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The Derrida model of a spin glass, with symmetry group Z(Q) with arbitrary Q, is analyzed. A
solution is given for the case of a Potts interaction. The case in which there is an admixture of a
ferromagnetic interaction is analyzed for the Potts interaction and also for a vector interaction. In
the limit 7 0 these models generate a coding method which is optimal from the standpoint of the

Shannon theorems for channels with Gaussian noise.

1.INTRODUCTION

The Derrida model® is one of several spin-glass models
which can be solved exactly. Gross and Mezard® have found
a solution on the basis of the Parisi theory.

We assume that a system of N spins is strongly coupled;
in other words, any p spins of the N can interact. We then
write

H= Z jh...x‘pcﬁo..(’(p, (11)
1<, iGN
where thej; ; obeya Gaussian distribution, i.e.,
i‘N”") _ N?
/ - ) =:|=1, B — 1.2
p(])‘xexp ( ———-szl o z p! ( )

The modelin (1.1), (1.2) was solved in Refs. 1 and 2 for the
case p— oo, N> p. It was found that the exact solution of this
model describes a breaking of replica symmetry even in first
order.

The model (1.1), (1.2) was subsequently generalized®
to the case o0, = exp(2mik /Q), and the spin interaction was
assumed to be a vector interaction. In Ref. 4, the limit 7-0
with {(J ) #£0 was linked with the problem of optimal coding
for the transmission of information over noisy channels.

In the present paper we first consider the case of a mod-
el with a Potts interaction of spins in a magnetic field with
(/> = 0. We then take up models with a Potts interaction and
with a vector interaction with 2 = 0, (j) #0 (A is the mag-
netic field).

2.SOLUTION OF THE MODEL WITHA POTTS INTERACTION
FOR (j)=0

The Hamiltonian of the system is

Q=1
Z’ (Tirs )04 0 s ,
§ ] iy : i g

11, =N =1

(2.1

where o, = exp(2wik /Q), k = 1, Q, and the coupling con-
stant 7 is distributed uniformly over the Q values of 0. The
quantity j obeys a Gaussian distribution:

o0 e L (21)"].

In the mean-field approximation we find

(2.2)
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(2.3)

+h 5 @b,-0]},

where B is the inverse temperature, and A, ; are Lagrange
multipliers.

We first consider the case in which replica symmetry is
conserved.

We introduce

At =hr, Qu =gy (2.4)
From (2.3) we then find
(Z"->=exp {-%2-[ n(Q—-1) +n(n—1)2I q,’]
n("_“ 2 ghoHn Tr exp [— Zx.o.
ra=d
+h2 (Qs,a,,-—n]} ) (2.5)

From the condition for an extremum with respect to g, we
find

hr=pg: ' B''/2, (2.6)
Forg, <1, p— «, we have
A—0. (2.7)
Expanding the exponential function in (2.5) in A, we find
nB*J* (Q—1
~BF = ———-———4(0 ) +nin{e™@V+(Q—1)e-2]

+ Z[A'qr -~ (eahe:roii )2]

(2.8)

(F is the free energy) and thus
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g-=lexp (Bh)—1]*/[exp (Bh)+(Q—1)]?,
—BF=*/B*]*(Q—1)+In [exp (BR(Q—1))

+(Q—1) exp (—Bh)]. (2.9)

We turn now to the case in which replica symmetry is
broken.

The solution (2.9), (2.10) is valid up to the value B_, at
which the entropy vanishes. Let us assume that the replica
symmetry group 7 is broken to subgroup m. We denote by
4o, Ao the quantities g,,, A, for a and b from different sub-
groups, while we use ¢,, 4, for the case in which they are
from the same subgroup. We can then write

Z ga?=n(m—1)gq,*+(n—m)ng,® - n(m—1) g,*—nmaq.®.

akd

(2.11)

We then perform the following transformation:
Tre exp( ———Z, Aav'0aOr | )= Tru[ Z. Z 00y

asb,r
nM

(A =Ae")Ga0s ] exp ( - T)

n/m

ZZ

h==1 a,b=(h—1)m+1

=exp( n}")Tr.7 ]:[—— exp( Z | Zr,0]® )dzro
n/m

Xdz,," exp [2( A ) 2 Re 2,004 ]II S dz.,
Z Iz,,.|‘)exp [ Z. (Mr—Dor) ™
X ( 22 Re 2:4,0." ) ] = exp( Py )]] ! 5 dz.o Az,

