradient for the case of a plasma 
produced by a laser beam. 

For a plasma produced by hard ionizing radiation, the 
electron density gradient is more important than the elec- 
tron temperature gradient. Accordingly, in the present pa- 
per we study the excitation of electromagnetic fields as the 
result of the existence of an angle between the anisotropy 
vector and the density gradient. For this purpose we use the 
model of anisotropic rotational electron hydrodynamics, in 
which we include, in addition to the factors considered in 
Ref. 3, an external source of anisotropic ionization and elec- 
tron collisions, which describe the magnetic viscosity, ran- 
domization of the pressure, and Joule heating of the plasma. 
To first order in the amplitude of the magnetic field which is 
excited, we analyze the excitation of low-frequency electro- 
magnetic fields over times much shorter than the electron 
collision time. We do this for four characteristic density pro- 
files, which represent, respectively, a plasma slab, a semi- 
infinite plasma with a diffuse boundary, an unbounded plas- 
ma with a modulated density, and a plasma with a linear 
density profile. 

We will see that the electromagnetic field is excited 
most efficiently in the case of a fairly high density gradient 
with a length scale 5 c/w,, where c is the velocity of light, 
and w, the plasma frequency. Over times shorter than the 
ionization time of the medium, the rate at which the electro- 
magnetic field is excited is determined by the shape of the 
ionizing pulse, while after a long time the strength of the 
magnetic field increases linearly with the time. The spatial 
distributions of the magnetic field in a plasma slab and in the 
boundary region of a semi-infinite plasma are soliton-like, 
corresponding to the magnetic field of a system of two anti- 
parallel currents. The magnetic field in a plasma with a sinu- 
soidally modulated density is spatially periodic and (gener- 
ally) anharmonic. In a collisionless plasma, the growth of a 
quasistatic electromagnetic field has the result that the ener- 
gy of this field becomes comparable to the thermal energy of 
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the electrons fairly quickly, if the electrons resulting from Here = eB/mc is the electron gyrofrequency, and the mo- 
the ionization of the medium by the pulsed source have a ments of the electron distribution function are given by 
sufficiently anisotropic energy. In this case the excitation of 
the electromagnetic field goes into the nonlinear regime, n = j  dvf, u = j  dvvf, ~ = m j  dv(v-u) (v-u)f. 
whose analysis lies outside the scope of the present paper. 

Taking collisions into account, we study the excitation 
of quasistatic electromagnetic fields in the two limiting cases 
L 2 % ~ 2 / ~ ;  (slightly inhomogeneous plasma) and 
L '<c2/u; (highly inhomogeneous plasma), where L is a 
length scale of the field variation. We study the space-time 
distribution of the magnetic field generated by a pulsed 
source which acts over a time scale much shorter than the 
electron-collision time. The general expressions are illustrat- 
ed in the particular examples of a plasma slab and a density 
well. The results derived below are applied to a fully ionized 
plasma, for which the collision rate (the rate of electron-ion 
collisions) is proportional to the electron density, and also to 
a weakly ionized plasma, with a collision rate (in this case, 
the rate of electron-neutral collisions) proportional to the 
atomic density. If the electron collision rate is sufficiently 
high, the magnetic-field energy is small in comparison with 
the anisotropic thermal energy of the electrons. In this case 
the linear approximation is sufficient (a  nonlinear analysis is 
not required). 

2. EQUATIONS OF DISSIPATIVE ANISOTROPIC 
ROTATIONAL HYDRODYNAMICS WITH A SOURCE 

We start from a kinetic equation forf, the electron dis- 
tribution function, in which we incorporate the collision in- 
tegral J,  [ f ] and an ionization source with a strength Q(r, 
t): 

Here e, m, and n are the charge, mass, and density of the 
electrons; c is the velocity of light; the last term on the right 
side of (2.1 ) describes the ionization of a medium with atom- 
ic density no; No = zn,; and z is the degree of ionization of 
the atoms. We assume that the electrons resulting from the 
ionization have an anisotropic energy distribution (in the 
direction of the unit vector h) ,  which is described by a func- 
tionf, (v) which depends on vi = ( h ~ ) ~  and v, = [hvI2 and 
which satisfies the conditions 

