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The exchange splitting of the singlet and triplet terms is calculated for a hydrogen molecule in an 
ultrahigh magnetic field, such that the distance between Landau levels, M /mc, in the hydrogen 
atom is greater than the Coulomb energy (the Rydberg) . The expressions derived here for the 
exchange splitting and the binding energy of the hydrogen molecule are asymptotically exact at 
interatomic distances R large in comparison with the characteristic sizes of the atoms in an 
ultrahigh magnetic field H )  1 (in atomic units). The triplet state of the hydrogen molecule is the 
ground state in an ultrahigh magnetic field. For the singlet state, which lies considerably higher, 
there may be metastable states for R ( 1. 

1. INTRODUCTION m2e3c/h3H< I ,  (1) 

In an ultrahigh magnetic field H, higher than the char- 
acteristic atomic value H, = m2e3c/?i3 = 2.35. lo9 Oe, the 
atoms are stretched out to a great extent parallel to the mag- 
netic field. Such atoms should have a large electric quadru- 
pole moment, and they may bind into stable molecules. This 
problem was discussed in Refs. 1 and 2 in the self-consistent- 
field approximation. With the exchange interaction and the 
long-range interaction ignored, it was shown there that the 
formation of "dense" molecules, in which the distance be- 
tween atoms is small in comparison with the size of the 
atoms themselves, becomes favored from the energy stand- 
point in an ultrahigh magnetic field. 

A more accurate analysis, however, shows that for hy- 
drogen-like atoms there exists a certain interval of magnetic 
fields, above the characteristic atomic value, in which the 
atoms may bind into molecules over distances much greater 
than the characteristic linear atomic dimension along the 
magnetic field direction. Direct numerical calculations from 
the formulas given in Ref. 1 for the interaction energy of a 
hydrogen molecule show that the results of Ref. 1 are valid 
only for fields - 1000 and above (here and below, the mag- 
netic fields are given in atomic units; H, = 1). For weaker 
fields, which satisfy the inequality ( 1 ) below, a numerical 
calculation shows that the binding energy of the molecule is 
small and that the size of the molecule is substantially 
greater than the atomic size. These results contradict the 
initial assumptions of Ref. 1. 

We know that the Heitler-London approximation for 
the exchange interaction in the hydrogen molecule is not 
valid when the distance between the atoms is large. The first 
calculation of an asymptotically exact expression for the en- 
ergy of the exchange interaction of the hydrogen molecule in 
the absence of a magnetic field was carried out in Refs. 3 and 
4. 

In the present paper we derive an asymptotically exact 
solution for the splitting of the singlet and triplet terms. We 
calculate the binding energies for the singlet and triplet 
terms of a hydrogen molecule in a high magnetic field. 

2. SCHRODINGER EQUATION AND WAVE FUNCTIONS 

We consider a hydrogen molecule in a high magnetic 
field, by which we mean one satisfying the inequality 

where m is the electron mass, H is the magnetic field 
strength, and the notation is otherwise standard. 

Since the atoms have a large quadrupole moment in a 
high magnetic field, the direction of the magnetic field does 
not necessarily coincide with the symmetry axis of the mole- 
cule. We chose a coordinate system withx axis parallel to the 
field H. We put atoms 1 and 2 of the hydrogen molecule in 
the xz plane. The coordinates of their nuclei are 

A R 
X ~ , ~ = F U = T  - cos 0, z ~ , ~ = F ~ = T  - sin 0, 

2 2 

where R is the distance between the nuclei of atoms 1 and 2, 
and 8 is the angle between the axis of the molecule and the 
direction of the magnetic field. 

We write the Schrodinger equation in atomic units: 

where Rli  and RZi are the distances from electron i to the 
first and second nuclei, respectively, r,, is the distance be- 
tween the electrons, and &,, ri, are Pauli matrices. 

