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The subject of this paper is the mechanism which leads to destruction of type-I1 
superconductivity by an external current of density j. It is shown that at zero temperature 
superconductivity disappears as soon as the Landau criterion is violated, which corresponds to 
thresholdless creation of closed vortex loops whose size is on the order of the correlation length. 
At nonzero temperature T dissipationless current flow is in fact impossible, even though the 
linear resistance vanishes. The mechanism for dissipation in this case is thermally-activated 
creation of closed vortex rings oriented perpendicular to the direction of current flow, followed by 
expansion and merging of these loops. For je; (In k)/k (where jc corresponds to the Landau 
criterion and k is the Ginzburg-Landau parameter) the rate of dissipation is proportional to 
j7'3e~p( - const/ Tj); forj, (In k) /kGQ',  andj, - j e , ,  to exponential accuracy the dissipation 
rate behaves like exp [ - const. ln2(jc/j)/Tj] and exp [ - const (j, - j)/Tj, 1, respectively. A 
smooth resistive transition is predicted for materials with wide fluctuation regions, as well as 
effects analogous to the AC Josephson effect. 

Nowadays there is general agreement that the most 
striking experimental characteristic of the transition of mat- 
ter to the superconducting state is the possibility of station- 
ary dissipationless current flow, which manifests itself in a 
conductor as the absence of electrical resistance (see, e.g., 
Ref. 1 and the papers cited therein). The goal of this paper is 
to show that this point of view is not entirely correct, using 
the example of a type-I1 superconductor in zero magnetic 
field. The correct statement is that although the linear resis- 
tance of a conductor in the superconducting state in fact 
vanishes at zero temperature, a state of dissipationless cur- 
rent flow is impossible. Although the amount of dissipation 
is extremely small in the majority of practical cases, the very 
fact that it exists is of extreme importance. 

The physical origin of this dissipation can be traced to 
the following phenomenon. When a current flows in a super- 
conductor, it turns out to be energetically advantageous to 
produce closed vortex rings lying in planes perpendicular to 
the direction of current flow. However, a state with a vortex 
ring is separated from the irrotational state by a potential 
barrier associated with the intrinsic energy of the vortex. At 
zero temperature this barrier disappears only at a certain 
critical current density given by the Landau criterion.' At 
nonzero temperature the situation changes, since thermally- 
activated creation of rings becomes possible. Rings whose 
radii exceed a certain critical value will expand until they 
merge with other rings which have preceded them in the 
same plane perpendicular to the current. This process of 
birth and merging of vortex rings is repeated periodically, 
leading to a nonzero average electric field intensity directed 
along the current, and consequently to finite dissipation. An 
analogous mechanism for the appearance of dissipation in 
superfluids was investigated in Refs. 2 and 3, and applied to 
extended Josephson junctions in the recent paper Ref. 4. In 
contrast to previously-investigated  case^,^,^ vortices in type- 
I1 superconductors have a finite interaction radius; this fact 
allows us to find the dependence of the electric field intensity 
on current up to a numerical factor of order unity by using 

analogies with the growth of a crystal surface. The resulting 
dependence is valid for small external currents (correspond- 
ing to conditions which will be described below).' 

1. Assume that a superconductor carrying an external 
current density j contains an infinite rectilinear Abrikosov 
vortex. The external current exerts the following force per 
unit length on this vortex:' 

a0 f = - [jb], 
C 

where cPo = &/e is the quantum of magnetic flux ( f i  is 
Planck's constant, c is the velocity of light, and e is the elec- 
tron charge), and b is a unit vector along the vortex axis. 
From this relation it is clear that the force with largest abso- 
lute value acts on a vortex oriented perpendicular toj. There- 
fore, we will consider closed vortex rings of radius r%{ 
(where { is the coherence length) lying in planes perpendic- 
ular to the direction of current flow. In this geometry b in Eq. 
( 1 ) has the sense of a tangent vector which determines the 
orientation of the magnetic force lines. Depending on its di- 
rection, the radial force exerted by the external current on a 
ring can act either to compress the ring until it disappears or 
cause it to expand to r = co. In the latter case it is obvious 
that the formation of a ring becomes energetically advanta- 
geous. In what follows we will deal only with this favorably 
oriented type of ring. 

