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An anyon gas on a quadratic lattice (Z2) is studied in the low-density limit. An exact expression is 
derived for the second virial coefficient B(8, P) (Pis the inverse temperature), which is a smooth 
function of the statistics parameter 8 and, in contrast to the case of anyons in a plane, it does not 
have any cuspoid singularities. In the limit P- co the function B(8,P) asymptotically 
approaches its continuous analog, having linear dependence on P and piecewise-parabolic 
dependence on 8. 

1. INTRODUCTION tion for the number of paths of prescribed length from the set 

A number of new results concerning the physics of an- I?, can be representedas a of two one-dimensional 

yons-particles with fractional statistics-have recently random walks on Z: a free random walk and a random walk 

been obtained.i4 Interest in this field of research has been with a first-arrival condition. After the summation over the 

significantly stimulated by the hypothesis that anyons play a intermediate coordinates of the points of intersection of the 

key role in the mechanism of high-Tc superconductivity. 5-9 
random-walk trajectories and the rays is performed the 

However the lattice problems arising in RVB (resonant-va- problem reduces to a random On the finite graph 

lence-bond) models are extremely complicated, and only 
limited progress beyond the mean-field approximation has 
been made. This has shifted attention to anyons in a contin- 
uous (2 + 1)-dimensional space,where, thanks to the inter- 
action of different fields of physics (topological models, con- 
formal theory, ...) and mathematics (knot theory, braid 
groups, ... ), impressive achievements have indeed been 
made. 

There are comparatively few exact results concerning 
anyons on a lattice'' and, as will become evident from what 
follows, significant (and sometimes insurmountable) com- 
binatorial difficulties are encountered when attempts are 
made to obtain analogous results, entirely trivial in the con- 
tinuous case, for lattice models. 

The aim of this work is, first of all, to develop an effec- 
tive technique for calculating Green's functions that would 
make it possible to transfer the problem from trajectory 
space on a square lattice (Z2) to some appropriate Hilbert 
space. For definiteness, we shall concentrate our presenta- 
tion on the problem of calculating the second virial coeffi- 
cient of an anyon lattice gas in the low-density limit. 

In application to the present problem, the program in- 
dicated above can be implemented with the help of a combi- 
nation of the covering-space method" and the block-resol- 
vent expansion.12 It will be shown in Sec. 2 that this problem 
essentially reduced to the calculation of the Green's function 
of a particle undergoing a random walk on Z2 and avoiding 
some particular elementary cell K times. We draw diagonal 
rays from the center of the elementary cell singled out (see 
Fig. 1 ). Consider random walks that start on one of the four 
rays, proceed for some time in the half-plane adjoining this 
ray, and then intersect (for the first time) one of the neigh- 
boring rays (Fig. 2). We denote the set of such paths by T, 
(a is the number of the ray). It  is obvious that an arbitrary 
path y, starting and ending on the rays, can be represented in 
the form 

with an effective transition matrix F, representing an opera- 
tor in L2(0,1 )-the space of states of a node of this graph. 
The problem then reduces to studying the spectral proper- 
ties of a relatively simple integral operator. 

This analysis can be easily performed numerically, 
which makes it possible to find the second virial coefficient 
B(8,p)  for afixed temperature (P- ' ) and statistics param- 
eter 8 (see Fig. 3). Comparing with the results of Ref. 13, 
where the second virial coefficient is calculated for the case 
of anyons in a plane, shows that the dependence on 8is  qual- 
itatively similar, the difference being that in the discrete case 
there are no cuspoid singularities. This result is natural, 
since cusps in this case are an indirect manifestation of ultra- 
violet divergences in the continuous limit," which are re- 
moved by the lattice. In addition, it should be noted that in 
the lattice case the temperature dependence of B(8, P) is 
complicated. 

2. FORMULATION OFTHE MODEL 

We study an ensemble of anyons undergoing hops on 
Z2. In the low-density limit, to which we confine our atten- 
tion here, anyons can be interpreted as a "charged parti- 
cle + string" composite formation. We are interested in the 
second virial coefficient B(6, P ) ,  which can be represented 
in terms of the partition function as follows: 

where 6 is a parameter determining the fractional statistics 
of the particles, 8, is some reference statistics for which we 
choose boson statistics (8, = 0),  Z, (p)  is the single-particle 

'f=yat'fa*. . . YE, partition function of random walks with a distinguished 
point, and Z2(8, p) is the single-partition function of the 

for some k, where ~ ,EI? ,  . In addition, the generating func- relative motion: 
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FIG. 1. The four-string gcuge. To cash rib with an arrow there is associat- 
ed the phase factor exp(iO), where e = 0/4.  

with the Hamiltonian 

HL - eiiq exp (i8ij) .  (3  
(sj) 

(c' and cj are creation and annihilation operators of parti- 
cles with zero statistics and the summation extends over the 
nearest neighbors), in which the phase factors are deter- 
mined by the condition 

*28, i, j=A, 
*8, i or j=A, (4) 
0, i ,  jeA, 

where A is the set of "strings," attached to the elementary 
cell singled out, through which the flux q, = 28 passes. For 
what follows it will be convenient to choose a gauge in which 

FIG. 2. A typical random walk in the half-plane x > 0. The path starts on 
the ray (y = 0, x > 0) and intersects the straight line x = 0 first. 

the string set consists of "ribs" attached to the four diagonal 
rays emanating from the central elementary cell (Fig. 1 ). In 
this case a=  8/4, for which the total flux for one pass 
around any closed contour making one complete circuit 
around the central plaquette is equal to 28 and the sign of the 
phase picked up in the transition i-j is determined by the 
relative orientation of the transition vector and the arrow in 
Fig. 1. 

