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The example of a comb structure is used in a study of the influence of "dead ends" on the diffusion 
and drift of particles along percolation clusters. It is shown that the equation for the 
determination of the particle density on the axis of a structure is integrodifferential. When the 
number of particles is not conserved, the first derivative with respect to time in this equation is 
replaced with a fractional derivative of order 1/2. A correspondence is established with the 
problem of diffusion characterized by a continuous distribution of delay times. The results are 
given of a numerical modeling of the diffusion and drift in a two-dimensional percolation system. 
An analysis is made of the relationship between these results and the general problem of the drift 
and diffusion along fractals and in systems with traps. 

1. INTRODUCTION order 1/2. An exact expression is also obtained for the 
The anomalous diffusion in fractal structures is a sub- Green's function used in the anomalous diffusion problem. 

ject of great topical interest. The anomaly consists in the It  is shown that the mobility of this center of gravity in an 
usual time dependence of the mean-square displacement: external static electric field decreases with time in accor- 

dance with the following law: 
< x Z ( t )  )a t 2 / ( 2 : + 8 ) .  (1)  

Here, 0 is the critical exponent of the anomalous diffusion 
process. The law ( 1) had been established by numerical 
modeling of percolation clusters (random fractals) and by 
the renormalization group method for regular fractals of the 
Sierpinski gasket type.' However, there is as yet no rigorous 
description of this effect: in fact, the anomalous diffusion 
equation has not yet been derived. 

In our earlier paperZ we suggested a phenomenological 
description of the anomalous diffusion in a homogeneous 
isotropic system. We demonstrated that in this case the gen- 
eralized diffusion equation has fractional spatial derivatives. 
As a result, we established in Ref. 2 a nonlinear relationship 

p ( t )  a y,lt". ( 3 )  

It therefore follows that different types of behavior of 
the mobility in an external field are possible: we can either 
have the nonlinear dependence (2)  in the case of constant 
mobility whenp ccp,IE I' or themobility may decrease with 
time in accordance with Eq. (3 ) .  We therefore carried out 
numerical modeling of the drift of a particle in a percolation 
cluster. We discovered power-law relaxation over short time 
intervals and a strongly nonlinear (exponential) behavior of 
the mobility for long times ( lo5 steps) and in strong fields, 
when the capture by field-induced traps becomes important. 
The present paper deals with these topics. 

between the current and the electric field due to anomalous 
diffusion: 2. MODEL OF A COMB STRUCTURE 

In other words, under the conventional diffusion conditions 
(0  = 0) we can expect Ohm's law to be satisfied; in the 
anomalous diffusion case a more general expression (2)  re- 
places Ohm's law (linear response). However, it is not clear 
to what extent the model of a homogeneous medium with 
anomalous diffusion can be used to describe real percolation 
systems. 

A model allowing for the presence of "dead ends" in 
percolation systems (Fig. 1) was proposed in Ref. 3. The 
technique of generating functions was used in Ref. 3 to estab- 
lish asymptotic behavior of the mean-square displacement 
along the axis of a structure and to show that it depends 
anomalously on time [Eq. ( 1) ] with the exponent 0 = 2. 
However, the diffusion equation was not derived and incor- 
rect extrapolation to the Gaussian form was proposed for the 
Green's function. 

We shall derive below an equation describing the diffu- 
sion and drift along the axis of a structure. It can be repre- 
sented as a continuity equation in which the first derivative 
with respect to time is replaced with a fractional derivative of 

2.1. Anomalous diffusion equation 

A special feature of the diffusion in our model is that 
displacement in the x direction is possible only along the 
structure axis. In other words, the diffusion coefficient D, 
differs from zero only for y = 0: Dxx = D, 6(y). The diffu- 
sion coefficient along the ribs is of the conventional type: 
Dyy = D, . Therefore, a random walk on a comb structure is 
described by the diffusion tensor 

FIG. 1. Comb structure: the conducting axis (y  = 0) has ribs going to 
infinity. 
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The diffusion equation is therefore 

Here, G(x,y,t) is the Green function for the diffusion prob- 
lem. Applying the Laplace approximation with respect to 
time and the Fourier transformation along the coordinate x,  
we obtain a mixed (p,k,y) representation: 

