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The contribution of the classical correlation between consecutive lengths of electron scattering by 
impurity centers to the electrical conductance of samples with the metallic type of conduction is 
considered. This contribution changes as a result ofjumps of impurities between their possible 
positions which gives rise to lf fluctuations of the conductance. These fluctuations are sensitive to 
a weak magnetic field that bends the electron paths. An important feature is that even a classically 
weak magnetic field influences the conductance fluctuations, so that the correlation can be 
destroyed by a very small deviation of the path from rectilinearity (the deviation can be of the 
order of one impurity potential radius in the distance equal to the mean free path of electrons). 
Estimates are obtained of fluctuations of the conductance due to the classical correlation. A 
comparison is made with quantum fluctuations due to the interference of the wave functions 
under multiple scattering conditions. It is shown that these classical fluctuations predominate at 
sufficiently high temperatures and also in the case of all the nondegenerate conductors. 

INT RODUCTION 

There is much interest in the characteristics of small 
samples which have what are called mesoscopic properties. 
Mesoscopic fluctuations is the name given to a fairly wide 
range of phenomena, of which we will be interested in two: 
the change in the resistance of a sample due to a spatial dis- 
placement of one of the scatterers and the stochastic depend- 
ence of the resistance on classically weak magnetic fields 
(known as "grass" ) . 

According to current views (see, for example, Refs. 1- 
3), these phenomena are due to quantum interference be- 
tween electron states which are formed by scattering on the 
same impurities. Two types of such interference can be dis- 
tinguished: global and local. The global interference occurs 
in the case of long paths (on the order of the smaller of two 
quantities, the characteristic size of a sample L and what is 
known as the dephasing length 

where D is the diffusion coefficient of carriers and T is the 
absolute temperature). The global interference results in 
universal fluctuations of the conductance G, which are on 
the order of'-3 

where A is the de Broglie wavelength of an electron; I is the 
mean free path of electrons, and d is the dimensionality of 
the sample. The estimate given by Eq. (2) applies for 

cases when the quantum contribution is small, particularly 
at sufficiently high temperatures. 

We shall consider briefly the qualitative aspects of the 
phenomena under discussion. We assume that electrons are 
scattered by point defects without internal degrees of free- 
dom. For simplicity, we regard the scattering as a collision 
with a sphere whose cross section is a ,  i.e., whose radius is 
(a/.rr) '". TO lowest order in the reciprocal of the number of 
impurities in a sample Ni-  ', the electron scattering events 
are totally uncorrelated. In this approximation the electrical 
conductance depends only on the impurity concentration ni 
and is independent of the distribution of impurities. In fact, 
in traversing a distance equal to the mean free path to the 
next collision an electron retains its memory of the coordi- 
nate of the center on which it had been scattered. Therefore, 
the probability of the next collision depends on the specific 
distribution of the scattering centers in a sample. 

By way of illustration, consider the scattering of elec- 
tron by three centers (Fig. 1 ). Assume that the electron is 
first scattered by the center labeled 1. The probability that if 
subsequently scatters from the center 3 depends on the posi- 
tion of the center 2, which, in principle, can "cast a shadow" 
on the center 3. We consider this shadow effect. A measure 
of the shadow effect is the solid angle a/R ', where R is the 
distance between the impurities 1 and 2. The aim of our cal- 
culations will be to analyze quantitatively the correlation 
contribution to the conductance and to fluctuations of the 
latter when the impurity centers jump between different po- 
sitions. 

L < L,; in the opposite limiting case, we have to replace L 
with L,. The local interference (see, for exarn~le. Ref. 4) PRINCIPAL EQUATIONS 

. . . , 
occurs in close pairs of defects and does not result in an We use the semiclassical kinetic equation for the elec- 
anomalous dependence of the resistance on the dimensions. tron distribution function F in the presence of an electric 
We shall consider only the local interference. field E, which is not averaged over the positions of short- 

Our aim is to draw attention to the contribution made to range impurities: 
fluctuations of the resistance by the classical correlation of 
the consecutive scattering by different impurities. We shall aF bF v-+ eE-+f(F)=O, 
show that external manifestations of this contribution are ar aP (3) 
similar to those of quantum rnesoscopics. It  is important to 
stress that the classical contributions appear also in some with the collision operator I given by 

179 Sov. Phys. JETP 73 (I),  July 1991 0038-5646/91/070179-06$03.00 @ 1991 American Institute of Physics 179 



The angular brackets mean averaging over the distribution 
of the impurities. 