Multiplying Eq. (2.1 ) by 1, v, and mu, v, , integrating over 
the velocity v, and using the ten-moment approximation, we 
find the following system of equations for the electron den- 
sity, the average velocity u, and the components P, of the 
stress tensor P: 

d n - + div nu=],, 
d t 

The braces (curly brackets) mean that the corresponding 
tensors have been put in symmetric form: {A,) = A, + Aji . 
The quantity [ P a ]  is a tensor with the components 
[ P  a ] ,  = eikrq, a,, (VP) is a vector with the components 
VjPV, gg is a tensor with the components gigj, and the right 
sides of Eqs. (2.3)-(2.5) can be expressed in terms of the 
right side of the kinetic equation (2.1 ) as follows: 

To find explicit expressions (2.6), we use the approximation 

where y(v) is the distribution function averaged over the 
angle of the vector v. In addition, we assume that, in the 
simplest case, the electron collision rate v is independent of 
v. 

Making use of the comments regarding the integrals in 
(2.6), we can write 

Io=Q (N,-n), J,=-vnu-Q (N,-n)u, 
(2.7) 

where I i s  the unit tensor (I,, = 6, ). The transport equations 
(2.3)-(2.5) are supplemented with Maxwell's equations, in 
which we ignore the displacement current: 

1 aB 
--= 

4n 
-rot E, rot B = - enu. 

c at C 
(2.8) 

We assume that the time scales of the variations of the elec- 
tric and magnetic fields are much longer than the period of 
the electron plasma waves,'and we assume that the length 
scale of these variations is much greater than the Debye 
length. Following Ref. 3, we ignore the potential component 
of the velocity in Eqs. (2.3)-(2.5). This approach corre- 
sponds to the model of an anisotropic rotational electron 
hydrodynamics." Equations (2.3)-(2.5), (2.8) then re- 
duce to the following equations for the density, the quasistat- 
ic magnetic field B, and the components of the stress tensor 
P: 

8 n 
- = Q (Na-n) , 
d t 

(2.9) 
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FIG. 1. Geometry of the problem. 

where w, = ( 4 1 ~ e ~ n / m ) " ~  is the plasma frequency, and 
u = e2n/mv is the electrical conductivity of the plasma. 
With v = 0 and Q = 0 we find n = const from ( 2 . 9 ) ,  and 
Eqs. (2 .10)  and (2.1 1 ) become the equations derived for the 
model of anisotropic rotational electron hydrodynamics in 
Ref. 3. 

Equations (2 .9)- (2 .11)  constitute the foundation of a 
dissipative anisotropic rotational electron hydrodynamics. 
They generalize the model proposed previously by incorpor- 
ative variations in the plasma, particle collisions, and the 
source causing anisotropic ionization of the medium. This 
source determines the rate of increase of the electron density 
[the right side of ( 2 . 9 )  ] and the anisotropy of the particle 
energy [the first term on the right side of (2.1 1 ) 1. Incorpor- 
ating collisional dissipation determines the magnetic viscos- 
ity c2/4?ru [in Eq. (2 .10)  1, the randomization of the pres- 
sure [the second term on the right side of (2.1 1 ) 1, and 
anisotropic Joule heating of the plasma by rotational cur- 
rents [ the last term on the right side of ( 2 .  l  l  ) ]. 