The partition function Z, (0) can be calculated in an 
elementary fashion. Indeed, the Green's function of free ran- 
dom walks on Z2 is 

where I yl is the length of the path y starting at thejth site and 
ending at the I th site (number of hops) and l/z = E is the 
spectral parameter. The trace of this Green's function is 

where K ( k )  is the complete elliptic integral of the first kind 
and the asterisk indicates that random walks with a distin- 
guished point are being studied, with eliminates the infinite 
volume of the lattice. Performing the inverse Laplace trans- 
form we find 

We now study the partition function Z2(8, 0) of the 
relative motion. In order to obtain this function it is neces- 
sary to calculate the Green's function of random walks with 
return to the distinguished point U+j) or random walks 
with reflection into the diametrically opposite point 
U- - j ) .  We denote the set (j, - j) by J. We introduce the 
Green's function of random walks on Z2 in the field of a 
vortex with flux 28: 

where Y is the number of times the path y winds around the 
vortex in the lattice. 

The trace of the Green's function diverges. This makes 
it necessary to regularize G o  by subtracting from it the 
Green's function G *" for some reference statistics B0, for 
which we choose Bose statistics [just as in Eq. ( 1 ) 1. In Secs. 
3 and 4 we calculate tr g o ( = ) ,  where go=  Go-- Go. The 
result is expressed in the form of the trace of a function of 
some integral operator. The subsequent calculations are per- 
formed numerically, which makes it possible to obtain the 
dependence B(0,  P ) .  

3. CALCULATION OF THE GREEN'S FUNCTION OF RANDOM 
WALKS ON A LATTICE IN THE FIELD OF A VORTEX 

After the problem of the relative motion of two anyons 
is reduced to random walks in the field of a vortex we need to 
calculate the following trace: 
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FIG. 3. The second virial coefficient as a function of 
the inverse temperature and the statistics determin- 
ing parameter e. 

which is related to the required partition function (2)  by the 
Laplace transform: 

To calculate tr 8 '(z) we expand 8' (z) in a sum over differ- 
ent homotopic classes, which we enumerate by means of v: 

m 

where 

To perform the summation in Eq. (12) over the random 
paths on the lattice we employ a variant of the block-resol- 
vent expansion: For each path y we study an enlarged path 
T ( y )  consisting of the coordinates of successive first pas- 
sages from one coordinate axis to another. 

The initial problem ( 1 1 ) and ( 12) of summation over 
all paths y: j- Jsplits, in the process, into a sequence of two 
simpler problems: 1 ) calculation of the generating function 
for random walks in the half-planex > 0 which start from the 
ray (y = 0, x > 0) and intersecting the straight line x = 0 
first and 2) calculation of some partition function for a finite 
graph with the isotopic space L2(0, 1). We start with the 
solution of the first problem. After relatively simple combin- 
atorial analysis we find the generating function, which we 
are seeking, of the first passages: 

m 

where g,  (x,y) is the number of paths y starting from the 
point (2x + 1,O) and arriving at the pint (O,2y + 1 ) in the 
lattice,x>O, lyl = 21 + 1. The function G(x,ylz) is the prod- 
uct of two propagators of certain one-dimensional random 
processes-the free process (along y )  and the process with the 

condition of first passage through zero (along x) :  

In order to transfer from random walks on the lattice to 
random walks on the graph we study the K-fold convolution 

K 

where the primed sum denotes summation over all L and I, 
such that Zf=, (2Ij + 1) = L. For what follows we require 
only 

where Z + is the set of positive integers. Summing over the 
coordinates of the first intersections xi we find 

The problem of summing over the intermediate times of the 
first intersections li can be expressed in terms of the integral 
operator 

where tr is the trace in 1, (2 ') and I, ( Z  + ) while Tr is the 
trace in L2(0,1 ). The operator F(z) operates on functions 
from the Hilbert space L2 (0,l) and has the kernel 

which is derived directly from Eq. ( 17) after the corre- 
sponding integral representation is constructed. The kernel 
( 19) is essentially a complete elliptic integral: 
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r / 2  d a  22 E (42 (XY) ") 
=- 

(I-16zZXY sin8a)% n 1-[4z(XY)'~l" 

where E ( k )  is a complete elliptic integral of the second kind. 
It can be shown that the kernel (20) indeed determines the 
integral operator, which is a Hilbert-Schmidt operator. 

