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We obtain an exact solution of the Kondo problem, taking the pairing of band electrons and 
spinwaves into account. We obtain a gap in the momentum distribution density near the Fermi 
energy and in the spectrum of the singlet excitations. 

The Kondo lattice model is the simplest of the many- 
electron models which take the interaction between band 
electrons and localized electrons into account. The Falicov- 
Kimball model' is a more complicated one which describes 
the interaction between s-p band electron states and the lo- 
calized d states. It is well known that its single-impurity ana- 
log-the resonance level model-is similar to the Kondo 
problem with an anisotropic exchange integral.' For 
V 2 / U <  1 the Anderson model for a half-filled conduction 
band can also be reduced to the Kondo problem3 ( U is the 
magnitude of the Coulomb interaction of the d electrons on a 
single site and the parameter V determines the overlap of the 
wavefunctions of the s-d electrons). The Kondo lattice 
model can thus describe the features of considerably more 
complex models, which makes it even more attractive. 

Exact solutions of one-dimensional models, obtained 
through the Bethe ansatz occur for Hamiltonians with parti- 
cle number conservation, In the present paper we propose a 
Hamiltonian of an s-d model in which we introduce a term 
which does not conserve the particle number. We show that 
in that case the problem is also integrable; we evaluate the 
gap in the momentum distribution density, the ground state 
energy, and the spectrum of the triplet excitations. 

The Hamiltonian of the model has in the approximation 

X { g  is a projection operator, XP*lr)  = Ip)6gr and Ir) is a 
state of the electron shell of an impurity atom. 

The interaction in the Hamiltonian ( 1 ) is assumed to be 
a contact interaction; we consider the S = + case. Assuming 
that the interaction in ( 1) is a two-particle one and that the 
Ti matrix is determined by the two-particle scattering matri- 
ces, in the Hamiltonian ( 1 ) we have split off the anomalous 
averages (the last terms which are proportional to A ) ,  which 
account for the nonconservation of the particle number. 

We consider the solution of the Schrodinger equation 
for the wavefunction 

where (0) is the vacuum function: c, (x)  10) = 0, S 10) = 0; 
k is the electron wavevector. 

The last term in (2)  takes account of the conduction- 
electron-spinwave pair creation. The presence of the func- 
tion?,, (x, ) in (2) means that the amplitude of the wave- 
function f",,(x,x,) is determined from a Schrodinger 
equation with a potential equal to 

- - 
with a constant electron density near the Fermi surface E, ~ h ,  quantities 6 ~ ( k )  and 3[k)  depend here on the electron 
the following form: energy E( k) which is measured relative to the Fermi energy: 

-- - 9 -  

It fallows from ( 3 )  and (4) that taking the singlet pairing 
3 

-xn) cOi (2) u ~ , c ~ -  (2 )  Sn + - 1 1 dx 6 (x-I,,) into account renormalizes the value of the exchange integral. 
,, According to (3 the matrix for the scattering of an electron 

(1) 
by a localized spin has the following form: x [ A c t i  (~)X,,~~+AX,,t~c,+(x)+h.c.] ,  

R,:,' ( k ,  k , )  = g ( k ) - - g ( k . ) - i c ~ $  
where we have taken into account only interactions between g ( k )  -g ( k , )  -ic ' ( 5 )  

electrons with the same directions of their momentum. In 
the Hamiltonian ( 1 ) we consider a linear section of the elec- 
tron spectrum near the Fermi momentum k, so that the 
electron energy is measured from k,. We use here the follow- 
ing notation: J is the exchange integral; c,+ ( x ) ,  c, ( x )  are 
the creation and annihilation operators of the conduction 
electrons (o = T, I ) ;  S, is the spin operator localized on the 
nth site; and the c,, are the Pauli matrices. 

In the Hamiltonian ( 1 ) we have introduced anomalous 
averages which determine the singlet pairing between the 
band electrons and the spinwaves: 

where 

I 
e=-2 arctg - g ( k )  = 

AoZ 
8 ' E ( k )  -Ao2 ( 2  + $1, 

P 2' is the spin exchange operator, and P = + ( 1 + 217s). A 
localized magnetic moment corresponds to a wavevector k, 
which is determined by the condition g(  k, ) = - 1. 

The two-electron wavefunction is, according to (2) ,  de- 
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termined in each region of the x, x, plane as a sum of the where the summation is over the permutations P. The opera- 
following form: A s1...sNi 

tor A ,,,,,uNn (Q /P) is determined by the two-particle wave- 

+ e ~ p  (ikizi)f,',, (0) co,+ (xi) (O>+esp (ik,x,)f",:,, (o)c,,+ (z,) ( O), 
( 6 )  

where the last two terms describe a state with a single elec- 
tron without an impurity spin. The  amplitude^,, (0) is in- 
dependent of the electron coordinates, so that when we con- 
sider electron scattering processes we need take into account 
only the quantity 