We will discuss the 1D case, in which the vector B has 
only a y component, and the tensors P and T have only xx, 
xz, and zz components, which depend only on x .  We assume 
that the anisotropy vector h of the source makes an angle a 
with the x axis; we thus have Txz # O  (the geometry is shown 
in Fig. 1 ). Equations (2.10) and (2.1 1 ) can then be rewrit- 
ten as 

ap,, -- a 1 aa - ( P , - P , , ) Q - c ~ P , - ~ -  - 
a t  

vPxz+Q (N.-n) T,,. ax w, a x  

In (2.15) we ignore the terms which contain bilinear combi- 
nations of P and R. This simplification is legitimate for a 

sufficiently short time t < 0 - ', when we note that the values 
of the components are comparable, P-N,  T. On the other 
hand, the times under consideration here must not be so 
small in comparison with Q - ' that the medium is not ion- 
ized. Assuming that Q and Txz are independent of x, we find 

1' 

X N. ( x )  erp [ J df' v ( x ,  tr ' )  1. (2.17) 
f 

Expression (2.17) for the source G was found by solving Eq. 
(2 .15) .  In the process we assumed that the ionization of the 
medium began at t  = 0 and that the increase in the electron 
density is described by the following expression, in accor- 
dance with ( 2 . 9 ) :  

I 

Expression (2.18 ) for the electron density determines 
the coordinate and time dependence of the plasma frequency 
on the left side of Eq. (2 .16) .  Since we have 
T,, = 1/2( TI\ - T, ) sin 2a, where a is the angle between 
the anisotropy axis h and the x axis, we can assume Txz > 0 
for definiteness. 

3. EXCITATION OF QUASISTATIC ELECTROMAGNETIC 
FIELDS IN A COLLISIONLESS PLANE-LAYER PLASMA 

We first consider the case v = 0 ,  which corresponds to 
short times-much shorter than the electron collision time 
scale. In this case we have 

and Eq. (2 .16)  becomes 

where S ( t )  is determined by the shape of the ionizing pulse 
according to (2 .18) ,  and v$ = Tx, /m.  The quantity N ( x )  in 
Eq. ( 3 . 2 )  is the density of atoms, normalized to its maxi- 
mum value N,,, ( N  = N,/N,,, ), and 02, = w i / N S  = const is 
the maximum plasma frequency. For the analysis below, we 
will also write an equation for the rotational electric field 
8' ( x ,  t )  = eE / m ,  which is related to R by 0 = d8'/dx ac- 
cording to ( 2 . 8 ) .  Substituting it into ( 3 . 2 ) ,  we find 
(a: = 4?reZNa/m) 

where the constant of integration 8', ( t )  is to be determined 
from the boundary conditions. 

It follows from ( 3 . 2 )  and ( 3 . 3 )  that the spatial distribu- 
tion of the magnetic field is determined by the density profile 
Nu ( x ) .  We will be looking at several characteristic density 
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profiles. We first consider a plasma slab, setting 

The boundary conditions on Eq. (3 .2 )  are the conditions 
that the magnetic field and the current, i.e., R and R', be 
spatially bounded. Solving Eq. ( 3 . 2 ) ,  we find 

~ ( x ,  t ) = - 2 k 2 - z -  
s ( t ' )  dt' Z z 2  c;':x! 2k2+ ? o > / c 2 ) s  ( t ' )  ' (3 .5 )  

After a sufficiently long time, greater than the length to of 
the pulse Q ( t ) ,  with S ( t )  -So = const, the magnetic field 
increases linearly with time. The magnetic field reaches its 
highest value for thin slabs, with a density gradient satisfy- 
ing k2w,SA'2/c. If the source is sufficiently strong 
(Qt,  $ 1  ), we have So 11 1 ;  such values correspond to full 
ionization of the plasma. For Qt, 5 1 ,  the plasma is not fully 
ionized (So < 1 ) .  The spatial distribution of the magnetic 
field, (3 .5 ) ,  reproduces the density profile ( 3 . 4 ) .  Figure 2  
shows distributions of B ( x )  and corresponding distribution 
of the current, j ( x ) ,  and of the electric field, E ( x ) .  