4. RANDOM WALKS ON A FINITE GRAPH WITH THE 
ISOSPACE Lz(O,l) 

We now study the second part of the problem of calcu- 
lating tr @e' (2): summation over all possible sequences of 
first intersections of the four rays (x = y, x > 0),  (x = y, 
x<O), ( x =  -y ,x>O)  and ( x =  -y,x<O).  Thisprob- 
lem can be formulated in the form of random walks on a 
graph consisting of four vertices, to each of which there is 
associated a Hilbert space L, (0,l) .  The transition matrix in 
this case is the integral operator F(z) operating in the layer. 
We assign the phase factor exp (if9 /2) for counterclockwise 
motion and the phase factor exp ( - if9 /2) for clockwise mo- 
tion: 

We now calculate the weighted generating function of 
random walks on the graph (21 ) which start at the vertex a 
and end at one of the vertices a or ii (here a, i i ~ {  1,2, i ,  2) and 
; = a ) :  

{a, a )  

where to each transition there is associated the factor 
F(z).w.exp( i8/2), cepending on the direction of the 
trazsition in the graph; I r 1 is the numb5r of transitions; and, 
v ( r )  is the number of times the path r in the graph is tra- 
versed. It can be shown that the generating function(22) is 
simply related to the desired Green's function ( 1 1 ) : 

Indeed, a factor 1/22 is associated with the representation of 
(9) in terms of the weighted generating function 

This function differs in two ways from the function (22): 
First, the generating function (24) controls all paths yg+ J 
and not only paths starting on rays. In order to take into 
account thefact that any point of the path y can indeed be 
chosen as the starting point, the operator zd /dz, which mul- 
tiplies the contribution of each path y by its length l yl, i.e., 
the number of possible methods of choosing the starting 
point, must be applied to the function (22). Second, on the 
other hand, some paths y under this enlargement 
( y -. -+ y) oirandom walks are counted n times: The same 
path y has Irl different representations according to the 

number of intersections of the rays; these intersections can 
ke chosen as the initial points of the enlarged random walk 
r. In order to prevent this double counting we introduce the 
operator J: (do/@) (. . .). Thus the relation (23) is proved. 
To calculate the generating function (22) we study the oper- 
ator corresponding to transitions over two steps: 

Lvz, W )  =[2as cos 0+2] 02F2(z), (25) 

where a, is the classifying parameter for the number of tran- 
sitions to the opposite ray (a+??) and has the obvious prop- 
erty 4 = 1 (whence follows the notation). The complete 
generating function is obtained from Eq. (25) by summing a 
geometric progression: - 

1 
9' (z. = 4 S ~  Tr P+,l-A. (2, ") . (26) 

where P+(10/00), Sp is the trace in the two-dimensional 
space of o-matrices, and the factor of 4 takes into account the 
different possible positions of the starting ray. After simple 
transformations we find 

whence, after Eq. (23) is taken into account, we obtain final- 
ly 

a S 
tr C' (z) =-2.2'- dz 'I'rln[ 1 - 4 ~ ~ ( z ) c o s ~  -1 2 

Taking the inverse Laplace transform ( lo),  from Eq. 
(28) we find Z2(f9, P) ,  after which, using Eq. ( 1 ) and the 
expression (7) for Z1 (P), we obtain a representation of 

= ( 8 , P )  = B(f9, p )  - B(0, P )  in the form of a trace of 
some compact operator, which can be easily calculated nu- 
merically. As a result we obtain the function g(8 ,  P) repre- 
sented in Fig. 3. 

Let us now discuss the differences between the function 
obtained above and its continuous analog. l3  In the case of an 
anyon gas in a plane cuspoid singularities are observed near 
the point 8 = 0. These singularities are an indirect result of 
ultraviolet divergences1' and they smear out when all go 
over to the lattice; this is evident from Fig. 3. 

Note that aspincreases the dependence B(8, fl) asymp- 
totically approaches the linear law ccp, and in the process 
the sinusoidal dependence on 8 gradually transforms into a 
piecewise-parabolic dependence; the maximum with respect 
to 8 of the function B(8, p)/P rapidly approaches its asymp- 
totic value, equal to 277 (even for P z 6  we have g(8, 
p) /pz6 .1) .  

5. CONCLUSIONS 

Thus in this paper we studied an anyon lattice gas in the 
low-density limit. We obtained an exact expression for the 
second virial coefficient, which, is contradistinction to the 
continuous case, does not contain unphysical cuspoid singu- 
larities. 

We are certainly aware that the nontrivial physics of 
anyon systems occurs at relatively high densities, and in this 
connection the present results must be regarded only as an 
intermediate stage, which is necessary for the development 
of the diagrammatic technique for anyon systems in the lan- 
guage of integral operators in the appropriate Hilbert space. 

We hope to develop the technique proposed here for 
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solving many-body problems. The main difficulty here is the 
problem of calculating the partition function for random 
walks of a charged particle in an arbitrary vortex configura- 
tion. We have been able to find an exact solution in the case 
when all vortices lie on the same straight line. 

Note that the technique examined here can also be used 
in the physics of polymers which get caught on an obstacle. 

In conclusion we express our appreciation to S. K. Ne- 
chaev and Ya. G. Sinai for helpful discussions. 
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