Analysis of the expression for the conductivity 

Substituting into the kinetic equation (6) the nonequi- 
librium distribution function 

/ where E, is the electron energy, we find-in the approxima- 
tion linear in terms of the electric field-that the following 

FIG. 1 .  "Shadow effect" in the scattering of an electron by a triplet of 
impurities. equation describesf: 

where W,,, is the probability of a transition in the scattering 
center. Equation ( 3 )  was obtained in Refs. 5-8 from the 
equation of motion for the Wigner density matrix and is ap- 
plicable in a situation when the de Broglie wavelength /Z is 
much less than the average distance between the impurities 
nip From now on we assume that the semiclassical condi- 
tion A 4 n; is satisfied. 

where EeB allows for a redistribution of the field in the sam- 
ple and should be determined self-consistently from the con- 
tinuity equation. 

The contribution to the average current which is of in- 
terest to us appears in the second order of an expansion in 
terms of fluctuations of the impurity concentration @, since 

@ (q=O) =o. 

We iterate Eq. ( 12) to second order in terms of the fluctuat- 
ing function @: 

It is convenient to distinguish the fluctuating part of the 
f = ~ - ~ e E ~ v + f ~ + f ~ ,  impurity concentration: 

where E, is the electric field averaged over the sample, v is 
( 5 )  the collision frequency, and f, is the result of the first iter- 

ation in powers of @, which satisfies the equation 

where Vis the volume of the system, and also to distinguish (v+iqv)f,=-e@ (q) (Eov) +e (Eiqv) . 
the part of the collision operator averaged over the impurity 

(14) 

positions. The kinetic equation then becomes The field E, is found from the equation of continuity 

where 

div j = 0 and is given by ' 

(6) q(qE0) 
Eiq=Q ((I)- a2 ' 

Consequently, in the first approximation we obtain 

It is now convenient to adopt the Fourier representa- Et=Eo-q(qEo)/q2. (17) 
tion in terms of the coordinate r. The Fourier component of 

We are interested only in the spatially homogeneous fluctuations of the impurity concentration is 
(q = 0) current (odd in v) part of the function f,. Solving 
the kinetic equation, we find 

where 

2"in (q&d2) sin (q,L,/2) sin (qZLd2) 
x J 5 v  I,(&) [ I Q ( ~ )  I ~ - < I  e ( q )  I ~ > I  4n 

A(q)= 
QxQvQz 

. (9)  
Y (qE0) (qv) 

X--;[(E.V)- (18) 
We require the quadratic fluctuation of the impurity concen- va+ (qv) 9 

tration 
where n = v/v and (dq) =d 3q(2.rr)3. The angular brackets 
denote averaging over the positions of the impurities. 

(q) 1 2  = (ei.nt-(ei.4)) (ei.%_(ei.n.)). We now turn to Eq. ( 10) for (@(q)  12,  which can rewrit- 
i+r ( lo) ten in the form 
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The last term in Eq. (19) is easily shown to balance the 
contribution to the current density of the nonequilibrium 
function of the distribution f,, which is due to the presence of 
the A function in Eq. (8) for @(q). Consequently, the corre- 
lation contribution to the current density is 

where 

In the derivation of the above expression we assumed 
that the condition 91% 1 is satisfied. The validity of this as- 
sumption will be discussed below. 

It is worth noting the following important factor. Since 
we are dealing only with the pair correlation, it follows that 
in the summation over k (when i is given), we have to sim- 
plify Eq. (20) by excluding configurations in which an elec- 
tron traveling ballistically from the ith to the k th impurity 
encounters an additional impurity. This means that the 
expression (16) for f, is valid only at distances from an im- 
purity center that do not exceed the mean free path I. It is 
then found that in Eq. (20) we have to retain the summation 
only over the neighboring centers in a sphere of radius of 
order Icentered on the ith impurity. Therefore, only the fluc- 
tuations with q>l- ' are important; this justifies the above 
assumption. We can retain all the previous expressions with- 
out modification, provided we alter the normalization of the 
A function by assuming that it is normalized to the volume 
Vo z 1 3. Note that Vo is the minimum volume in which self- 
averaging is possible and for which the concept of electrical 
conduction still retains its meaning. 

