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In the case of superconductors with BCS singlet pairing the presence of resonant impurities 
necessarily gives rise to localized states within the gap irrespective of the gap between the energy 
of resonance and the Fermi energy. 

1. It is known that magnetic impurities in a supercon- ( o - e O ) - ~ ~ = i  + T z  1 v,G,~, 
ductor with the s pairing give rise to a zero-gap supercon- L 

ducting state. This is because a single magnetic impurity (in 
contrast to a potential impurity) gives rise to a bound state 1 

(o-er)Gtd = - NO" V,Gdd+AFkd, 
inside the superconductor gap.' 

We show that there is a more general mechanism of the - (o+et )F,a  = N'" 1 V L F ~ ~ - A G , ~ ,  
formation of bound states inside the gap: this is the resonant 
scattering mechanism. It is found that in the case of a single 1 

-(o+et)Fdd = VkFkd. 
resonant center the existence of bound states is independent ~r 

of the position of the resonant level E~ relative to the Fermi 
energy p and is also independent of the strength of the intra- In these equations and in what follows, all the energies are 

center Hubbard repulsion U. The resonant scattering mech- n~easured from the Fermi level 
anism of the formation of bound states discussed here is, in a The solution of this system of equations yields the fol- 
limited sense, similar to the magnetic mechanism only if lowing ex~ressions for Gdd and Fdd: 

E~ <p LL< co + U, when only one electron is present in a cen- 
ter. 

2. The model Hamiltonian of this problem is o + o a ( o ) + e o  
Gdd = 

[ ~ ~ + o a ( o ) - € o ]  [o+oa(o)+eo] - A k 2 ( 0 )  ' 

1 + (Vk~ko+dO-tH.c.) f ( A C * + C : ~ ~ + H . C . ) .  ( 1 ) where 
k.0 k 

Here, E~ is the dispersion law of the band electrons; Vk repre- 
sents hybridization of the band and impurity states; k and u 1 

g o o  + I vk l Z e k  

represent the quasimomentum and the spin of the investigat- N , 02-e ,"~'  ' 

ed state; c, and d ,  are the Fermi annihilation operators; A, 
is the electron number operator for a resonant center with a If the density of the band electron states E ,  near the 

spin a;  and N is the total number of the band states. Fermi energy can be assumed to the constant and equal to 

We consider the following cases: purely resonant scat- N(O), it follows from Eq. (4) that (for V, = V = const): 

tering ( U = 0), infinitely strong repulsion ( U + + w ), 
and the case of intermediate values of U. I' 

a ( @ ) -  ( A  L - 0 2  ),,, , € o = ~ o ,  I'==nV2N (0). ( 5 )  
3. In the case of the Hamiltonian ( 1 ) with U = 0, we 

consider the Green's functions 

Under these conditions the equation for the determination of 
the energy of bound states inside the gap is 

This equation has two solutions w, inside the gap 
GU=- i<Td&,+>, ~ , - - i < ~ d : ~ d , + )  (w: < A') for all the values of A, E ~ ,  and I'. 

In two limiting cases the roots of Eq. (6)  and the resi- 
dues of the delayed (electron) part of the Green's function 

and readily find the following system of equations for these a- ' Im G 2d can readily be found analytically. For 
functions: A'SE; + r2, 
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1f A2 4 ~ :  + r2, then 

In the former case ( A 2 3 r 2  + E:) the resonance is 
weakly coupled to the band electrons and its energy lies near 
the Fermi levelp. This resonance creates two strongly local- 
ized states inside the gap 2A. Such a situation may occur in 
the case of the tunnel junction when a resonant center is 
separated spatially from the bulk of a superconductor. 

The second case (A2 4 r2 + E: ) describes how resonant 
impurities in the bulk of a semiconductor influence its spec- 
trum. In this case the bound states are weakly localized 
[their radius is -fiv, (A - I w * I ) - ', where v, is the Fermi 
velocity] and they are split from the gap edge by an amount 
proportional to A3. Therefore, in practice they cannot be 
observed in small-gap superconductors. 

The density of states of the impurity d electrons 
n- ' Im G fd [in addition to the 8-like singularities of Eqs. 
( 7 )  and (8) inside the gap] in general has three additional 
peaks. One of them is close to E, (it is retained also in the 
nonsuperconducting state) and the other two are at the 
edges of the gap. The density of states per center correspond- 
ing to the last two peaks, Nd ( a ) ,  can be described by the 
following expression if we have Iw 1 >A and E: 3 A2: 

Equation ( 9 )  describes a fairly sharp peak of Nd ( w )  with the 
maximum amplitude Nd z A - ' at w2 - A 2 z  A4r2/&:. 