The solution of Eq. (6)  is 

As pointed out above, the diffusion along the structure 
axis, i.e., for y = 0, is anomalous. The corresponding 
Green's function is 

m 

Equation ( 8 ) is derived assuming the identity 
m 

1 1 eap (--ar) dr  = - . 
0 a 

The total number of particles on the structure axis decreases 
with time: 

+ m 

Therefore, the Green's function G(x,O,t) describes the diffu- 
sion when the number of particles is not conserved. Bearing 
this point in mind, we can calculate the displacement along 
the structure axis: 

It must be stressed that the results given by Eqs. (9)  and 
( 10) are exact and they follow from the integral representa- 
tion of Eq. (8). The asymptotic form is found by the steep- 
est-descent method: 

(11) 
One should also mention the unusual statistics of a random 
walk along the axis, the example, the probability of returning 
to the starting point of a random walk is 

We now consider the equation for G(x,O,t). It follows 
from Eq. (7) that in the (p,k) representation, this equation 
is 

[2(D,p)"+D,kZ]G ( p ,  k )  = I .  (13) 

Using the definition of the fractional derivative with respect 
to time 

(see Ref. 4), we obtain the following diffusion equation for 
the particle number on the structure axis: 

where 

The integrodifferential nature of the diffusion equation 
( 14) is a consequence of the random disappearance and sub- 
sequent creation of a diffusing particle (disappearance from 
the axis and return to it) in the course of a random walk 
along the structure axis. 

This formulation of the random-walk problem differs 
from the case of a continuous distribution of the delay times 
(continuous-time random walk-CTRW), first discussed in 
Refs. 5 and 6. The difference is this: in the latter problem the 
particle does not disappear but is delayed at each site with 
some probability. The total number of particles is then con- 
served. In the case of a comb structure the formulation with 
a continuous distribution of the delay times is equivalent to a 
study of - 

According to Eq. ( 7 ) ,  the function 8 is described by the 
equation 

Consequently, in the CTRW case the diffusion equation rep- 
resents the continuity equation for a medium with time dis- 
persion: 

d n - + div j=O, 
d t 

where 

The 
The 

diffusion is still anomalous to the same exponent 0 = 2. 
Green's function for this problem is different: 

a 

D," 
~ ( x , t ) = -  Jexp(---- - 

n ( ~ ~ t ) "  , m,r za D2r2 t Idr (17) 

The results obtained are readily generalized. For exam- 
ple, it is interesting to consider the transition from the anom- 
alous to the conventional diffusion. For this transition to 
occur it is sufficient to immerse a comb structure in a poorly 
conducting medium with the diffusion coefficient Do 
(DogD,). In this case the diffusion coefficient is described 
by 
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For short time intervals, namely when t(D : /D2 D i, the 
anomalous diffusion of Eq. (10) applies, whereas for long 
times we have the conventional diffusion obeying the Dot 
law. 

The transition to the conventional diffusion also occurs 
when the average length of the ribs L is finite. Then, for long 
times t) L 2/D2, we obtain (x2(t)) a Dlt /L. 

2.2. Diffusion in an electric field 

The application of an electric field E gives rise to anisot- 
ropy of the random walks. In weak fields the anisotropy pa- 
rameter is small [a (E) ( l ] and is proportional to the field. 
Consequently. in the case of the field current we have 
j = npE. The mobility tensor for a comb structure is 

The Green's function for the problem of diffusion in an 
electric field directed along the structure axis is 

6' ( p ,  k ;  E )  = [2 (Dzp)  "+D,k2+iky,E] -I .  (20) 

When the method described above is applied to Eq. (20), we 
obtain the following expression for the Green's function de- 
scribing the diffusion and drift along the structure axis: 

(21) 

We now find the first moment of the Green's function in the 
field 

It  should be stressed that the response to a static electric field 
is time-dependent, i.e., the velocity of the center of gravity 
decreases with time in accordance with the law 

It is clear from Eq. (23) that in the anomalous diffusion case 
we cannot select a suitable inertial reference system moving 
at a constant velocity in which only diffusion would take 
place. 

The steepest-descent method yields the asymptotic 
form of the Green's function in an electric field: 

The quantities introduced above have a clear physical mean- 
ing: L, = D,/p, is the length governed by the external elec- 
tric field, while 

is the diffusion time over a distance L,. 