We now estimate the correlation contribution to the 
conductance created by one pair of centers, for which we 
shall select a fixed distance R Ri - R, , and transform the 
integral with respect to the vector q. It is convenient to do 
this after introducing dimensionless variables 

g = qR, c = cos (R: E,), s = sin (R:E,). (22) 

Consequently, the integral 

is transformed to 

The lower limit of integration in the above expression is gov- 
erned by the condition ql> 1: (,, -,R /I. The upper limit of 
integration is governed by the form factor of the scatterer 
'P(qro), where r o z  (u/n-) is the radius of the potential of 
this scatterer. In particular, in the case of a spherical poten- 
tial well with a rectangular vertical profile, we have 

The integral in Eq. (23) should also include a factor 
1 'P (gr,,/R ) 1 ', the influence of which can be allowed for by 
introducing the upper integration limit &,,, ZR /ro. This 
truncation of the integration domain is significant, because 
at high values of { the integrand in Eq. (23) behaves as s4 
sin 6, whereas at low values of 6 its behavior is analytic. 

We then find that the characteristic value of the correla- 
tion contribution of one pair of defects to the conductance of 
a sample is of order 

[Using the lower integration limit <,, in an expression of 
the form (23) for the contribution of the term in (21) pro- 
portional to A(q), we can easily show that this contribution 
is of order u/Ni 1 ', i.e., it is (R / I )  4 1 times less.] 

The estimate given by Eq. (24) determines the order of 
the absolute value of the correlation contribution of the in- 
vestigated pair. Therefore, this contribution depends on the 
direction of the vector Rand can have different signs. There- 
fore, in the subsequent estimates we have to consider in 
somewhat greater detail the correlation contribution. 

PHYSICAL RESULTS 

Classical correlation contribution 

We now consider the change in the conductance due to 
a displacement of one of the impurities (i) by a distance SR. 
The contribution to the change in the quantity l@(q) 1 2 ,  
which is even in q, is then 

6  @ (q) 1 '  = -${sin2 (q 6 ~ )  

We consider only the approximation linear in SR. We 
then have 

where the origin is shifted to the point Ri. 
We consider one term of the above sum. We select the z 

axis along Eo and we then have 

Averaging this term over the directions of q with the weight 
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we obtain 

wherep is the cosine of the angle between q and the z axis. 
The final result is 

Here, c and s are, respectively, the cosine and sine of the 
angles between SR and E,. We have qmin z 111 (we recall 
that the inequality q l )  1 was assumed). The value of q,,, is 
limited by the ranges of validity of the adopted approach: 
qmaX ( A  - I, ( S R )  - ', or by the characteristic form factor of 
the scattering center, which truncates the integration do- 
main at values of q of order the reciprocal length of the scat- 
tering center l/r,. The result is a characteristic estimate of 
the relative change in the conductance due to displacement 
of a single impurity: 

Here, R,, is the distance from the displaced impurity to its 
nearest neighbor. In obtaining the second equation it was 
assumed that for a typical impurity the value of R,, is on 
the order of ( N i / V )  - 'I3, i.e., it is on the order of the average 
distance between the impurities. 

It is important to stress that in a sphere of radius of the 
order of I the drop in the correlation contribution to the 
conductance has no characteristic scale and we are dealing 
in fact with the nearest neighbors. 

It should be pointed out however that in obtaining the 
estimate (28 ) we ignored an important factor: the contribu- 
tion of the neighbors in the shadow must be excluded in 
calculating the correlation term. The displacement of a sin- 
gle impurity center may change the nature of the neighbor- 
ing centers governing the correlation contribution, because a 
displaced center may throw a shadow on some neighbors 
and lift the shadow from others. In estimating this effect we 
consider the centers i and k separated by a distance R .  The 
probability of destruction or formation of an impurity triplet 
which includes these centers is equal to the probability that 
the third impurity falls within a cone with the base a and the 
generator R, i.e., within niaR; the existing triplet can be 
destroyed by moving an impurity a distance We can 
estimate the dispersion of the correlation contribution to the 
conductance by selecting a sphere with the radius R,,, z I 
around a displaced impurity. The correlation contribution 
of this region to the conductance dispersion is of order 

Following the estimate given in Eq. (24) we can represent 
the contribution of one pair to the conductance in the form 

where q5 is a certain alternating-sign function of its argument 
and 4 is the average value of the function in a sphere of radius 
Rmax. 