We approximate a semi-infinite plasma by the density 
profile corresponding to an isothermal rarefaction wave: 

There is no source in Eq. ( 3.3 ) for x  > 0  in this case, and we 
have 8,  = 0, since there are no fields as x - co . Solving Eq. 
(3 .3 )  in the regions x < 0  and x  > 0 ,  and imposing the condi- 
tions that the electric and magnetic fields be continuous at 
x  = 0 ,  we find 

t 

Il ( g o )  e x p ( - g o k x / 2 ) ,  2 2 0  
e x p ( k x / 2 ) ,  x C 0  ' (3 .6 )  

where 

f o  = f ( x  = O ) ,  and I, and I ,  are modified Bessel functions. 
Qualitatively, the magnetic field distribution in (3 .6 )  and 
the corresponding current distribution correspond to the 
preceding case (Fig. 3 ) .  The magnetic field reaches a maxi- 

FIG. 2. Distributions of the magnetic field, the electric field, and the 
current for a slab of collisionless plasma. 

FIG. 3. Distributions of the magnetic field, the electric field, and the 
current in a semi-infinite collisionless plasma. 

mum in the transition layer ( x  = 0 ) .  As in the case of a slab 
of finite thickness, the magnetic field is generated most effi- 
ciently under the condition k  2 w,/c ,  which corresponds to 
a fairly rapid change in the density at the boundary. 

In the asymptotic regime ( t )  to ), with a strong source 
So -- 1 and a large density gradient k 2 w ,  /c, Eqs. (3 .4 )  and 
(3 .6 )  yield the estimate 

According to (3 .7 ) ,  the magnetic-field energy becomes com- 
parable to the thermal energy of the electrons over a time 
t -  w ,  ' ( c / v , ) .  At such times, however, the plasma dynam- 
ics should be described self-consistently by means of the non- 
linear equations (2.12) - (2 .15) .  The linear regime of the ex- 
citation of quasistatic electromagnetic fields, in which we 
are interested here, corresponds to time t ( w ;  ' ( c / v , ) .  

As another example we consider a stratified structure, 
which we model with a density distribution 

l + e  cos kx 
N ( x ) =  , O<e<I. 

I + &  

In this case the equation for the rotational electric field, 
( 3.3 ) , becomes a Mathieu equation. Introducing the dimen- 
sionless coordinate z = ( x u ,  / c )  [S( t  )/( 1 + E )  ] and 
the dimensionless field g = ( k v $ ~ )  - ' 8,  we find 

kc  I f e  '" 
g"- ( l + e  cos k o z ) g  = sin koz, ko =-[ -1 . (3 .9 )  

o m  S ( t )  

A spatially bounded solution of Eq. (3 .9 )  can be written in 
series form: 

The coefficients of this series are found from the chain of 
algebraic equations 

If E is sufficiently small ( E &  1 ), or if k:$ 1, then we find 
from (3.10) and (3.11) 

sin koz 1  e sin 2koz g m  --+---. 
l+ko2 2 l+k: 1+4k02 ' 

244 Sov. Phys. JETP 73 (2), August 1991 Bychenkov etaL 244 



FIG. 4. Electric field distribution g (x )  (solid line) for a stratified plasma 
( E  = 0.9, ko = 0.4) and density distribution N(x)  (dashed line). 

i.e., the magnetic field distribution is given by 

dt' S ( t ' )  
Q=-skau~2 I S(t')+k2c./om' . 

0 

x [cos k x  - 
1+4 jcac2/om2s ( t ' )  

Under the conditions t S  to and So =: 1 the strongest magnetic 
field is excited in the case of a short-wavelength ( k  2 o,/c) 
density modulation. The field which is excited [see (3.10) ] 
is periodic, with a spatial oscillation period equal to the peri- 
od of the density modulation, (3.8). This field may reach the 
nonlinear level. Developing stratified structures with a peri- 
od -2~c/w, may prove to be an effective way to generate 
strong electromagnetic fields in large volumes. Figure 4 
shows the electric field distribution in the case of a deep 
density modulation ( E  = 0.9) with ko = 0.4. 