The gain in energy from forming a ring of radius r 
equals the negative of the work done by the external current 
as the ring expands from a microscopic size to r. We evaluate 
this quantity in the following way. The work done during an 
infinitely small radial expansion d r  equals the product of the 
total force 2n-rjcPo/c acting on the ring and the displacement 
dr. Integrating this expression from < to r, we find that the 
energy gained by forming a ring of radius r$-{ equals 
cPon-r ?/C. The cost in energy is related to the intrinsic ener- 
gy of a Abrikosov vortex. Consequently, the total energy of a 
ring of radius r is 

U ( r )  --2nre (r) -@,,nlzj/c, (2)  
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where ~ ( r )  is the energy per unit length:' 

Here A is the London penetration depth of the magnetic 
field. The function U(r) in (2)  has a maximum for some 
r = r, whose position and height decrease with increasing j. 
The potential barrier disappears completely for microscopic 
values of r,. However, relation (2)  is meaningful only for 
r%{. Therefore, an order-of-magnitude estimate of the criti- 
cal current density j, can be obtained from (2)  by setting 
rc -- f .  Taking into account that E({) =: ( @,/A) 2, we find the 
value 

which is comparable to the current density required to des- 
troy Cooper pairs.' In order to verify that this latter relation 
corresponds to the Landau criterion, it is convenient to fore- 
go the use of expressions from the microscopic theory (as 
was done in Ref. l ) ,  and instead write (4)  in a somewhat 
different form. Introducing the definitions 

(where n is the electron density, v their velocity, and m their 
mass)' and @, , we obtain an expression for the critical ve- 
locity 

from which the electron charge and the velocity of light have 
been eliminated. If we now identify m with the mass of a 
superfluid atom and take into account that closed vortex 
rings of size f correspond to rotons, the equivalence of this 
relation to the Landau criterion becomes o b v i ~ u s . ~  

Thus, we conclude that at zero temperature supercon- 
ductivity is destroyed when the current density is large 
enough to initiate thresholdless creation of closed vortex 
rings of size f .  

2. Let us now assume that the temperature is nonzero, 
and that the current density j is such that the radius rc for a 
critical ring greatly exceeds the London penetration depth A 
for a magnetic field. In this case the tension per unit length E 

of the ring does not depend on the scale of r and is given by 
expression (3b); therefore, we find for the critical radius rc 
and energy U, 

The inequality r, %A is fulfilled under the condition 

i g je  In klk, 

where k = A /{ is the Ginzburg-Landau parameter,' which 
is assumed to be large compared to unity. 

Consider an arbitrary cross section of the sample per- 
pendicular to the direction of the current flow. Vortex rings 
created in this cross section act to strongly decrease the 
probability of creating rings in neighboring cross sections 
when the distance between these cross-sections is smaller 
than A. This is because all the rings created in this way have 
the same orientation; consequently, a strong repulsion arises 

between rings in parallel cross sections when the distance 
between them becomes smaller than the vortex interaction 
radius A. Therefore, it is meaningful to divide a sample into 
parallel layers with thickness on the order of several A within 
which the creation and expansion of vortex rings occur inde- 
pendently. This is similar to the filling-in of atomic layers on 
the growing surface of the ~ r y s t a l . ~  Each of the layers under 
discussion contains S/rf possible independent rings within 
an area S, each of which emerges with a probability per unit 
time 

where 7; ' is a certain microscopic frequency. After a time t 
the number of vortex rings is (S/rf ) ( t  /7), and the average 
distance between them is 

Under the action of the radial force ( 1 ) a ring must expand. 
Let us assume, following Ref. 1, that this expansion is hin- 
dered by a viscous force proportional to the velocity. Then 
the condition of mechanical equilibrium implies the follow- 
ing velocity of radial expansion 

where 17 = @oHc2/p,~2 is the coefficient of viscosity 
(Hc2 --@,/f is the upper critical field, andp, is the specific 
electrical resistance in the normal state).' Two rings will 
merge when their radii r = ut become equal to 6, i.e., when 

This leads to the following expression for the total average 
rate of change of the phase difference of the order parameter 
on both sides of the layer of material under discussion: 

Using the Josephson relation @ = 2eV/h,' we can find 
the average voltage Vapplied across a layer of thickness sev- 
eral A, and, consequently, the dependence of the average 
electric field intensity E o n  j: 

Note the nonanalytic character of the function E(j-0) 
and the absence of a linear resistance. The amount of heat 
developed per unit time per unit volume of material is given 
by the derivative of Ej, and is found to be proportional to 

For a quantitative estimate of this effect we introduce the 
nonlinear resistancepu) (E = p u ) j )  and rewrite Eq. (6) in 
the form 