1
Xexp(—|2r|?) {n——— 5 dz,y dz." exp(—|2n|?)

Xdz,," exp ( -

)w 1 , mY) n/m
X [Tro exp('é‘) 2Re 2,00¢'+ (}\rt—'xro) 52 Re 2”0,,')] }

In the case n —0 we find

In exp( thoa "G ') = —1227»,:

ubr

n 1 1
+;? ydzm dz." exp(—lz,”ﬂﬂnli_[;{ dz.,

-0

Xdzy* exp( - 2 |2-|? ) Zexp{ Re [ 2 (2Mro) “2+0 €XP (irgs)
R r

r

+[2(Aro—Ar1) 1"2s exp(irq;,.)]} . (2.12)
Taking logarithms in (2.12), and using (2.11), we find

BF BJ? B:J?
—‘n—'—(Q 1)—-+ [(m—i)er"—mqro”]T

Ar
— 3‘2 [ (m-—i)qu;\-n—ml,mq,o]— Z._z_‘.
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11 1
+ -’—7:—;__[0 dzfo dzrom exp (_ | zro | z)].nH. ‘;"I dz” dZﬂ‘

r —00

Xexp(—|2zn|*) Zexp{[2(hr7~ro)}"’ Re z

Xexp (irgs) + (24r0) ™ Re 2,0 exp (irgy) +Bh (Q6,,1—1)}.

(2.13)
At the point of the extremum
='/,B*I*pgs ', (2.14)
Ari="/.B*Ppq; "
are self-consistent, with
gro<1, @¢r=1, A0, A;—>oo. (2.15)

We now consider
—%ln II 5 dz,o dz,, { ;exp [ Z (2Mro) 220" €xp (irgs)

12 Mri—hro) 1%204" exp(ir«p,.)+Bh(()6,.,,—1)]}m. (2.16)
In the limit A,; » o we find

: —:;-ln ]]_ j 2,0 A2,y Zexp{ mz‘ (2Ar0)"2ro" €xp (irQa)
r k r

2 (hi—heo) 1'ma,” exp(irga) +mBA (Q6,,=1) }.

Evaluating the integral over z,,, we find

m 1 1
_2_ 2 (An“lro) + Tn"H ‘n— j dzro dzro‘ OXP(“ Izro I z)

1
X—In 2 exp[mBh (Q64u—1) +m2 (2Ar0)® 210" €xP (irQs) ]
R r

(2.17)

Expanding in powers in 4, we find
[exp (mBhQ)—1]* }

m 4 m
? ; (Arsi—Aro)+ ?Zl }"o{i - [exp (mBhQ) :+_0_1]z

1
+ —mln{exp[mBh(Q—1)]+ (Q—1)exp(—mBh)}.

(2.18)
The condition for an extremum yields the relations
exp (mBhQ)—1 2
ro = y 2.19
? [ oxp (mBhQ) +Q—1 ] (219)
=1, (2.20)
B 1
(Q—- 1)—— - —ln{exp[mBh(Q-—-i) ]+exp(—mBh)}
Bh 1

+(Q—- 1) exp(mBhQ) — =0. (2.21)

m exp(mBhQ)+Q—1

From (2.21) we find an equation for B, = mB:
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—F=(Q- 1)£?—+—ln{exp[hB (Q—1))+exp(—hB.)}
(2.22)
_ J’B, _ exp (hQB.)—1
—-(0—1)—2-——h(0 1) oxp (hQB.)+0—1

3.SOLUTIONWITHAPOTTSINTERACTIONFOR (/) #0

We consider the Hamiltonian (2.1) with the coupling
constants

]'i,.“-'p=JoP!/Np"+].n

) ]'2 p! —\i
p(ji) exp[—-,'—z(ﬁ-:.) ]

In place of (2.3) we then find

(3.1)

