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We present an analytic approach to the description ofthe internal structure of vortices in 
hexagonal and tetragonal exotic superconductors subjected to magnetic fields close to H,., ,and 
use this approach to discuss arbitrary orientations of the magnetic field relative to the axes of the 
crystal. We study the structure of single-quantum singular vortices, and identify parameter 
regions in which these singular solutions are unstable and nonsingular vortices are energetically 
favored. We find the ranges of angle between the magnetic field and the crystal axes for which 
various types of vortices are allowed, and derive the angular dependence of the lower critical field 
H,., that is a distinctive characteristic of superconductors with nontrivial pairing. 

1. INTRODUCTION 

Recent experimental and theoretical investigations of 
the mixed state in superconductors with nontrivial pairing 
have generated a great deal of interest. While nontrivial pair- 
ing is primarily associated with heavy-fermion supercon- 
ductors, it may have some relevance to high-temperature 
superconductors as well. The magnetic properties of these 
latter systems are usually quite anisotropic, with distinctive 
angular dependences of the critical fields and vortex lattices 
with peculiar structure. The anisotropy of the upper critical 
field H,, in superconductors with multicomponent order pa- 
rameters has been discussed in a number of theoretical pa- 
pers. " 

There is also an undeniable interest in the investigation 
of features of the mixed state for low values of the field H, 
i.e., near the lower critical field H,, . The structures of vortex 
lattices and vortex cores in this range of fields can be quite 
different from the corresponding structures in the large-H 
range. This suggests that magnetic phase transitions may be 
possible in the vortex lattices. Apparently such transitions 
have been observed experimentally in the superconductor 
UPt, at fields H-0.6 H,, .4-6 

A number of theoretical explanations for these experi- 
ments have been proposed in the li terat~re.~. '-~ One of these 
theories (Ref. 9 )  involves a phase transition that converts 
axisymmetric singular vortices to nonsingular vortices via 
axial symmetry breaking. The phenomenological Ginzburg- 
Landau (GL) equations are solved numerically in this paper 
when the magnetic field is directed parallel to the anisotropy 
axis t of the system; the results show that the postulated 
axially nonsymmetric vortices can exist over a wide range of 
parameters. These vortices are nonsingular, i.e., at least one 
of the components of the superconducting order parameter 
is nonzero everywhere within the vortex. Nonaxisymmetric 
vortices have been proposedI0 previously in discussions of 
superfluidity in 'He. 

In this paper we use an analytic approach to analyze the 
core structure of nonaxisymmetric singular and nonsingular 
vortices in exotic superconductors with symmetry groups 
D,, and D,, . This approach allows us to treat arbitrary ori- 
entations of H relative to the crystal axes and to obtain the 
angular dependence of H,, . Here we limit ourselves to cases 
where the energetically favored phase is superconducting 
with broken time-reversal invariance in the absence of a 

magnetic field. For the best-studied compound UPt, , which 
has the symmetry group D,, , there is experimental evidence 
for the existence of phases11 which belong to superconduct- 
ing classes that transform as two-dimensional representa- 
tions of the groups D, and D, . lZ These phases are character- 
ized by the presence of a vector that behaves like a magnetic 
moment under the group  transformation^.'^ Orientations of 
this vector along the anisotropy axis and opposite it corre- 
spond to superconducting phases that are degenerate in the 
absence of a magnetic field. For applied magnetic fields near 
Hcl the degeneracy is lifted;9 this leads to an unusual angu- 
lar dependence of Hcl ,  which will be discussed below. The 
experimental observation of this dependence may be viewed 
as confirmation of the many-component nature of the order 
parameter in these systems. 

2. DISTINCTIVE FEATURES OFTHE VORTEX STRUCTURE IN 
HEXAGONAL SUPERCONDUCTORS 

A) Ginzburg-Landau functional 

Several experiments have shown that the superconduc- 
tivity classes for UPt, involve order parameters that belong 
to two-dimensional representations of the group D, ,'I,'' and 
therefore transform as a two-component complex vector 
rl = (qx  ,qy ) . We write the GL functional in a magnetic field 
as follows: 