Z C ~ ~ , ~ : ~ ~ ~ ~  (xl, x2)={exp[i (k1x,+k2x2) I -exp[i (ktx2+k2xi) I ) 

where 

which is the two-particle electron scattering matrix. Note 
that the R- and S-matrices of (5)  and (8)  depend on the 
difference of the g(k i )  arguments; they satisfy the Yang- 
Baxter equation defined for the Kondo p r ~ b l e m . ~ , ~  

We consider a system consisting of N, electrons and Ni 
impurity atoms. The many-particle wavefunction depends 
on the particle configuration. We define a region XQ which is 
characterized by a definite configuration of electrons and 
localized magnetic moments: 

and which corresponds to a set of quantities 

which label these particles; let ql,  92, q3, ..., qNe be the co- 
ordinates ofthe electrons and q(Ne + I ) ,  q(N, + 2), ..., qN, 
be the coordinates of the impurities (No = Ne + Ni ). Ac- 
cordingly, the region XQ , , 

then corresponds to the set 

For definiteness we assume that N, )Ni. 
We define the wavefunction of the Ne electrons for a 

given Q configuration according to the Bethe ansatz: 

AS I . . .~N 

The wavefunction ,,,,, ,; (x,, ,..., xqN,,;k, ,..., kNe ) is de- 
termined in the second-quantization representation and can 
be written in the form 

function (2) : 

According toAEqs. (2)-(5) we can write the two-parti- 
cle wavefunction Y", (x, xi 1 in the following form: 

1 yk, (x) = - 7 exp [ik (x - x7,)] (X -xn)y ( 1 1 ) 
N"" h* 

while the coefficients A ", (x) and 2 ;, (x)  are defined as 
follows: 

i c  
AR/(z)=1 - (1-6,,) sign x, 

g(k)-g(ks) (12) 
g(k) Ah/ ( 5 )  = - 

36 I f  cJ/8+ g (k) 6 (XI (1-6,78), 

and No is the number of lattice sites. 
Depending on the regions XQ and XQ, , which differ by 

the permutation of two electrons or of an electron and an 
impurity, the coefficients A sl"'sN' ul...uNe (Q /P) and 

A :;:::I; (Q '/PI for the single-electron operators in Eq. ( 10) 

are connected through the relations 

8Ni a a '  s,...sN. 
Ao ,... a ,... a,. . . O N e  (Q','P) = Soi,,-,', J 1 (ki, kj) Aa ,... oi~..ai...aNc(Q/p)~ 

S, ... s,...sN~ a .o .' Sl...Si'...SN. 
,... aj...aN, (Q'IP) = R (,I. (ki? ks) Ao ,... aj,...aie (Q!P). 

(13) 

The problem is thus equivalent to the Kondo problem 
with scattering matrices s (ki,kj ) and R yi/ ( kj,ks 
which depend on the electron momenta. The eigenvalues kj 
are determined by taking into account the boundary condi- 
tions imposed on the wavefunction. The problem is reduced 
to finding the eigenvalues of the q. matrix which, according 
to ( 13), has the following form: 

The eigenvalues of the T j  matrix are determined from a 
set of transcendental equations which in the present case can 
be written in the following form: 
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erp  (ik,L) = II g ( k j )  -A,-ic/2 
exp ( - iNie) ,  

a=l g (k,) -A,+ic/2 

where L is the length of the chain and M the number of 
electron spins which have not been inverted. 

The Bethe equations, written down for the distribution 
density of the real numbers kj and A,, denoted respectively 
by p ( k )  and a(R),  have the form 

C 1 
o(A)+- jdhfo(h')  

TI (A-A') 2 + ~ 2  

C 1 
= -j dkp ( k ) ~  

2n ( k )  ] ' + c ~ 4  

Since we neglect the interaction in the Hamiltonian ( 1 ) be- 
tween electrons with oppositely directed momenta, Eqs. 
( 15 ) are defined for positive and negative electron momenta 
and it is necessary to take into account that 
g (k )  = g(  Ik I )sign k. Since the functiong(k) is antisymme- 
tric in k it follows from the form of Eqs. ( 15) that the mo- 
mentum and the velocity distribution functions p ( k )  and 
u(A ) are symmetric. 

The integration limits in Eqs. ( 15) are determined from 
the following conditions: 

ko B 

N e  J dkp ( k ) =  -- = n., rn = - - 
Na 

ne+ni j d h o ( h ) .  (16) 
-kg - B  

The first equation in ( 16) is a consequence of the conserva- 
tion of the number of electrons and the second determines 
the magnetization m per site of the system (n, is the electron 
density and ni the impurity density). We introduce the dis- 
tribution density p(z); it follows from ( 15) that it is given in 
the following form: 

p (z) = p (k)/gl ( k )  Ik=(kp+~.a)s ign Irt&'(l+cJ/S)/z. 