According to Eq. (24), the probability distribution 
function for short distances is governed primarily by the 
drift; in the case of long distances it is governed by the diffu- 
sion. In the conventional diffusion case the motion of the 
center of gravity and of the maximum of a packet coincide, 
whereas in the anomalous diffusion case the spreading of a 
packet is more complex. For short times t 4 t,, the center of 
gravity of a packet travels faster than the point correspond- 
ing to the maximum of the function G(x,  t; E). For t ) t,, a 
definite front is established and the velocity of the packet 
maximum is higher than the velocity of the center of gravity: 

We also consider the influence of an electric field on the 
probability of returning to the starting point of a random 
walk. The sideways drift in the conventional diffusion case 
gives rise to an exponential reduction in the probability of 
return: 

G(O, t ;  El =G (0 ,  t; E=O) exp (-t/tE). (26) 

Here, t, -L ;/D, ( 9  = 0). In our case, it follows from Eqs. 
( 12) and (2 1 ) that for long times we can expect a power-law 
reduction: 

The result of Eq. (27) is readily understood. The electric 
field acts on the particles only when they reach the structure 
axis; most of the time they are at the ribs and, therefore, a 
weaker (power-law) dependence is obtained. This accounts 
for the lag of the center of gravity of a packet behind its 
maximum. 

3. NUMERICAL MODELING OF DRIFT IN PERCOLATION 
CLUSTERS 

The models discussed above do not allow fully for the 
complex geometry of the percolation clusters. It is not possi- 
ble to say apriori which of the expressions given by Eqs. (2)  
and (3)  satisfactorily describes the drift of a particle in a 
percolation cluster. Therefore, we carried out numerical 
modeling of the drift in percolation clusters. 

We describe briefly the modeling procedure. A ran- 
dom-number generator produced a quadratic lattice of size 
L X L (L = 400 or 500) and with a given fraction of 
knocked-out sites near the percolation threshold. This is the 
familiar problem of sites in percolation theory.' We then 
modeled a random walk on this lattice with periodic bound- 
ary conditions. The selection of the starting point of the walk 
was arbitrary. The probability of a step along one of four 
directions was determined by selecting a random number 
within the interval [0, I ]  split into four equal parts. When a 
site in the selected direction was knocked out, a random se- 
lection of the direction was made until a transition to the 
nearest site took place. The number of failed attempts was 
ignored in the total number of steps. Configurations in 
which the starting point of a random walk corresponded to 
an empty site or when there were no nearest intact sites were 
ignored in calculating the mean-square displacement. 

Averaging was carried out over randomly selected 
starting points of random walks and over realizations of the 
random percolation lattice. The total number of averaging 
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procedures was of the order of 250. The anisotropy of a jump 
(in an electric field) was modeled by a nonuniform splitting 
of the interval [0, 11. The length representing the motion 
along the field (or opposite to the field) was increased (or 
reduced) by an amount equal to the anisotropy a. 

The calculation program was checked by applying it to 
a homogeneous medium and a comb structure. The results of 
the modeling of the diffusion itself in clusters agreed with 
those given in Ref. 8. 

We found that for short times the mobility of a particle 
decreased with time in accordance with a power law 

The results are presented in Fig. 2. Relaxation of the mobil- 
ity with time is a consequence of the loss of a particle from a 
current-carrying path to "dead ends" and of the twisted na- 
ture of the percolation paths. It follows from these numerical 
calculations that the value of the exponent y differs from the 
1/2 typical of a comb structure and is approximately equal 
to 1/3. Using a scale analysis we can relate the power expo- 
nent y to the anomalous diffusion exponent 8: 

If we represent the mobility of a particle in a percolation 
cluster in the scaling form 

and repeat the familiar procedure in which it is assumed that 
for tc - WJ the mobility should be independent of the proxim- 
ity to the percolation threshold, we can determine the 
asymptotic behavior of the function f and the relationship 
between the power exponents y and 8 given above. 

We also found the steady-state mobility after a long 
time (lo5 steps) and in strong electric fields (eELc/TB 1, 
where LC is the correlation radius of an infinite cluster). We 
found that the mobility is a nonlinear function of the electric 
field (Fig. 3). It can be extrapolated using the following 
exponential dependence: 

P ( E )  PO exp (-eEL,IT) . (29) 

FIG. 2. Time dependence of the mobility p of a particle in percolation 
clusters plotted for a = eEa/T = 0.05 (O), a = 0.10 (A), and a = 
0.15 (a). The excess above the percolation threshold is 0.03. The straight 
line and the points are obtained for a comb structure. 