P =  J (-aqiq<'+Bi (tlcqi0)'+$z I qiqt ['+KapiWqj'pi~ 

In order for a phase with broken time-reversal invariance to 
occur in the absence of a magnetic field, we must have 
f i2  > 0. This corresponds to solutions with q + - (1, + i) .  
We can introduce a vector I = i[rlrl*] which characterizes 
the "moment" of the uniform phase, and which is directed 
along the z-axis or opposite it for q + and rl respectively. 
Let us consider solutions to the GL equation for a single 
vortex oriented at an angle y to the anisotropy axis z, and 
rewrite ( 1 ) in terms of the functions 
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Let us also rotate the coordinate system x, y, z around the x 
axis by an angle y such that for the new coordinates 2, j, Z the 
2 axis is oriented parallel to the vortex axis, and carry out an 
additional scale transformation of the coordinates in the 2j 
plane: 

where g 2  = h ,K,/a, C= (K2 + K,) / (2K1 ). In  the com- 
pounds under investigation the G L  constant satisfies x $1. 
This allows us to neglect the vector potential A in the G L  
equations while investigating the structure of the vortex 
core. We will also neglect quantities of order 
(K, - K, ) / ( K l  x2 ) ,  for two reasons: not only do we have 
x 3 1, but also 

This is due to approximate electron-hole symmetry at the 
Fermi surface.'." We now write an expression for the free 
energy density in the range of distances p = 5' + 7 < x  from 
the vortex axis that includes the transformations described 
above: 

s=l - cos y cos2 y + [ K, (I+C) 

a a (5a)  
a* = f  i--=_. 

In calculating the energy of a vortex it is convenient to 
reserve for separate discussion the range of small distancesp 
where both components Y ,  and Y, of the order parameter 
differ considerably from zero. A t  large distances, a solution 
that describes an isolated vortex must reduce to one that 
describes a uniform superconducting state, in which either 
Y,  or Y, reduces to zero. Therefore, it follows from ( 5  ) that 
for large p we can use the usual G L  theory with a single- 
component order parameter and an anisotropic mass tensor. 
For this reason, in what follows we will be interested primar- 
ily in those states of the system that are described by expres- 
sion ( 5 )  and whose asymptotic form at large distances corre- 
sponds to the usual one-component vortex. For definiteness 
we will assume that the component Y,  of the order param- 
eter is nonzero for ~ $ 1 ;  then the vector 1 is directed along 
thez-axis for largep (we denote its value by 1, ). 

B) Singular vortices oriented parallel to the anisotropy axis 

For y = 0 and y = .ir solutions to the G L  equations de- 
rived from expression (5 )  exist which describe an order pa- 
rameter whose components are axisymmetric with respect to 
their magnitude: 

Y ,=eimeGm (p),  Y2=eineR, (p); (6 )  

herep, 0 are polar coordinates in the @ plane. The numbers 
m and n are connected by the relation m + 2 = n for y = 0 
and m - 2 = n for y = T. These relations follow immediate- 
ly from symmetry considerations: because the G L  func- 
tional ( 1 ) is invariant with respect to rotation through an 
arbitrary angle around the z-axis, we can assign a certain 
value of the projection of the moment on this axis to the 
solution (6).  For y = 0 the moment of the component Y,  is 
m + 1, and the moment of Y, is n - 1, since (3 )  and ( 6 )  
imply that a rotation around the z axis through an angle p 
gives rise to multiplication of these quantities by 
exp[i(m + l ) p ]  and exp[i(n - 1 ) p ]  respectively. The re- 
quired connection between the numbers m and n is obtained 
from the requirement that the moments for Y,  and Y, be 
equal. According to the assumptions made in the previous 
section, the function G,, ( p )  is nonzero, while for positive b 
R,, (p) reduces to zero outside the core. This implies that the 
vortex contains m magnetic flux quanta. We note that for 
y = 0 the case m = - 2, n = 0 corresponds to a two-quan- 
tum nonsingular vortex. The possible existence of such a 
vortex at high fields was investigated in Ref. 14. However, 
for sufficiently low fields and large x it is apparently always 
more advantageous to have single-quantum vortices. 