It should be pointed out that, according to Eqs. ( 7 )  and 
( 8 ) ,  the maximum splitting of the levels 2A from the edges of 
the gap corresponds to E, = 0. If the energy of the most 
strongly split-off levels ( w ,  I is denoted by w,, it then fol- 
lows from Eqs. ( 7 )  and ( 8 )  that at low values of E: the 
energy of the impurity levels w , obeys w: - wk -E:. This 
means that in the presence of some nonzero distribution 
p (eo ) of the resonance centers in the energy E, the density of 
the impurity levels Nd (w)  within the gap 2A has the follow- 
ing square root singularity if E: -0: 

at energies w = * w, . This singularity of the density of the 
impurity states may simulate a singularity of the density of 
the band states at the edges of the main BCS gap. 

4. We now have to consider how the above pattern of 
behavior changes if we allow for the Hubbard repulsion U of 
the electrons at a resonant center. This can be done in the 
limit U- I + a ,  using the following reasoning. Assume that 
at the initial moment to the hybridization of V makes the 
density of electrons nu with a spin c a t  a center nonzero. This 
density is governed by the corresponding imaginary part of 

the Green's function G,,,,,. Then, electrons with the oppo- 
site spin at the center experience the repulsive potential 
Uu = Un,. Via a Hartree diagram this potential occurs in 
the fourth equation of the system ( 2 )  if we replace (w + E, 

with ( a  + E~ + U, ). Then, the solution of this equation for 
the function F -  ,,, in the limit U - +  a gives 

F - a d ,  wl a Ue-' --t 0. 

In this limit the first three solutions of Eq. ( 2 )  form a closed 
system whose solution for the function G,,,, is 

In contrast to the case U = 0, we find that if U -  + W ,  then 
inside the superconducting gap the function ( 10) has only 
one pole: 

This level can occupy any position in the gap 2A if we vary E,. 

The density of the impurity states for w2>A2 and E: % A2 is 
now somewhat different from that given by Eq. ( 9 ) :  

A lower and wider peak with a maximum amplitude 
Nd -E; ' occurs at w2 - A2 = A2r2/&;. It is interesting that 
the results of this section agree with the conclusions reached 
in Ref. 2 if we replaceLhe exchange integral I in the expres- 
sion Hi,, = JI(  1 - 4 2 9  with V 2 / ~ o .  

5. Finally, we have to consider the situation which ap- 
pears in the case of intermediate values of U. This can be 
done in the mean-field approximation by postulating an ef- 
fective potential U, = Un, exerted on a given electron by 
other electrons with the opposite spin. In this approximation 
the equations for the Green's functions are obtained from 
the system ( 2 )  by substitutions in the first and fourth equa- 
tions: 

where 

U-='I2(U,-U-,), ~ = E ~ + ' { ~ ( U ~ + U - , )  

Then, the positions of the impurity levels inside the gap are 
governed by the roots of the secular equation: 

where the effective Coulomb potential U -  is calculated self- 
consistently using the occupancy of the states with the oppo- 
site spins. It follows from Eq. ( 14) that for U # 0, the ener- 
gies of two localized states of Eqs. ( 7 )  and (8 )  become 
spin-split. If U2- >4A2, two of them merge with the gap 
edges, whereas the other two form in the limit U2- - a a 
spin-nondegenerate level of Eq. ( 1 1 ) . 

Note that for finite values of the repulsive potential U 
the energies of the levels given by Eq. ( 14) depend on the 
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actual occupancy numbers of these levels at the beginning 
and end of the process. Therefore, the experimentally ob- 
served spectra of superconductors depend on the nature of 
the experiment, which is true also of tunneling across a Hub- 
bard centera3 

6. We conclude by considering an alternative interpre- 
tation of the results, which apparently is unrelated to the 
resonant scattering and the physical consequences of such a 
theory. 

The results obtained above can be interpreted in the 
spirit of the one-band theory if we consider a resonant center 
located at some point in the crystal as the cause of the local 
change in the electron-electron coupling constant A. This 
change in the coupling constant because of the one-dimen- 
sional nature of the density of state in the BCS scheme must 
cause a bound state to form. Therefore, it is natural to as- 
sume that the formation of these states inside the gap is not 
due to the magnetic interaction (because the Hubbard ex- 
change I = V2/U disappears in the limit U + ), but due 
to the local change in A (which may depend on the spin). On 
the other hand, if we have U = 0, the appearance of two 
symmetric levels or states inside the main gap can be due to 
the induced superconductivity in the non-superconducting 
system (impurity level). 

In a rigorous analysis of this problem it would be neces- 
sary to allow self-consistently for the change in the gap near 
a resonant center. This can change the results of the present 
paper quantitatively but should not affect the qualitative na- 
ture (in accordance with the variational Rayleigh-Ritz 
principle) of the very existence of bound states inside the 
gap. 

From the experimental point of view it would be very 
important to find levels near (at a distance proportional to 
A3) the gap edge. This would result in additional absorption 
of electromagnetic radiation at frequencies proportional to 
IT - T, I3l2 near the temperature of the transition to the su- 
perconducting state. 
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