Choosing the vector potential A = 3 [Hr], we rewrite 
Eq. (2) as 

where 

 ere^: =Y: + ( b + z l ) '  andp: =y; + (b-z,) 'arethe 
coordinates of the first and second electrons as they move in 
a plane perpendicular to the magnetic field, and 
A = (&/eH) "' is the characteristic size of the atom in the 
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plane perpendicular to the magnetic field. In atomic units 
( f i = m  = c = e =  1) wewouldhaveA = (l/H)ln. Wewill 
be using this notation below. 

We are interested in two terms: the singlet and the trip- 
let. Corresponding to the singlet term is a total electron spin 
S = 0, and for this term we have a symmetric coordinate 
wave function Y,. When we apply the Hamiltonian to the 
spin part of the wave function, we get zero, and the terms 
containing the Pauli matrices disappear from the Hamilto- 
nian. The Schrodinger equation for the singlet term Y, is 
thus written 

Corresponding to the triplet term is a total electron spin 
S = 1, and there are three spin projections: + 1,0, - 1. The 
coordinate part of the wave function, Y,, is antisymmetric. 
The spin projection-1 corresponds to the lowest-lying ener- 
gy state. The Schrodinger equation for the triplet term can be 
rewritten as 

The substitution E,, = E, - 1/A puts Eq. (4) in the 
form (5): 

Following Ref. 3, we introduce the functions 
Y, = (9, + Y, )/2 and Y, = (Y, - Y, )/2, which corre- 
spond to states in which each electron is localized for the 
most part near its own atom at large values of R. We choose 
\V, and Y, such that Y, (r ,  ,r, ) in the limit r, - - R /2, 
r,-R/2 andY,(r,,r,) inthelimit r,-R/2, r,- - R / 2  
become the product of normalized functions of hydrogen 
atoms in a high magnetic field. 

To find the wave function of the ground state of the 
hydrogen atom in a high magnetic field, we can, as a first 
approximation, treat the motion of the electron parallel to 
the x axis as one-dimensional motion in a Coulomb poten- 
tial, while considering only the motion in the magnetic field 
in the yz plane. This approximation is legitimate since the 
motion of the electron parallel to thex axis occurs in a region 
on the order of a in size, while in the perpendicular plane the 
motion is bounded by a cylindrical surface with a radius on 
the order of A <a .  In accordance with the results of Refs. 5 
and 6, we write the wave function of the ground state of the 
hydrogen atom in a high magnetic field as 

where 

is the wave function of the zeroth Landau level, which corre- 
sponds to motion in the plane perpendicular to the magnetic 
field (p2 = y2 + 2'). The expression for + ( x )  is 

from the usual wave function for motion in a Coulomb field 
stems from the quasi-one-dimensional motion of the elec- 
tron along the magnetic field direction. The expression 
which relates the parameter a to the ground-state energy can 
be written with logarithmic accuracy as 

Since we are interested in distances much greater than the 
characteristic atomic dimension along the magnetic field di- 
rection, which is of order a ,  the asymptotic expression for 
the longitudinal part @(x) of the wave function is 

The wave function of the ground state of the hydrogen 
atom in a high magnetic field can thus be written 

1 1  
Y (r)=----- a'" (2n)"'h exp {- &} w ~ , ~ ~ ~ { A ( x + ~ ) }  a . (9)  

We seek the wave function Y, in the form 

P * = + P ~ ~  v,=~2xi ~ X P  (I- - }wa,!/z 
4hZ 

where 

and the function X, varies slowly in comparison with the 
exponentially varying functions. Expression (10) is the 
product of the hydrogen wave functions of electron 1 near 
nucleus 1 and of electron 2 near nucleus 2. 

Substituting ( l o )  into (6) ,  and retaining terms of ze- 
roth order in a in the course of the differentiation, we find 
an equation for x, : 

In deriving ( 11 ) we ignored terms containing derivatives of 
X, with respect to z, , z,,  yl  , and y, . The reason is that after 
we substitute expression (12a) for X, (written below) into 
Eq. ( 1 1 ) we easily see that incorporating the derivatives of 
,yl with respect to z, and 2, gives rise to terms of order a, 
which are small in comparison with the terms which contain 
the derivatives ofx,  with respect to x, and x, and which are 
on the order of unity. 