Let us set m = - 1. Then the magnetic field H is ori- 
ented parallel and antiparallel to the vector 1, for y = 0 and 
y = .ir respectively. Depending on the orientation of H with 
respect to 1, , two types of single-quantum vortex are possi- 
ble. For H T  TI, we have n = 1, so that the phase circulation 
of component Y2 in one circuit around the vortex axis equals 
2 n a n d R ,  a p a s p - O . F o r H ~ 1 1 ,  wehaven = - 3;inthis 
case the phase circulation of component Y2 equals - 67r 
and R , crp3 asp- to .  Both kinds of axisymmetric vortices 
are singular, because the functions G , , R ,  , and R , re- 
duce to zero a t p  = 0. Let us write the equations for R ,  , G - , 
in the region p < x for y = 0: 

For y = n- the equations for R _ , and G - , have the form 
( p < x )  
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The solutions to Eqs. ( 7 )  and (7a)  depend sensitively on the 
two parameters b and E = C / ( 1  + C).  Because these equa- 
tions cannot be solved exactly, we cannot determine R , ,  
G - , , and R , ; however, we can approximate these func- 
tions for all regions of variation of p .  Solutions to ( 7 )  and 
(7a)  can be obtained by the method of successive approxi- 
mations with respect to E. To  lowest order in E only the func- 
tion G , is different from zero. To  first order in E the func- 
tions R ,  and R , appear in Eqs. (7 )  and (7a)  respectively. 
The correction to G _ , is of order E'. In what follows, we will 
assume that E <  1. This approximation is completely justi- 
fied, since the condition (2 )  and the previously mentioned 
condition K, zK, imply that I E /  <0.5. By including terms of 
first order in E in the solutions of Eqs. (7 )  and (7a) ,  we can 
show that G , (p) coincides with the magnitude of the or- 
der parameter for a vortex in a normal superconductor. In 
this case the quantity G I  (p )  is close to unity outside the 
core (i.e., fo rp  > 2) .  Therefore, fo rp  > 2 Eqs. ( 7 )  and (7a)  
can be written approximately in the form 

F o r 2 < p < ( 2 b )  ' / 2 w e h a v e R ,  =. - C / ( l  + C ) ,  and 
for p$ (26) - the function R ,  (p) falls off like p '. 
Matching the asymptotic forms for large and smallp, we can 
obtain the following approximation for R ,  over the entire 
interval o f p  ( f o r p < x ) :  

R,"' (p) = I C 
( 9 )  

- ,  

( l+C) (1+2bp2) ' ~ ' 2  

Analogously, for R _ , we obtain 

I 3cp3 
8 (I+(?) ( 9 f  8 b )  ' 6 2  

R':' (p) = ( 10) 
3C 

( l+C) (9+2bp2) ' ~ > 2  

Thus, the structure of a singular vortex oriented paral- 
lel to the anisotropy axis is approximately described to first 
order in E by Eqs. ( 6 ) ,  ( 9 ) ,  and ( l o ) .  For values of b that are 
not too small, corrections to G (!', that are second order in E 

do  not change the asymptotic behavior of G , , either for 
p -0 or for largep. In the calculations that follow we will use 
the simplest approximation for G , , i.e., tanh(p/2); in par- 
ticular, we use this form to calculate the free energy. 

C) Nonsingular vortices oriented parallel to the anisotropy 
axis 

When the system is subjected to a magnetic field H  par- 
allel to the z-axis, the axisymmetric solutions (6)  with 

m = f 1 that we obtained above are not energetically favor- 
able for all admissible values of the parameters b and C. The 
numerical calculations carried out in Ref. 9 have shown this 
for the case of a field H  parallel to the z-axis. In reality, 
within the core of a vortex the curve along which the compo- 
nent Y,  of the order parameter vanishes need not coincide 
with the corresponding curve for Y,, and there may be sev- 
eral such curves. This implies the presence of a nonsingular 
vortex with broken axial symmetry. The configuration that 
we find in this case may be regarded as a bound state of two 
or  more vortices, if by the term "vortex" we mean any curve 
along which some component of the order parameter has 
zero absolute value and a specific phase circulation when one 
circuit is made around this curve. At large distances this 
vortex structure has an asymptotic behavior that corre- 
sponds to a single quantum vortex. 

The structure of a nonsingular vortex for H f  t 1, differs 
significantly from the corresponding structure for H  t 11, . 
For Ht f l ,  , certain values of the parameters b and C cause 
the core to become unstable with respect to a displacement 
which separates curves along which the components Y,  and 
Y, vanish. For the orientation H T  11, this instability takes 
the form of the decay of a component-Y, vortex with - 677 
phase circulation around its axis into three component-Y, 
vortices with circulation - 2 ~ .  