The integral in Eq. (29) depends logarithmically on the 
limits and R,, is governed by the actual distribution of im- 
purities in a given sample. Therefore, an estimate of the 
shadow effect gives 

which for SR is identical with the estimate given by 
Eq. (28). Note that the characteristic magnitude of the cor- 
relation contribution determined in one experiment depends 
on the experiment itself. In studies of the statistics of changes 
in the conductance due to jumps of different impurities in an 
ensemble of samples it is natural to assume R,,, >a'/2 for a 
totally uncorrelated distribution of impurities (otherwise 
there is no sense in discussing the scattering by individual 
defects). We then obtain 

If we are interested in the correction to the conductance for 
jumps of the same impurity between, for example, two states, 
then R,, is the distance from an impurity to its nearest 
neighbor. 

Note that this shadow-effect contribution is not deter- 
mined by the adjacent impurities, but in general by all the 
impurities in a sphere of radius = : I  around a displaced cen- 
ter. 

Comparison with universal fluctuations of the conductance 

Let us compare the classical fluctuations of the conduc- 
tance with the quantum universal fluctuations of this quanti- 
ty (see, for example, Refs. 1-3). In the three-dimensional 
case it follows from Eq. (2 )  that these fluctuations can be 
described by 

Using the estimate given by Eq. (26) and also assuming that 
L, > L, we obtain 

It is natural to assume that the characteristic displacement 
of an impurity SR is on the order of the interatomic distance 
a and (in the case of a metal sample) also on the order of the 
de Broglie wavelength A. Therefore, if L, > L > I ,  the classi- 
cal contribution is smaller than the quantum one. 

It is important to stress, however, that the classical con- 
tribution "survives" at higher temperatures when the length 
L ,  is small and the quantum fluctuations are suppressed. In 
fact, the quantum interference may appear only if the condi- 
tion L, $1 or fi/TT ) 1 is satisfied (here, T is the relaxation 
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time of the electron momentum). It therefore follows that 
the quantum effects can occur only if 

It should be pointed out that this condition is not obeyed by 
most nondegenerate systems. On the other hand, classical 
fluctuations, which are insensitive to this inequality, may 
appear also in the case of nondegenerate systems. If the elec- 
tron velocity is v z  3 X 10' cm/s and we also have 1 z  3 X lo6 
cm, then T * z 77 K. 

Influence of an external magnetic field 

Let us now consider the influence of an external mag- 
netic field on the classical correlation effects. Bending of the 
electron path in a magnetic field alters the correlation con- 
tribution. Obviously, the influence of the field is greatest for 
distant pairs. On the other hand, as shown above, the classi- 
cal correlation contribution is due to impurity clusters of 
dimensions 61. The deviation of the electron path from recti- 
linearity by an amount ZZU''~ in a distance of length =:I is 
equivalent to a displacement of one impurity. We can there- 
fore expect the correlation contribution of each pair to the 
conductance to change by an amount on the order of the 
conductance itself [for an estimate see Eq. (28) ] in a mag- 
netic field which satisfies the condition 

i.e., when the magnetic field is classically weak (a, is the 
cyclotron frequency). Since the contributions of different 
impurities can be regarded as statistically independent, the 
total change in the conductance is of order 

1 a'" 

In the case of a degenerate conductor, we obtain 

which is z ( I / L )  ''2<1 times less than the scale of the 
"grass" due to universal fluctuations of the conductance. 
However, as in the absence of a magnetic field, the classical 
effect survives also at fairly high temperatures. For example, 
ifL, <L, the ratio of the classical and quantum scales of the 
"grass" is of order 

so that under certain conditions the classical contribution 
may predominate. The characteristic scale of the magnetic 
fields that govern the period of the "grass" is the condition 
(35), which for a degenerate conductor can be rewritten in 
the form 

so that for L, > I this scale is greater than the scale of the 
fields governing the dependence of the universal fluctuations 
of the conductance of the magnetic field:'-3 
H$,,z@i/L$. However, at high temperatures these 
scales may be of the same order of magnitude. 

Comparison with the contribution of the local quantum 
interference 

In addition to the universal fluctuations of the conduc- 
tance, let us consider also the local quantum interference 
(see, for example, Ref. 4), which is the interference between 
the wave functions formed on scattering from adjacent im- 
purities separated by a distance much less than the mean free 
path I. ( I t  should be pointed out that the universal fluctu- 
ations of the conductance are due to the interference of the 
electron wave functions in the regions with dimensions of 
the order ofL, ) 1. Therefore, they are frequently referred to 
as manifestations of the global interference.) 