At the limit of applicability of Eq. ( 6 ) ,  i.e., for those current 
densities at which r, = A, the ratio p(j)/p, attains a value 

p exp (-neh/3T) -.- 
pn k(k1nk)'" 
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In writing this latter ratio we have used the Drude-Lor- 
entz formula' to estimatep, , and have also assumed that the 
collision time of an electron is of order 7,. If we pick the 
specific value k = lo2 and values of Tand A that are typical 
of traditional low-temperature superconductors, i.e., T = 10 
K, R = cm, we find the ratio p/p, is only 
-exp( - 5 .  lo4), i.e., negligibly small. If we use values of T 
and R which correspond to the high-temperature supercon- 
ductors, i.e., A =  l o p 3  cm and T =  100 K, then 
p/p, - 10 - 15. Although this is an increase of many orders of 
magnitude, it remains a difficult quantity to measure experi- 
mentally. These estimates apply at temperatures far from the 
phase transition to the normal state. However, it was shown 
in Ref. 7 that within the temperature range in which fluctu- 
ations are important the parameters entering into relation 
( 7 )  have values for whichp/p, - 1. From this it follows that 
ordinary low-temperature superconductors, whose fluctu- 
ation range is negligibly narrow, should exhibit as a function 
of temperature a sharp resistive transition with a discontin- 
uous electrical resistivity, whereas this transition should be 
very much smoother in the new high-temperature materials 
with their rather broad fluctuation temperature ranges. 

3. The picture described above retains all of its qualita- 
tive features at high current densities, i.e., for 

j c  In k /k< j<  j , .  

However, in this case the radius of the critical ring satisfies 
the inequality 

therefore, the processes of nucleation and diffusion of vortex 
rings cannot be considered independent of one another. In 
this case the tension per unit length in a ring is given by Eq. 
(3a), and the function E o )  can be obtained only to exponen- 
tial accuracy. For the critical radius r, and energy Uc we find 
to logarithmic accuracy 

From this we obtain the electric field intensity to exponential 
accuracy: 

E ( j )  . erp {- const B..c ln2 [%I}. - 

This relation can be used to recover the results of Refs. 2 and 
3 regarding the braking force that appears in a superfluid 
moving with velocity v(vc due to fluctuation-induced cre- 
ation of closed Feynman vortices. Actually, the properties of 
the latter are reproduced if we set the charge of an electron 
equal to zero in all the relations that apply to Abrikosov 
vortices. If we replace the parameters in this expression by 
those we defined earlier in our discussion of the Landau cri- 
terion, we conclude that the braking force and dissipation 
are proportional to 

where n is the superfluid density and m has the sense of an 
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atomic mass. We note that because of the nonanalytic char- 
acter of the dependence on v the linear viscosity of the liquid 
is identically equal to zero. Near the temperature for the 
superfluid-to-normal liquid transition, this relation can be 
considerably simplified (recall that in liquid helium this re- 
gion is extremely broad and is observable, e.g., in investigat- 
ing the specific heat6 ), since, according to the Josephson 
r e l a t i~n ,~  the first of the factors under the exponent sign is a 
quantity of order unity. 

Also noteworthy is the fact that although superfluidity 
in helium occurs at extremely low temperatures, the effect of 
fluctuation-induced creation of vortices is considerably 
more noticeable in liquid helium than it is in type-I1 super- 
conductors. The reason for this is that the mass of a helium 
atom, which is many times larger than the electron mass, 
appears in the argument of the exponential in (8  ) . 

For current densities close to j,, the energy barrier for 
creating a ring gradually disappears. In this region the corre- 
sponding dependence of the electric field intensity on the 
external current can have the following form (to exponential 
accuracy) : 

E ( j )  a exp [- const-- 
since expression (2)  is linear in j. This same functional be- 
havior of the dissipation and braking forces can be observed 
in superfluids if we replace j by v and /A by fi2nl /m. 

As already noted above, the mechanism leading to the 
appearance of dissipation cansists of periodically repeated 
processes of thermally activated creation and subsequent ex- 
pansion and merging of closed vortex rings. Consequently, a 
time-dependent oscillation will be superimposed on the 
average characteristics we obtained above with a character- 
istic frequency @ given in (5) .  This behavior recalls the AC 
Josephson effect,' and suggests that a number of phenomena 
that are characteristic of the latter may occur. The most 
obvious of these is the appearance of Shapiro steps' in the IV 
characteristic when an external AC field is applied, whose 
frequency w satisfies the resonance condition @ = Iw (where 
1 is a whole number). 

The distinctive feature of all the systems we have been 
discussing up to now is the possibility of creating vortex exci- 
tations. However, in type-I superconductors these vortices 
do not occur. Therefore, the question of whether supercon- 
ductivity in the strict sense of the word exists in materials of 
this type still remains open. 

In conclusion it should be noted that although the dis- 
cussion given here has been rather general in character, its 
predictions should be observed most unequivocally in mate- 
rials with high transition temperatures to the normal state 
and wide fluctuation regions; therefore, the most natural ex- 
perimental systems to examine in order to see these effects 
are clearly the high-temperature superconductors. 

The author is grateful to A. P, Levanyuk for useful dis- 
cussions. 
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