FIG. 3. Dependence of the particle mobility on the electric field /1 = 
eEL, / T  for long times ( t = lo5). 

Therefore, in place of the possible law (2) ,  we found a differ- 
ent nonlinear behavior of Eq. (29). This was because the 
electric field plays a dual role in inhomogeneous percolation 
systems. On the one hand, the field causes the drift of parti- 
cles and, on the other, it creates particle traps. The electric- 
field-induced traps may be the "dead ends" and parts of the 
percolation paths directed against the field. Equation (2) 
was derived using a model description of the diffusion of the 
effective-medium type without any allowance for the cap- 
ture by traps. Equation (29) can be explained as follows. 
The probability of crossing a trap of length L is exponential- 
ly small: it is proportional to exp ( - eEL/T); the character- 
istic size of traps is of the order of the correlation radius LC. 

We have discussed the diffusion and drift in a comb 
structure and in percolation clusters. The main problem in 
describing the anomalous diffusion is that of the nature of 
the generalized diffusion equation. For a homogeneous iso- 
tropic model with anomalous diffusion it is an equation with 
fractional spatial  derivative^.^ In the present paper the ex- 
ample of a comb structure is used to show that the presence 
of "dead ends" leads to fractional time derivatives. If the 
anomalous nature of the diffusion in percolation clusters 
were entirely due to the "dead ends," then it would have 
sufficied to replace the derivative a '/'/at 'I2 in Eq. ( 14) 
with a + ')/at '/(' + '). In general, of course, we have to 
allow also for the spatial nonlocalization. Therefore, the 
generalized diffusion equation for percolation clusters can 
be represented in the form 

The power exponents Sand v are related by 

When Eq. (3  1 ) is obeyed, the diffusion problems are charac- 
terized by a specific type of self-similar behavior in which the 
anomalous dependence of the mean-square displacement on 
time given by Eq. ( 1) is always reproduced. The explicit 
form of the self-similar variable is selected: 

Another important topic is the explicit form of the 
Green's function of the problem with anomalous diffusion. 
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It follows from Eq. (8)  that the Green's function can be 
described asymptotically by 

A similar expression is obtained also in the model of a homo- 
geneous isotropic medium. It should be stressed that Eq. 
(32)  is rigorous, in contrast to the extrapolation expressions 
given in Ref. 9. 

We studied the relationship between the diffusion and 
conductivity in the anomalous diffusion case. The problem is 
that the diffusion coefficient defined in the usual manner 

vanishes. Consequently, in the linear approximation we can 
also use the Einstein relationship to obtain zero mobility. On 
the other hand, a classical particle does not become local- 
ized: 

This contradiction can be resolved by at least two methods, 
namely by showing that in the anomalous diffusion case 1 ) 
there is not linear response, i.e., the Einstein relationship is 
invalid [see Eq. ( 2 ) ] ;  2 )  there is no constant mobility in a 
static electric field, in other words, the average displacement 
increases with time more slowly than the first power oft. 

In a comb structure we have both cases described by 
Eqs. ( 2 )  and ( 3 ) .  The constant and nonlinear mobility 
p  ( E )  cc ,uo E  characterizes the motion of the maximum of a 
packet, whereas the mobility of the center of gravity of the 
packet decreases with time: p ( t )  ccpo/t ' I2. This difference 
is easily understood. The contribution to the motion of the 
packet maximum is made only by the mobile particles, i.e., 

the particles on the structure axis, which migrate by the 
anomalous diffusion in a homogeneous one-dimensional me- 
dium. The anomalous nature of the diffusion is ensured by 
the presence of creation and annihilation centers at each 
point on the axis. It follows from earlier work2 that the mo- 
bility in such media should be a nonlinear function of the 
electric field. The position of the center of gravity of a packet 
is determined by all the particles. In their case the anoma- 
logs diffusion is due to random delay at each site and the 
consequence of this is also a reduction in the mobility of the 
center of gravity with time. 

The power-law relaxation of the mobility of a particle in 
percolation clusters discovered by the numerical modeling 
method suggests the need to use fractional time derivatives 
in the generalized diffusion equation of Eq. (30 )  

  he authors are grateful to A. V. Chaplik for suggesting 
a simple method [Eq. (4) 1 that can be used to describe the 
diffusion in a comb structure. 
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