Let us first consider the case H T  tl, . We can describe 
the displacement of the zero-component curves in the sim- 
plest possible way by choosing the following trial functions: 

where G,, (p )  and R,, ( p )  do not reduce to zero at the coordi- 
nate origin. The functions G,, R,, and R ,  fall off with in- 
creasing distance from the axis of the vortex over a charac- 
teristic length p*, which increases as b increases, while for 
b-0 we have p* cc b The primary contribution from 
those terms of the free energy that depend on these functions 
comes from distances p S p * .  Therefore, for p* < x  we can 
use expression ( 5 ) .  Let us substitute ( 1 1 ) into ( 5 )  and per- 
form the angular integration over 8. It is necessary to deter- 
mine the region of parameters b and C within which the 
functions G,, R, are nonzero. To do this, we will separate 
out that portion of the free energy that depends on G,, R,, 
saving only terms that are quadratic in these functions: 

rn 

Note that for the special case C = 0, R ,  = 0, variation of the 
functional (12) leads to an  equation for the function R,, 
which formally coincides with the Schroedinger equation for 
a particle in a potential well: 

The function R, will be nonzero only when the lowest ener- 
gy level of a particle in the potential ( 1 + 26) G * , satisfies 
the condition E,,,, ( b )  < 1. Let us use the approximation 
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G -  , z tanh(p/2) to calculate Em,,, (b),  while for R, we 
choose the trial function 

where A, is a variational parameter. Minimizing the corre- 
sponding energy functional, we obtain 

From this it follows that a seed of R, appears for 
b < b * ~ 0 . 3 7 ,  with characteristic radius A, ~ 2 . 5 .  Analogous 
considerations lead easily to the conclusion that for C = 0 no 
seed of the function Go appears for any value of b > 0. Thus, 
we have found that nonsingular but axisymmetric vortices 
can exist for C = 0 and b < b *. By including terms of fourth 
order in R,,  it is not difficult to show that the amplitude of 
the component Y, on the axis of the vortex is a quantity of 
order (b  * - b)  ' I2 .  For comparison, we give the numerical 
result found in Ref 9, i.e., b * = 0.24 for C-0. For C f ; O  a 
seed of R, appears against a preexisting background of R ,  . 
This leads to a shift in the threshold value of b * which de- 
pends on C, and also to the appearance of nonzero Go.  For 
R ,  we use expression (9 ) ,  while for G, we take the trial 
function 

Minimizing the energy ( 12) with respect to the parameters 
A,, A,, and B, we find the following relations between the 
amplitudes G, and R,,  along with the values of A, and 
b,*(C): 

b,' (C) =0,37 + 0,7C2 
(1+cy ' 

The increase in the threshold value of b ,* (C)  and its depend- 
ence on the sign of C agree with the results of Ref. 9. Above 
threshold ( b  > b ,*(C) ) we have an axisymmetric singular 
vortex. The order parameter in this vortex is unchanged by a 
rotation through an arbitrary angle p. At b = b ,* (C)  a spon- 
taneous breaking of the axisymmetry occurs. In this case the 
position of the curves on which the component Y, vanishes 
are displaced by a distance p, - ( 1 + C) ( b ,* - b) "2/C 
from the z-axis for b near threshold, while the curve on 
which the component \V, vanishes shifts by a distance 
p ,  -C(b ,* - b) I / * / (  1 + C) in the opposite direction. The 
vector d which connects the positions of the zeros on the xy 
plane can be oriented in an arbitrary fashion for an individ- 
ual vortex. However, this degeneracy will be lifted by the 
interaction between vortex lines in a lattice. 

Let us now consider the case H T  11, and determine its 
instability threshold with respect to breaking of axisym- 
metry and its core structure. We choose trial functions for 
Y, and Y, in the following way: 

(16) Y ,=R-, (p) e-3ie+Ro (p) . 

In this case there is no displacement of the curves along 
which the component Y,  vanishes. This corresponds to 
G, (p )  = 0, and is associated with the absence of an interac- 
tion between the harmonics R, and G, in this case. Carrying 
out calculations analogous to those presented above for 
y = 0, in the small-s approximation we obtain the following 
expression for the threshold value b : ( C )  : 

b,' (C) =0,37 - O,28CZ 
(1+C)2 ' 