Yet another example which we will discuss here is a 
linear density profile: Na (x) K X  at x>O and Na = 0 at x < 0. 
In this case the length scale of the plasma variations, 
L = Na/N: = x, increases linearly along the coordinate. 
The condition that there is no electric field as x- co deter- 
mines the constant @?, = 0 in Eq. (3.3). Introducing the 
length scale of the field variation, 

and the dimensionless coordinate 6 = X x ,  we find an inho- 
mogeneous Airy equation from ( 3.3 ) : 

The following solution of Eq. (3.13) is bounded as g+ co 
and satisfies the equality $? = cX@? ' ,  at g = 0 (this equality 
simulates the conditions at a plasma-vacuum interface, at 
which the magnetic field is equal to the electric field) : 

where A i ( 0  and Bi(6) are Airy functions. Figure 5 shows 
the spatial distributions of the electric field in (3.14) and of 
the corresponding magnetic field. The electric field falls off 
monotonically from the boundary into the plasma 
[ 8 ( X  - oo ) - 1/x]. The magnetic field increases with dis- 
tance from the boundary, goes through a maximum at the 
point x, - 1 / X ,  at which the local length scale of the den- 

FIG. 5. Distributions of the magnetic and electric fields in a plasma with a 
linearly increasing density. 

sity variations, L zx , ,  is equal to the electromagnetic length 
scale c/w, (x, ), and decreases with distance into the plas- 
ma. A field configuration of this sort can be produced by a 
system of two oppositely directed currents 
[ j = (mc2/4~e)aS2/dx ] flowing in the direction perpendic- 
ular to the density gradient and perpendicular to the mag- 
netic field. We wish to stress that, as in the case x - +  co with a 
bounded plasma density, the magnetic and electric fields dis- 
appear as x + co, despite the presence of a density gradient 
over the entire half-space x > 0. The reason is that the source 
of the fields is a quantity proportional to d In N,/dx; i.e., 
this source is "turned off' as x + w . 

The linear stage of the excitation of quasistatic magnet- 
ic fields in a homogeneous plasma with an anisotropic elec- 
tron energy under conditions corresponding to the onset of a 
Weibel instability was studied in Refs. 7 and 8. In the course 
of that instability, the electromagnetic perturbations which 
are excited most efficiently are those which have a character- 
istic wave number -w,/c, i.e., which have the same wave- 
length as in our case of a stimulated excitation of a magnetic 
field. If the electron pressure is sufficiently anisotropic 
( TII 9 T, ), the nonlinear effects come into play at times 

when the magnetic-field energy rapidly reaches a value com- 
parable to the thermal energy of the particles. [For exam- 
ple,' we would have B~ , , / 4mTl l  ~ 0 . 2  for an anisotropy 
TII /T, = 25, if the initial level of the magnetic fluctuations 
were B(t = 0)/ (4rnTII ) '" = 10 - '.I It can thus be asserted 
that under the condition T,, - Til (provided that sin 2a is 
not small in comparison with unity), the mechanism of a 
stimulated excitation of electromagnetic fields, which pre- 
dicts that a nonlinear regime will be reached in a time 
-w; 'c/v,, turns out to be more effective than the field 
excitation due to an electromagnetic instability which devel- 
ops from an initial noise at the thermal level. 

4. EXCITATION OF A QUASISTATIC ELECTROMAGNETIC 
FIELD PULSE IN ACOLLISIONLESS PLASMA 

It was shown above that over a time 

where L = l /k is the length scale of the plasma density var- 
iations, the magnetic-field energy becomes comparable in 
order of magnitude to the therm'al energy of the electrons, so 
nonlinear effects must be taken into account. In a real situa- 
tion, however, this event would be preceded by the onset of 
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collisionless-dissipation effects, which would suppress the 
excitation of the quasistatic electromagnetic field. In this 
case, a linear theory with collisions might prove sufficient 
for a comprehensive description of the space-time evolution 
of the magnetic field which is excited. This problem should 
be solved on the basis of Eq. (2.16) with the source (2.17) 
and relation (2.18). We restrict the discussion below to the 
two limiting cases L 2, c2/wi and L <c2/wi. 