If there is no magnetic field ( B  = co ) the second equation 
can be integrated and the first one reduces to a linear integral 
equation with a difference kernel which for z < O(k > 0) has 
the following form: 

where 

9 ( 2 ) = -  j dw exp ( i w r )  
1 

2n -_ "lfexp ( 1 o 1 c )  ' 

The solution for p(z) can be obtained using a Fourier 
expansion of the functions in ( 17) on the section z,-z, . In 
the case of a weak interaction one can write the solutionp(z) 
as an expansion in A; the first terms of that series can be 
written as follows: 

The equation for ko is obtained from the condition for the 
conservation of the number of electrons: 

nn,-k, = 
Ao"l+~J/8) 

[n. In 2+ncni9 ( I ) ] .  
c(k,-ko) 

(19) 

It follows from (19) that the Fermi level is not changed 
when one takes into account the singlet electron pairing, 
k, = me. The quantity ko which corresponds to the highest 
filled electron state is less than k,; there a gap appears in the 
momentum distribution function near the Fermi energy. 
The quantity 9 ( 1 ) is of the order of exp ( - r / c )  so that in 
( 19) the main contribution comes from the conduction elec- 
trons: 

As one should expect, the width of the region of forbid- 
den states is determined by the quantity A. In the case of a 
weak interaction, with an accuracy of n i A Y  ( 1 ) the velocity 
distribution density u(A) is unchanged for A 4 1 and the so- 
lution is the same as in the Kondo problem of Refs. 3 and 4. 

We calculate the parameter A corresponding to a con- 
tact singlet pairing of the electrons and the spinwaves using 
the wavefunction determined above according to the Bethe 
ansatz ( 9 )  to ( 12). The equation for A has the form 

where c' = +J. The correlation function A determines the 
contact pairing of the electrons with the spinwaves so that in 
Eq. (2 1 ) which determines A there occurs the normalization 
of the Bethe function. 

In high-density Kondo systems the solution for A ob- 
tained in the logarithmic approximation equals 

The exact solution for the quantity A is obtained by substi- 
tuting the solution for p(z)  into (21 ) and then integrating 
over z in the given ranges [z, ,z, ] and [ - z,, - z, 1. In Eq. 
(22) given above the terms proportional to 3 ( 1) are ne- 
glected as being small corrections. The exponential depend- 
ence on the impurity density is characteristic for A so that 
the pairing effects are unimportant in the single-impurity 
Kondo model. 

We determine the stability of the solutions, calculating 
the ground state energy Eo : 
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while Sp(z) is the solution of the integral equation which for 
z > O( k < 0)  is determined in the following form: 

We use the first Eq. ( 14) and redefine the energy Eo in the 
form 

Eo=-2L J dAo(h) J dkp (k) {arctg ( 2[h--g(lk/)J 
- Co -Ro C 1 

where the Nj are integers. 
In the case of a weak interaction we can separate in Eo 

the energy of the fermion gas, the energy of the disordered 
Kondo lattice EK, and a term Es connected with the pairing 
of the electrons and the spins. The quantity EK was calculat- 
ed in detail in Ref. 4 so that we give here the expression for E, 
obtained from (23) in the weak-interaction approximation: 

1 
E0=-2Lc 1 dho ( h )  dz zp (z) . 

- w A2+c2/4 

Using the solutions forp(z) and a ( A  ) we get the quantity Es : 

The term Es is negative, so that the solutions obtained are 
stable when the quantity A is nonvanishing. The energy Es is 
considerably larger than the difference in the energies of the 
superconducting and the normal phases which occur in the 
Bardeen-Cooper-Schrieffer theory. In the case of a weak in- 
teraction the first term dominates in Eq. (24) so that in the 
logarithmic approximation the quantity Es for a Kondo lat- 
tice with n, = ni has a simple form: 

We consider the triplet excitations in the chain which 
have the lowest energy. The formalism for calculating the 
energies of excitations in one-dimensional models has been 
expounded in detail in Refs. 5 to 7, so we shall not give here 
the details of the calculation but only the results. The energy 
of the triplet excitations, measured from the ground state 
energy Eo has the form 

E (k) = E e  (k) + ~ i  (k) 

~ , ( k )  = dzp(z) { 2 arctg ( exp [ n ' ~ z ) ] ) - ~ } ,  (25) 

where 

6p (2) - 3 dz' 9 (z-z1)6p (2') = 
1 

- z 2  2c ch[n (Ak-z)/c] ' 

The quantity A, and the momentum k are connected 
through the relation 

).II 

In the case of a weak interaction the renormalization of 
the energy of the triplet excitations SE for A g 1 is determined 
by the second term (k)  in (25) since the quantity SE, is 
proportional to A3 and 

where A, is the weak coupling approximation is given in the 
form 

nn. I, I = - + 2rz. motg[ exp(+)] . 
2 

The energy of the excitations, and hence also the wave- 
vector, is a continuous function of A,, but the presence of a 
gap in the momentum distribution density for ko < k < k, 
introduces a gap in the excitation spectrum near the Fermi 
energy. The magnitude of the gap in the weak coupling case 
is determined by the ratio of the exchange interaction con- 
stant and the width of the conduction band. The solution for 
the momentum distribution density with a gap near the Fer- 
mi energy was obtained taking into account the anomalous 
averages which describe the creation of an electron-spin- 
wave pair. A nontrivial solution for A is obtained only when 
there is an effective attraction between the electrons and the 
spin moments; in the Kondo lattice model the antiferromag- 
netic s-d interaction is the analog of the attraction. 
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