Comparing ( 15) and ( 17),  we see clearly that b : (C)  de- 
pends on C somewhat more weakly than b ,* ( C ) ;  more spe- 
cifically, the value of b decreases with increasing C. This 
latter result contradicts Ref. 9, where it was found that b is 
independent of C. This disagreement is apparently connect- 
ed with the omission of anisotropy in the function Y, . Nev- 
ertheless, the structure of the core for the solution ( 16) coin- 
cides with that obtained in Ref. 9. At the same distance 

from the z-axis (and near the threshold b: for b)  we find 
three vortices for the component \I/, , which form an equilat- 
eral triangle. If we do not take into account neighboring 
component-Y, vortices, this state is degenerate with respect 
to rotations of the triangle. In this case, the nonaxisymme- 
tric vortex preserves a symmetry with respect to the trans- 
formation exp( - i2rr/3) C,, where C, is a rotation by an 
angle 2 ~ / 3 ,  as well as the transformation U, R, where R is 
the operation of complex conjugation and U, is a rotation 
through an angle rr around one of the three axes located at an 
angle 2 ~ / 3  to one another in the xy plane. 

D) Singular vortices oriented at an angle to the anisotropy 
axis 

A comparison of the results obtained in the previous 
sections with the results of numerical calculations carried 
out in Ref. 9 for the case of a field H parallel to the z-axis 
shows clearly that a satisfactory level of accuracy can be 
achieved in describing the structure of vortices in supercon- 
ductors with nontrivial pairing without going beyond the 
simple approximate methods used here. Let us now consider 
the structure of a vortex which makes an arbitrary angle y 
with the z-axis, a problem which has not yet been studied in 
the literature. We seek Y, in the form of an expansion in 
angular harmonics: 

For Y, we retain only the two harmonics G , and Go in the 
expansion. Again we will use the approximation s < 1 in the 
calculation, and assume G - , -- tanh(p/2). Substituting 
(18) into the free energy functional, carrying out the angu- 
lar integration over 8, and varying the the functional with 
respect to the harmonics R,, as before, we arrive at a system 
of equations for these harmonics. In this section we will in- 
vestigate only the structure of the singular vortices; there- 
fore, we will assume that R ,  and G, = 0. Furthermore, we 
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will show that this scenario is indeed possible for sufficiently 
large values of b. For the three harmonics R ,  , R _ , , and 
R , the component Y, plays the role of a source, whose 
amplitude is a quantity of order E. The remaining R,, are 
proportional to higher powers of the parameter E; therefore, 
in the approximation used here they will be neglected. These 
three harmonics can be approximated by the following ex- 
pressions: 

q2 Rt (p, y = - R;'' (p) , 
4 

Here R :I)@), R (2: (p )  are the functions ( 9 )  and ( l o ) ,  
which are solutions to the problem for y = 0 and y = a re- 
spectively. Expressions ( 19), ( 9 ) ,  and ( 10) allow us to cal- 
culate the correction to the vortex energy associated with its 
core for arbitrary y, and consequently to obtain the angular 
dependence of the upper critical field H,, for a singular vor- 
tex: 

@. [ DM. + KL sinz I ] '' 
Hct = 

h h 2  cos ( y-rp) Kt (I+C) 

whereA is the penetration depth of a magnetic field oriented 
along the anisotropy axis of the crystal, s and q are given by 
expression (5a) ,  and g, is the angle the field H makes with 
the z-axis. For the case C = 0 the expression for H,, ( y )  co- 
incides with the result obtained for normal superconductors 
with an anisotropic mass tensorI5 to logarithmic accuracy. 
For anisotropic superconductors q, need not coincide with y. 
In order to determine y we must investigate expression (20) 
at  its minimum. Discarding terms -E', we find the following 
condition: 

K1 (l+C)tan q=K,  tan 1. (21) 

For g, = 0, g, = a the direction of the field H i s  parallel to the 
vortex axis. For C #Owe find that the directions q, = 0 and 
g, = a are not equally justifiable. The function @ ( y )  is posi- 
tive, and, e.g., for 6-0.4 it increases monotonically as y in- 
creases from zero to a. consequently, H,, ( a )  < H,, (0 ) .  For 
large x and b z 0 . 4  we have 

The orientation of the vortex with respect to the magnetic 
field also changes. In particular, for q7 = a /2  

However, when H,, is calculated to order E~ we can use Eq. 
( 2  1 ) once more. Let us now find the structure of a vortex for 
arbitrary y. For smallp the solution to ( 19) for Y, has the 
form 

For b - <p < x we have 

For y#O, y # a the component Y, simply changes sign un- 
der a rotation through an angle a in the xy plane; however, 
for arbitrary rotations there is no symmetry. For arbitrary y 
several vortices of the component Y, appear in the core of 
the component-Y, vortex, and during a circuit around the 
centers of these vortices the phase circulation of Y, equals 
2an (n < 0 if the circulation coincides in sign with the circu- 
lation of the phase of Y,  , and n > 0 in the opposite case). 