In the first of these cases, L 2)~2/wi ,  the equation for 
the magnetic field is 

x exp[ - Q (t") dt" - j v (x, t") dl"] , 
0 t' 

where a2 = c2/4m=v(x,t) c2/w; (x,t) is the diffusion coef- 
ficient. For definiteness, we relate v(x, t)  to either electron- 
ion collisions (a  fully ionized plasma) or electron-neutral 
collisions (a  weakly ionized plasma). In the former case, the 
collision rate is proportional to the electron density, 
v/wi = const, and the diffusion coefficient a2 is constant. In 
the latter case the collision rate is proportional to the density 
of neutral atoms, and we have v/wi a S - (t);  i.e., the diffu- 
sion coefficient is determined by the shape of the ionizing 
pulse. In each case the diffusion coefficient is independent of 
the coordinate x, so we can immediately write out the solu- 
tion of Eq. (4.1 ) . 

For a fully ionized plasma, the following solution of Eq. 
(4.1 ) with a constant diffusion coefficient satisfies the initial 
condition a= 0 at t = 0: 

1 G (x', t') 
~ ( ~ , t ) = - j  dtf J dxl 

2anlA0 -_ (t-t') '" 

Here we must assume v(x,t) = v, N(x)S(t) SO '. Expres- 
sion (4.3) describes a competition among three processes: 
excitation of the magnetic field by the source, diffusion of the 
magnetic field out of the regions in which it is excited most 
efficiently, and dissipation of the anisotropy energy, which 
results in the disappearance of the magnetic field. 

In the case of a weakly ionized plasma we have 
v(x) = v, N(x) and a2 = vmc2/~;S(t).  We introduce a 
new time variable 

dt' 
T =  j- 

S(t') 

and we reduce (4.1) to an equation with a constant diffusion 
coefficient. Solving this equation, we find (4.3) in which 
t - t ' is replaced by J:, dt " S  - ' ( t  " ). The solutions found 
thus determine the space-time distribution of the magnetic 
field as a function of the spatial distribution of the density N 
and the shape of the ionizing pulse (S and Q). 

A case of practical interest is the excitation of quasistat- 
ic electromagnetic fields by an intense, short ionizing pulse. 
Specifically, the pulse length to is short in comparison with 
the time scale of the magnetic-field evolution. For both a 
fully ionized plasma and a weakly ionized plasma we can use 
the following approximation for the source which generates 
the magnetic field [cf. ( 3.1 ) 1 : 

Using this expression in (4.3), we find the explicit space- 
time distribution of the magnetic field. Under the conditions 
for the applicability of Eqs. (4.1 ) and (4.4), we can replace 
(4.3) by a simpler and more convenient form of the solution 
n ( x ,  t) .  Here we are making use of the circumstance that in 
the case under consideration here (L $ c2/wi ) essentially 
no magnetic-field diffusion can occur over the time scale 
( - v; ' ) on which the source (4.4) exists, because of the 
relation a2/L 2<vm. We can thus ignore the second term in 
(4.1 ) and write 

Q(x, t) = dtl G(x, t'), 

where the source G(x, t)  is given by (4.4). We find 

dln N 
Q(X, t ) = u T 2 t e - v m " [ ~  - , , , ~ t ( ) ]  dx . (4.6) 

In the common case 

the 'magnetic field described by (4.6) evolves in the follow- 
ing way. In the initial stage of the evolution ( t  < v; ' ) the 
magnetic field increases linearly with the time (Sec. 3) .  It 
then goes through a maximum and falls off to zero. The in- 
stant at which the magnetic field reaches its maximum value 
at a given spatial point is given by 

This dynamic picture is illustrated by Fig. 6 for the particu- 
lar density distribution 

For density profiles (or parts thereof) characterized by 
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FIG. 7. Time evolution of the magnetic field for a density 
well (k2c2 /w i  < 1 ) .  a-kx = 0.2; M . 3 5 ;  c-1. 