<Z">_exp{BJ°Z|S't +—[(Q"1)’”‘ X ex) ]

asb,r
Z 0' Q=T A’abr__z _Sartur.
as=b,r a,r
+1n Tr, exp( ZM,'Q "008 +Z to." )},
asb

(3.2)

where S and ¢ are Lagrange multipliers.
In the case in which replica symmetry is conserved we
find

Sar=Srq Q o r—qr,

—BF=BI, Zs,r + f;’f [ ©-1)— Z 2]
+2‘1—g—-2 Site

+In Tr, exp [ Z, WAL +Z, t:0a" ] . (33)
awb,r
From the condition for an extremum we find
t,=pBJ,S™", (3.4)
=!/,pB*I*¢} " (3.5)
For §, <1 we have the self-consistent expressions
tr=0, Sr=0, Lr=0, Qr=0, (36)
—BF='/.B**(Q—1)+1n Q. 3.7)
In the case S, = 1 we have
Br ,A,
—BF=BJ, + _[ (Q—-1)— Z, o] +Z 2
re=i
- Zt, - —+ n[[ I exp(—|z,|*)dz, dz,’
(3.8)

Xln 2 exp [ Z, (2%,)"’2,0,.'+t,o,.'] .
] r
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Even forg, = 1, we have t, >4, '”>. Taking the leading term,

corresponding to £ = 1, in (3.8), we find
¢-=1, S,=1, —BF=BJ,. (3.9)

We turn now to the case in which replica symmetry is
broken. Proceeding as in the derivation of (2.13), we find

BF B2J?
= Q)+ BLS Yl m—1)g,7~mg.]

_ %2 [ (m—1)Arigri—mArogro] — 22‘2—‘
o
—Z S.t, + —:L— Hni § dsn0ds.” expt—| 3t

1
Xin H_n- j. dz;, dz,," exp(—|2.(|?)

X Z exp { Z[ [2(Arsi—Ar0) 1™

XRe z,, exp (ir@s) +Be (2Ar0)*2,0 exp (irgy) +t. exp (irgs) ] }

(3.10)

At the point of the extremum we find

Ar0=1/2Bzﬂpq,‘;—'

1

Avi=1/,B*]*p q” (3.11)

b

t,=BJ,pSr-* .

For §, <1 we find ¢, =0; we then find the situation dis-
cussed in Sec. 2. For # = 0 we have
qf°=0» q'1=1»
B:l=41n Q/[ (Q—1)]%],
—F='/,(Q—1)*B.=[(Q—1)In Q]*"J.

(3.12)

We turn now to the case of absolute zero, i.e., B— co.
Obviously, under the condition

[(Q—1)In Q)4I=], (3.13)
a transition occurs from (3.12) to (3.9). At values of the
ratio J,/J large in comparison with (3.13), complete mag-
netization arises. At smaller values, there is zero magnetiza-
tion. This result agrees with the results of Ref. 4. Bear in
mind here that we are using @ — 1 numbers for each bond.

Let us consider a vector interaction of spins. We are
interested in the case

H= Z Rej;,.,.‘poﬁ...m

11}, <ip&N

fi«...fp=JoP!/Np"+fx,n...iP,

p(ia)ocexp[— (-j})’(%)-‘]'

The calculation is similar to that in the case of a Potts inter-
action, butin this case there is no summation over the index

(3.14)
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(r=1),and B*J*(Q — 1)/4 is replaced by B/ */4.
We thus have the following phases:

§=0, ¢=0, ~BF="/,B*J*+1n Q, (3.15)
S=1, g=1, —BF=BI,, (3.16)
§=0, =0, g;=1, —BF=B(In Q)*2/. (3.17)

In the limit B— o, a transition occurs from ferromagnetism
phase (3.16) to spin-glass phase (3.17) at
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(In Q)**]=J,. (3.18)

This result agrees with the ideas of Ref. 4.
I wish to thank S. G. Matinyan for a useful discussion.

! B. Derrida, Phys. Rev. B 24, 2613 (1981).

2D. J. Gross and M. Mezard, Nucl. Phys. B 240, 43 (1984).
3D. B. Saakyan, Teor. Mat. Fiz. 83, 141 (1987).

*N. Soarlas, Nature 339, 693 (1989).

Translated by D. Parsons

D. B. Saakyan 135