I t  follows from Eqs. (24) and (25) that in the range 
0 < y < y, , where y,  is determined from the relations 

there is one vortex of Y, in the core with n = 1. For y > y, 
two more vortices of Y, appear for which n = - 1. In this 
case, the curves along which the component Y, vanishes lie 
in the .Zj plane. As y increases these vortices approach the 
coordinate origin and merge with it for some y,, where 

For y >  y,, we see that for p = 0 a single vortex of Y, re- 
mains with n = - 1. When y becomes larger than y, = a/2  
( s (  y, ) = q( y3 ) ), two more vortices of Y, appear on the i 
axis with n = - 1, which for y = n- migrate to the coordi- 
nate origin. In this case a vortex of Y, forms with n = - 3. 

The positions of the zeros of Y, are shown schematical- 
ly in Fig. 1. The new vortices of the Y, component initially 
appear at a formally infinite distance from the Z-axis," and 
then approach the origin as y varies. Since expression ( 5 )  
applies only in the region of distancesp < x, this approach to 
describing the coordinates of Y, -vortices is incorrect within 
narrow intervals near the angles y, and y, , for which the Y,- 
vortices are located at distances p 2 x. 

E) Nonsingular vortices oriented at an angle to the anisotropy 
axis 

Let us now determine the instability threshold of a solu- 
tion corresponding to a singular inclined vortex, and investi- 
gate the formation of nonsingular vortices. For this it is nec- 
essary to take into account the formation of seeds of R, (p )  
and Go (p )  within the core. Just as for the orientations with 
y = 0, y = a ,  which we investigated above, we use the trial 
functions 
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% ( P )  =A exp ( -p2/L2), 

GO (p) =B exp (-p2/ha2). 

For sufficiently small b, the approximation 
G-, -tanh(p/2) will be incorrect in the region where the 
nonsingular vortices exist. The amplitude R, increases as 
(b  * - b) ' I2, and as b increases away from threshold some 
Y, appears in the core. However, if we are interested only in 
the behavior of the solution near the threshold value b *, this 
circumstance can be ignored. By varying the free energy 
functional with respect to the parameters A,, A,, and B, we 
obtain the following expression for that part of the free ener- 
gy which depends quadratically on A = 6 exp (ip, ) near the 
instability threshold: 

We note that for yf 0, y # ~  the degeneracy with respect to 
p, is lifted. The system possesses a minimum energy if 
p, = 0 or p, = T. A consequence of this is the possibility 
that metastable spiral vortex structures can exist with a non- 
uniform distribution of p, (2.) along the axis. For such a 
structure, the curves where components Y, and Y, are zero 
take the form of spirals which twist around the z axis. For 
pa = 0 we can use Eq. (27) to find an expression for the 
threshold value b * (C,  y ) :  

V ( C ,  T) =0,37-e2Q(y), 
Q(7) ='/,8[0,17q2 (qa+4s2) +0,28sC + 0,28s4 + 0,35q3s 

For the parameter range b < b * (C,  y) a nonsingular vortex 
appears. Let us investigate the structure of its core. The zero 
of the component Y, below the threshold b * is displaced 
along the 2 axis by a distance 

FIG. 1. Schematic spacing of vortices of the component *, of 
the order parameter in the 23 plane for singular vortices in a 
hexagonal superconductor for various values of the inclination 
angle of the vortex axis y to the anisotropy axis z: @ is a compo- 
nent-*, vortex with n = 1; @ is a component-*, vortex with 
n =  - 1; a - - 0 < y < y , ;  b-y, < y < y 2 ;  c-y2 < y < y , ;  d- 
yi < y < r .  

The vortex of the component Y2 located at the coordinate 
origin is displaced in the opposite direction. The spacing of 
vortices of Y2 for certain angles is shown in Fig. 2. To con- 
clude this section, we note that for b < b * the angular de- 
pendence of the lower critical field can also change. Near 
threshold this correction to Hcl has the form 

6,Hc, m - #O[COS' y + K k  sina ylK, (I+C) 1" 
0,2 [ b' (C, 7) -b ]  '. 