8> 0 the dynamic picture of the relaxation of the magnetic t 

field is more complicated. After an initial linear increase Q(., I)= -31 I S ( t ' ) t '  
c2 ( t ) [ $ ) (t-4~; I ) ,  the magnetic field reaches a maximum. It then 

decreases, changes direction, increases in magnitude, goes t' 
through a second extremum at the time -- (l-e-"m~)+trNe-vm~N] , 

"4' 
1 

v,t=- 
2N(x) 

{P ( ~ ) + 2 -  [p2 (2) f 4]"'), (4-8) wherep(t, t ') = t holds in the case of a weakly ionized plas- 
ma (v  = Y, N) or 

and then drops to zero. This case is illustrated in Fig. 7 by the t '  - - 

time evolution of the magnetic field at a certain point x for 
the density well P(t, t l )  =tl-S;' j S(r )dr  

t 

kZx2 1 
N=N, erp (- ln -) , N.=O, 1 

l+k2xz No 

(Fig. 7b). Shown for comparison are curves of the magnetic- 
field relaxation for two other points on the density profile. 

In the course of the relaxation, the magnetic field 
reaches the value determined by 

It follows that if the collision rate is sufficiently high, specifi- 
cally, v, > w, (v,/c) (c/w, L )  2, the energy of the magnetic 
field which is excited is small in comparison with the elec- 
tron thermal energy. One might suggest that in a situation of 
this sort it would be legitimate to use the linear approxima- 
tion to describe the excitation of quasistatic electromagnetic 
fields. 

We turn now to the relaxation of the magnetic field in 
the case of small-scale variations: L (c2/wj. In this case we 
can ignore the term dR/dt in Eq. (2.16) and rewrite this 
equation as 

As above, we restrict the discussion to the case in which a 
short ionizing pulse is applied to the medium, and the excita- 
tion of the magnetic field caused by this source can be de- 
scribed by Eq. (4.4). From Eq. (4.10) we find 

d SZ vr2 d d2Q , + - - - w,,,2~ (t) - Ne-vmNt. (4.11) 
ax at ax c2 ax 

Assuming that we have R = 0 at N = 0, we find the follow- 
ing solution from (4.1 1 ) : 

for the case of a fully ionized plasma (v = Y, NSS; ' ). At 
times t$ to we then find 

Expression (4.12) describes an increase of the magnetic field 
to its maximum value over a time t=. 2/v, N(x), followed by 
a decrease and an approach to a steady-state value 
(v, Nt, 1 ), determined by 

The maximum value which the magnetic field reaches in the 
course of its relaxation is only 13% higher than the steady- 
state level. It is physically obvious, however, that the mag- 
netic field could not go into a steady state with a finite mag- 
nitude in a dissipative system. Consequently, expression 
(4.12) is not valid after a long time. The reason is that in the 
stage in which the magnetic field decreases ( t  > 2/v, N) the 
length scale of this field is increased by diffusion, and the 
condition under which (4.12) is applicable, L &c2/m;, is 
violated. The subsequent relaxation of the magnetic field oc- 
curs in a regime of large-scale variations, as discussed above. 
Figure 8 shows spatial distributions of the magnetic field 
according to (4.12) in a plasma slab with a density distribu- 
tion described by (3.3). We see from these figures that as 
time elapses there is a transition to larger-scale variations in 
the magnetic field. 

If the source of anisotropic ionization is sufficiently 
strong (So =: 1 ), according to (4.13 ) , the magnetic-field en- 
ergy will be small in comparison with the electron thermal 
energy if v, > w, v,/c. This inequality determines the con- 
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dition for the applicability of the linear theory for the excita- 
tion of small-scale ( L  5 c/op ) electromagnetic fields. 

5. CONCLUSION 

In this paper we have proposed a hydrodynamic model 
of an inhomogeneous and anisotropic plasma for the pur- 
pose of describing the excitation and dynamics of low-fre- 
quency (w g wp ) electromagnetic fields. An important dis- 
tinction between this paper and preceding ones is that we 
have incorporated a plasma density variation, electron colli- 
sions, and a time variation of the anisotropic ionization 
source. On the basis of this model, we have predicted a new 
effect: an increase in the rate of excitation of electromagnetic 
fields under conditions such that two factors operate jointly. 
One of these factors is the variation of the plasma density, 
and the other is the anisotropy of the electron distribution, if 
the density-gradient vector and the anisotropy vector are not 
collinear. In contrast with the ordinary instability, which 
occurs only if there are initial seed perturbations, which sub- 
sequently grow exponentially, in the case at hand there is a 
power-law increase in the field amplitudes, starting at a zero 
initial level. 