Introducing the new variables 6 = (x, + x, )/2 and 
7 = x, - x,, and going through some simple manipula- 
tions, we can write the solution of Eq. ( 1 1 ) as 

1 
X where W,,,,, is the Whittaker function. The distinction (a-x,+ ( ( a - x , ) ~  + ( b - ~ , ) ~ ) ' " ) ~  1- * 
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Here C({, z, , z,, y, , y, ) is an arbitrary function of the vari- 
ables {, zl , z,, y, , and y2 . To determine this function, we 
make use of the obvious condition that X, approaches unity 
when either x, + - a, z, -+ - b or x2 +a, 2, + b. After some 
straightforward calculations, we find our final expression 
for the wave function: 

where 

The function Y, is found from Y, through the interchange 
1-2. 

3.TERM SPLITTING AND BINDING ENERGY OFTHE 
HYDROGEN MOLECULE IN A HIGH MAGNETIC FIELD 

To calculate the splitting energy of the terms, it is con- 
venient to rotate the coordinate system through an angle 8, 
so that we obtain 

x=xf cos 0-Z' sin 0, z=xr sin 0+z' cos 0. 

All the expressions below are written in the primed coordi- 
nate system, so we will omit the primes. 

To calculate the difference between the energies of the 
singlet and triplet terms as a result of the exchange interac- 
tion, we use an expression derived in Ref. 3 for the term 
splitting of the hydrogen molecule. The corresponding 
expression.is, with exponential accuracy, 

E..-E.=z$ (Y, v,Y,-I, v ,Y, )~s ,  '( 14) 
8 

where S is a hyperplane (x, = x2 ) in the six-dimensional 
space {r, , r, 1. The scalar product in ( 14) reduces to differ- 
entiation of the expressions in ( 14) with respect to x, alone, 
since the gradients of the wave functions in the integrand are 
projected onto the direction of the surface dS. 

Assuming that the distance between the nuclei of the 
hydrogen molecule is much greater than the linear dimen- 
sion of a hydrogen atom ( - a )  in the magnetic field direc- 
tion, we use the asymptotic expression (8)  for $(x). Differ- 
entiating the exponential factors in ( 10) with respect to x, 
(after rotating the coordinate system), we put expression 
( 14) in the form 

x Rf dx dyl  dy ,  dzl dz,  ['Y;P2IX,+~.,o~ x,=x. (15) 
0 -00 

Substituting 9, and Y2 into (15), imposing the condition 
0 < a  -4 1, and going through some calculations, we find the 
following expression for the exchange splitting for angles 8 
in the interval 0 < 8 <  n/2 - E (where E m a ) :  

2R r 2cos 0 R sinZ 0 
Es,-E.=- 

a2 cosZ 0 a +---I 2ha 

Finally, we find the following expression for the exchange 
part of the term splitting energy, in atomic units: 

=is - 2R lnz H 
[2 In H cos 0+'12RH sinZ 01 

cosZ e 
x exp {-R [2 In H cos 0f ' / ,RH sine 01 ). (17) 

The corresponding calculations for value 8 = ?r/2 yield 

At large distances R, two hydrogen atoms in a high magnetic 
field interact as two quadrupoles. Since the electron density 
has a Y2(x) distribution [see (9)  1, the quadrupole moment 
of the atom is Q = 2(x2) = a2/2. The energy of the interac- 
tion of the two quadrupoles when they are far apart is there- 
fore given by 

where 

is the Legendre polynomial. 
Taking account of the quadrupole interaction along 

with the exchange correction, which leads to splitting of the 
terms, we find our final expression for the interaction energy 
of the hydrogen molecule in a high magnetic field (under the 
condition R ) (x2) 'I2 cc a ) . 