4nh2 cos (7-9) 

The appearance of nonsingular vortices is energetically 
more favorable for y = 0; therefore, for small b it is possible 
to have Hcl (0)  < Hcl (T), in contrast to the case of singular 
vortices. 

3. VORTEX STRUCTURE FOR TETRAGONAL 
SUPERCONDUCTORS 

An example of a compound with tetragonal symmetry 
which exhibits exotic superconductivity is CeCu,Si,. Re- 
cently the existence of nontrivial d-type pairing for high- 
temperature superconductors has been discussed in the liter- 
a t~ re . " - ' ~  In what follows we will investigate several 
features of the mixed state near H,, for a tetragonal super- 
conductor whose order parameter generates a two-dimen- 
sional representation of the group D, . In this case a number 
of additional invariants appear in the free-energy functional 
compared to ( 1 ). Let us write out the correction to ( 1 ) that 
includes these invariants: 

The total functional is now invariant only with respect to 
rotations by ~ / 2  around the z-axis. Consequently, even 
when the vortex axis of the structure is oriented along z, only 
axially nonsymmetric solutions of the corresponding GL 
equations are possible. Let the axis of the vortex form an 
angle y with the tetragonal axis of the crystal, and let the 
projection of this axis on the xy plane form an angle a with 
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FIG. 2. Schematic positions o f  component-Y, vortices in 
the Z j  plane for nonsingular vortices in hexagonal super- 
conductors for various values o f  y: a-O< y < y,;  b- 
Yl <Y<Y2; c-Y* <Y<Y3; d-7'3 <Y<Y4; e- 
y4 < y < n=. Near the threshold b * we have n= - y4 - [ K l  ( 1  + C ) / K 4 l 1 / ' ( b *  - b ) ' / 6 / ~ ' / 3 .  

the x-axis. We will choose a system of coordinates Z,j,Z such 
that the 2 axis is directed along the vortex axis, and perform 
the scale transformation (32) 

K,  sinZ y 
where El = K l  + K , ,  C = K , / K , ,  k = ~ , / x , ,  and 8-1-cos y [cosz + a, (1+C-k/2) , q=2-s, 

f = fi2k, /a. Note that for a tetragonal superconductor the 
phase with broken time-reversal symmetry in the absence of 
a magnetic field is favored when 0, > 0 and 0, > - 20,. In 
what follows we will limit our considerations to these param- 
eter relations. Taking into account (3 )  and the condition 
x % 1, we can write out the free energy density near the vortex 
core: 

From the condition that the gradient terms in the G L  func- 
tional must be positive definite, it follows that the values of 
E ,  and E~ cannot exceed unity. We will assume E ,  < 1, E~ < 1 ,  
which allows us as before to treat the component Y ,  of the 
order parameter as fixed, and to seek Y ,  as a small correc- 
tion. As in the case of hexagonal symmetry discussed above, 
for tetragonal superconductors with E , , ,  #O a component- 
Y ,  vortex appears in the core of a component-Y, vortex. Let 
us first consider singular vortex structures corresponding to 
solutions of the form ( 18)  ; in the approximation under con- 
sideration here, there exist only the harmonics R , ,  R .. , , and 
R ,  , as before. However, for b f O  the equations for R ,  and 
R - , are found to be coupled. In what follows, we consider 
the case b<b ,  for which the interaction of these harmonics 
can be neglected. In this case we can obtain the following 
approximate solution: 
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1+C (1)  
~ - , = s q  -[ (E~-E~)COS 2a+iel sin 2aI Ri (p), 

2C 

where R I", R (", are determined by expressions (9) and 
( 10). For the orientations y = 0, y = n- the component Y, is 
symmetric relative to the transformation C,. In this case a 
single component-Y2 vortex is located on the z-axis with 
index n = 1. Furthermore, four more vortices of \V, appear 
within the core with n = - 1; these vortices intersect the gj 
plane at the vertices of the square whose center is at the 
coordinate origin. For y = 0 the curve along which Y, van- 
ishes is located at a distance 

from the origin. We note that (34) is valid for p, < 2. For 
(E, - E ~ / ~ ) / E ~  > 0 the sides of the square are oriented par- 
allel to the x and y axes, while for (&, - e2/2)/&, <O the 
diagonals of the square are oriented along these axes. For 
arbitrary angles a and y vortices of the \I/, component with 
index n = - 1 are found at the vertices of a parallelogram 
whose center (i.e., the point where its diagonals intersect) is 
at the origin. Using Eqs. (9), (lo), and (34), it is not diffi- 
cult to obtain the following corrections to the lower critical 
field due to the core energy: 