The excitation of low-frequency electromagnetic fields 
is most efficient in the case of small-scale density variations 
( 5 c/wP ). In the collisionless case, the plasma relaxation 
goes into a nonlinear regime over a time scale -up- ' (c/v, ) . 
A study of this nonlinear regime will require numerical 
simulation. In a dissipative plasma with a collision rate 
v>wPu,/c, the linear theory derived here draws a fairly 
comprehensive picture of the relaxation of low-frequency 
electromagnetic fields if plasma recombination is ignored or, 
equivalently, if the collision time is assumed to be small in 
comparison with the recombination time. The results de- 
rived here on the plasma relaxation describe excitation of 
electromagnetic fields with a spectrum bounded by a maxi- 
mum frequency m,,, - Qg wp and a minimum frequency 
wm,, -Ye 

Estimates of the maximum magnetic field, 
B 5 ( 4 m T )  '", and the maximum electric field, 
E 5  (w/wP )B, in the plasma indicate that the electron ani- 
sotropy energy could be converted into electromagnetic ra- 
diation more efficiently than in the case of the Weibel insta- 
bility.'~~ 

We conclude with a discussion of the conditions under 
which the effect predicted here might be observed experi- 
mentally. A stimulated excitation of low-frequency electro- 
magnetic fields in an inhomogeneous medium could be 
caused by ionizing x radiation. In this case the anisotropy of 
the electron energy distribution would result from the pho- 
toelectric effect, so the average electron energy in the direc- 
tion transverse with respect to the propagation direction of 
the ionizing pulse would be roughly twice the average longi- 
tudinal energy. The x-ray source must generate an energy 
flux high enough to ionize the plasma over a time much 
shorter than the time scale ( Y  - ) over which the photoelec- 

trons would become isotropic: 

where up, is the cross section for the photoelectric effect, q is 
the energy flux density of the x radiation, and E,  is the x-ray 
energy. The length of the radiation pulse must be shorter 
than the time scale Y - ' over which the electron distribution 
would become isotropic. If the pulse is instead long 
( ) Y - I ) ,  it would become necessary to satisfy the inequality 
(5.1 ) at times 5 Y - I .  In this case we would thus need a pulse 
with a steep leading edge. These requirements are right at the 
limit of present experimental capabilities. There is the possi- 
bility that the effect which we have been discussing here- 
the excitation of electromagnetic fields-may be realized in 
the laboratory in the not-too-distant future. 

An excitation of low-frequency electromagnetic fields 
can also occur when a pulse of y radiation passes through an 
inhomogeneous medium, in which case the atoms would be 
ionized by the Compton effect, and the energy of the elec- 
trons along the direction of the y rays would be higher than 
their transverse energy. The efficiency with which the ener- 
gy of the ionizing radiation is converted into an electromag- 
netic field would be lower in this case than in the case of x 
radiation, since the cross section for the Compton effect is 
smaller than the photoionization cross section. 

We would also like to call attention to a possible mani- 
festation of this effect under astrophysical conditions. We 
know that many astrophysical objects (pulsars, supernovae, 
etc.) are characterized by intense x-ray and y-ray bursts. If 
the hard radiation of these bursts interacts with (for exam- 
ple) irregularities of gaseous nebulas with a length scale 5 1 
km, and if the leading edges of the pulses are steep enough to 
satisfy the inequality (5.1) at times -v- ' ~0.01-0 .1  s, then 
long-wavelength electromagnetic radiation in the rf range 
(w < lo6 s -  I )  may result. 

We wish to thank V. N. Novikov for assistance in the 
numerical calculations. 

"See Ref. 6 regarding the conditions for the applicability of this model. 
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