For the singlet term we find 

For the triplet term we find 

where Eb is twice the energy of the isolated hydrogen atoms. 
Since the energy of the quadrupole interaction has a 

negative minimum as a function of angle at 0 z 49" [it was for 
this reason that we used expression ( 17) in ( 19) and (20) 1, 
it is clear that bound states are possible for both the singlet 
and the triplet, but for H )  1 the triplet state lies well below 
the singlet state and is the ground state of the hydrogen mol- 
ecule in a high magnetic field. 

Figure 1 shows the interaction energy for the triplet and 
singlet terms as a function of R for various values of the 
magnetic field for the angle 8 ~ 4 9 " .  Lines 1-3 in this figure 
correspond to magnetic fields of 20, 50, and 100, respective- 
ly. At small values R <a,  the quadrupole-quadrupole attrac- 
tion gives way to a Coulomb repulsion of the nuclei, and for 
a <R < 2 the interaction energy has a deep minimum, for 
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FIG. 1 

both the singlet and the triplet. This minimum corresponds 
to possible bound states of the hydrogen molecule. In any 
case, the triplet term lies well below the singlet term; i.e., the 
ground state of the hydrogen molecule in an ultrahigh mag- 
netic field is the triplet term. As can be seen from the curves 
in this figure, the depth of the potential well increases rapid- 
ly with increasing magnetic field, for both the singlet and 
triplet terms. The binding energy for the triplet term, for 
example, changes from E,  = 2.86. ( 2  Ry) at H = 20 to 
E,  = 4.4. l o W 2  (2 Ry) at H = 500, while the depth of the 
potential well for the singlet term changes from A&, = 7 (2  
Ry) at H = 20 to A&, = 40 (2  Ry) at H = 500. 

As the magnetic field is strengthened, the hydrogen 
molecule decreases in size. For example, the minimum of the 
energy U, (R) at H = 300 occurs at R = 0.46, but since this 
is much larger than the size of the hydrogen atom 
( ~ 9 .  l o W 2  at H = 300) in a high magnetic field, the solu- 
tion found above remains asymptotically exact. The situa- 
tion remains unchanged up to fields on the order of 1000, at 
which the size of the molecule (the position of the minima of 
the interaction energy) becomes comparable to the size of an 
atom. 

4. CONCLUSION 

This analysis shows that the physical properties of a 
substance change substantially in a high magnetic field. In 
particular, hydrogen atoms may bind into molecules whose 
ground state is a triplet, rather than the triplet which we find 
in the H2 molecule in the absence of a magnetic field. As the 
magnetic field is strengthened, the depth of the well in the 
atomic interaction energy increases rapidly. 

The hydrogen molecule in a high magnetic field thus 
has an interesting characteristic: The binding energy of the 
molecule in its triplet ground state is relatively low (it 
reaches 1-2 eV in ultrahigh fields), while the depth of the 
potential well for the higher-lying singlet term, which is in 
this case metastable, may be more than two orders of magni- 
tude greater than the binding energy of the ordinary hydro- 
gen molecule, reaching values of several hundred electron 
volts in high fields. 

The behavior of a system of spin-oriented atoms, which 
are very elongated parallel to the magnetic field, is of interest 
for astrophysics, as is the formation of anisotropic structures 
reminiscent of liquid crystals or molecular chains. Magnetic 
fields at the scale of interest here, on the order of 1010-10'2 
Oe, would be possible at the surfaces of neutron stars and 
pulsars. 

Another topic of interest might be the behavior of a 
hydrogen-like system of excitons in a semiconductor or an 
insulator. The characteristic "atomic" magnetic field for 
such a system would be determined by the condition 
~ $ p ~ e ~ c / ~ ~ f i ~ ,  where p is the reduced mass of the electron 
and the hole, and 7t is the dielectric constant. Such fields are 
attainable in the laboratory. For InSb, for example, a mag- 
netic field becomes "ultrahigh" at values as low as a few 
kiloersteds. Then at low temperatures and under certain oth- 
er conditions there is the possibility in principle that spin- 
oriented structures (possibly metastable) would arise, form- 
ing in the course of an interaction ofexcitons in an ultrahigh 
magnetic field. 
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