@ o  6H., = - -[eoa2y + 
4nh2 

K4 sin' ] "acos-l*s (y, a ) ,  Bi (l+C-kI2) 

Here fo (b )  and f, ( b )  were defined above in (20), 19 is the 
angle between the vectors n and H, and n is a unit vector 
along the vortex I axis. We note that for a tetragonal super- 
conductor the energy of the vortex core depends consider- 
ably on the orientation of the vortex axis with respect to the 
crystal axes x and y. In particular this implies that for low 
fields the vortex axis need not lie in the plane uformed by the 
field H and the z-axis. The angle between u and the plane 
formed by the axes I and z equals 

8 = cos(r-cp) 
Bra1la=aIlt In x sin y sin cp 

where a,  is the angle between the x-axis and the projection 
of the vector H on the xy plane, and p is the angle between H 
and the z-axis. Since we are calculating H,, and S to second- 
order accuracy in the small quantities E, and E, , the angles y 
and p in ( 3 5 )  and (36) are connected by the relation 

a, (l+C-k/2) tan cp=KI tan y, (37 

while the angle 9 in ( 3 5 )  is roughly equal to y - p. Accord- 

FIG. 3. Position of component-W, vortices in the g j ~  plane for nonsingular 
vortices in tetragonal superconductors for y = 0 and positive real values 
of R,, . 

ing to (35), a characteristic feature of tetragonal supercon- 
ductors with nontrivial pairing is the periodic dependence of 
Hc, on the angle a between the crystallographic x-axis and 
the projection of the vortex axis on the xy plane. This period 
with respect to a is a/2. Furthermore, as in the hexagonal 
superconductors, the values of H,, for y = 0 and y = a do 
not coincide. As we have already noted, this circumstance is 
associated with lifting of the degeneracy in energy of the 
superconducting phases ( 1, i) and ( 1, - i) in a magnetic 
field. In the region of small values of b singular vortices be- 
come unstable, and the zeros of components Y, and Y2 shift 
with respect to one another. The approximate positions of 
the zeros of Y, for y = 0 are shown in Fig. 3. By including 
the harmonics Ro and Go, we can obtain an expression for 
the instability threshold. As E, , ,  -0 the region where these 
nonsingular vortices exist is given by the condition 

Here b * = 0.37 if we use the results of the approximate ap- 
proach presented above; b * = 0.24 according to the numeri- 
cal calculations of Ref. 9. For y# 0, y # a, metastable spiral 
vortex structures are possible in tetragonal superconductors 
just as in hexagonal ones. 

CONCLUSION 

In this paper we have discussed the structure of vortices 
in exotic superconducting phases with broken time-reversal 
invariance. We have considered the case of arbitrary orienta- 
tion of a magnetic field with respect to the crystal axes and 
have obtained nonaxisymmetric solutions for an individual 
vortex. We have also calculated the angular dependences of 
Hc, for hexagonal and tetragonal superconductors. In this 
case the values of Hc, turn out to be different for orientations 
of the field parallel and antiparallel to the moment 1 of the 
superconducting phase. For arbitrary orientation of the vor- 
tex axis we have shown the possible existence of nonsingular 
single-quantum vortices, and have investigated their struc- 
ture. As the magnetic field varies, transitions are possible 
from singular to nonsingular vortex lattices. We note that 
such transitions can take place both for hexagonal and for 
tetragonal superconductors for arbitrary orientations of the 
field relative to the crystal axes. There are strong indications 
that just this type of transition has been observed in UPt, ."6 
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In fields that are not parallel to the anisotropy axes, we have 
shown that it is possible for metastable spiral vortex struc- 
tures to exist. The experimental observation of such features 
of the mixed state would confirm the existence of an exotic 
order parameter in the superconductors under discussion. 

The authors are grateful to G. E. Volovik and M. E. 
Zhitomirskii for useful discussion of the results of this work. 

"The corresponding amplitude IT, 1 is very small at such large distances 
[see (9), (101, (19)l. Therefore, the changes in the vortex structure 
mentioned here can actually take place only for sufficiently small p- 1. 
From this point of view the core of a single-quantum vortex under dis- 
cussion here, as before, is a compact formation with characteristic size 6. 
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