We can make a comparison with the classical correla- 
tion contribution by analyzing the local interference in 
somewhat greater detail. We include in the scattering proba- 
bility Wsome interference terms of the type A cos(p - p', 
R, ). (For simplicity, we assume that the scattering ampli- 
tudes A are real and the same for all the centers.) Using the 
same iteration equation as before, we obtain the following 
interference contribution to the collision integral: 

The corresponding contribution to the current density is 
proportional to 

This yields the following estimate for the interference 
contribution to the current due to one pair: 

I a L[ - cos (2pR) ow2 (Eo, R) 
G R N(pRY 

Obviously, in the summation over the neighboring impuri- 
ties k it is sufficient to consider those which are located at 
distances R<I. In view of the size of the parameter p,l, the 
main contribution comes from the first term in Eq. (38): this 
contribution is of order 

Because of the fast oscillations, the average over the realiza- 
tions of the distribution of impurities vanishes and the dis- 
persion is governed by the minimum distance between the 
impurities. Displacement of one impurity gives 

This contribution is also governed by the nearest neighbors. 
For a typical impurity we have R zn; ' I3 and for a close pair 
characterized by R zz u''~ , the estimate given by Eq. (39) 
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agrees with the corresponding estimates for fluctuations of 
the resistance due to transitions of defects on the atomic 
scale (fluctuators) between locally stable states.9s10 This is 
natural because such a close pair should behave as a single 
quantum system in the form of a particle in a two-well poten- 
tial. 

The contribution of the local interference described by 
Eq. (39) and corresponding to the displacement of one im- 
purity is generally greater than the classical contribution: 

For a typical impurity we have R z n; and therefore, 

It is interesting to note that this contribution may also ex- 
ceed the contribution of the universal fluctuations of the 
conductance: 

However, like the contribution of the universal conductance 
fluctuations (UCF), the local interference should be mani- 
fested at sufficiently high temperatures when the thermal 
spreading of the electron momenta Ap=;T/v  exceeds 
fi/R d i n , " 3 .  The corresponding estimate for the tempera- 
ture at which the local interference is suppressed gives 

The influence of the magnetic field has a characteristic scale 
in which the change in the contribution of the local interfer- 
ence is relatively of order unity, but is considerably greater 
than the classical contribution: 

HL/ka)onr%. 

It is therefore, meaningful to compare the local and classical 
interference contributions in fields of order Hz,, which 
strongly influence the classical contribution. In fields of this 
kind the magnetic field "feels" only the pairs with R = ; I .  The 
interference contribution of each pair is, as pointed out al- 
ready, of order ( A  and the number of such pairs is of 
order niR 3=;1  '/a. Since the contributions of the pairs are 
statistically independent, the relative contribution of the lo- 
cal interference is of order 

( A l l )  L (12 /N,o )"~A2/ l (N ,a )  ". 

Therefore, the contribution of the local interference is on the 
order of the classical contribution of Eq. (28). It is impor- 
tant to stress that the corresponding contribution of the clas- 
sical interference appears at the same temperature as the 
UCF contribution described by Eq. (34). 

CONCLUSIONS 

We have considered the classical correlation contribu- 
tion to the resistance due to consecutive scattering of con- 
duction electrons by defect pairs. When defects jump be- 
tween adjacent possible positions, the correlation 
contribution changes, giving rise to If fluctuations of the re- 
sistance. At low temperatures these fluctuations are weaker 
than the fluctuations due to what is known as the global 
quantum interference over distances on the order of the de- 
phasing length L ,  (universal fluctuations of the conduc- 
tance) and the local interference over distances smaller than 
the average distance between the impurities. However, as the 
temperature increases, the quantum fluctuations are sup- 
pressed and the classical ones survive. Therefore, at suffi- 
ciently high temperatures the classical contributions should 
predominate. This is also true of all nondegenerate conduc- 
tors. It is important to stress that the classical and quantum 
fluctuations are sensitive to a classically weak magnetic 
field, which may help in their identification. Therefore, in 
observing the classical correlation effects in the conduction 
process it is preferable to investigate the fluctuations of the 
same quantity in degenerate conductors at temperatures of a 
few tens kelvin, and also fluctuations in nondegenerate sys- 
tems. 

The authors are grateful to V. L. Gurevich for numer- 
ous valuable discussions. 
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