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Using a phenomenological approach, we have carried out a theoretical analysis of the types of 
instability that are possible for a completely ordered stripe domain structure in a magnetic film 
with the easy-axis type of anisotropy. We show that changes can occur in the period of a 
metastable domain structure caused by kink-like or translational instabilities in the positions of 
its domain boundaries, and that transitions to hexagonal lattices of cylindrical magnetic domains 
are possible as well. Experiments carried out on films made of quasi-uniaxial magnetic garnets 
confirm the basic assumptions of our theory. 

Within the class of completely ordered domain struc- 
tures it is possible to identify certain structures that are in 
thermodynamic equilibrium, i.e., with parameters [for ex- 
ample, the period d, of a stripe domain structure or the cell 
parameter a, and radius r, of a cylindrical magnetic domain 
(CMD) for a hexagonal lattice] that correspond to an abso- 
lute energy minimum for specified values of the external pa- 
rameters, i.e., temperature T, magnetic field H, etc. The be- 
havior of a domain structure in thermodynamic equilibrium 
near a second-order magnetic phase transition curve (or 
near a first-order curve that is close to second-order) was 
analyzed in Refs. 1 and 2; the authors of these references 
treated ferromagnetic films with strong "perpendicular" un- 
iaxial anisotropy (i.e., P, > max{4n,Pp ,PC) and 9, < 1, 
where flu, Pp, and PC are the uniaxial, rhombic, and cubic 
anisotropy constants, and 9, is the angle between the easy 
magnetization axis and the normal n to the film surface). 
For a spontaneous phase transition (near the Curie tempera- 
ture Tc ) the driving external parameter is the temperature 
T, while for an orientational phase transition it is a magnetic 
field H applied roughly parallel to the film surface (i.e., 
H, % HIl , where HI, and H, are projections of the vector H on 
the surface of the film and along its normal qrespectively). 

The analysis carried out in Refs. 1 and 2 showed that, 
depending on the values of the external parameters Tand H, 
such films can exhibit the following types of inhomogeneous 
magnetic states: a "crystalline" phase (i.e., a fully ordered 
domain structure), a Berezinskii-Kosterlitz-Thouless 
(BKT) (i.e., a domain structure with bound mag- 
netic dislocations), a "liquid-crystal" phase (with free dislo- 
cations), and a "liquid" phase (with free magnetic disloca- 
tions). In what follows we will investigate films with 
completely ordered domain structures, i.e., films whose in- 
homogeneous magnetic state corresponds to the "crystal" 
phase; such films are commonly found, e.g., at T = 0. 

The parameters of an equilibrium domain structure (in 
the region where it exists) are continuous functions of the 
temperature T and magnetic field H; however, this does not 
imply that a quasistatic variation of the external forces will 
result in synchronous "retuning" of the domain structure 
parameters so as to follow their equilibrium values. In films 
with unbounded transverse dimensions (in the plane of the 
structure) smooth changes in the period d of the domain 
structure are forbidden by symmetry considerations alone. 
This is because the symmetry groups of two domain struc- 
tures that differ in their periods (i.e., with respect to transla- 
tions) by an infinitesimally small quantity 6d cannot be sub- 

groups of one another; therefore, a phase transformation 
that takes one domain structure into the other can only be 
first-order. If the transverse size of the film is finite, contin- 
uous changes in the period are hindered by energy barriers 
between states with differing numbers of domains." There- 
fore, if an equilibrium domain structure (e.g., stripe-like) 
with period do = d, ( To ,Ho ) can exist in the film for certain 
values of T = To and H = H,, it must become metastable if 
the field or temperature changes in any way. For 
do > d, ( T,H), the domain structure is under tension. When 
the difference Ad( T,H) = Ido - d, ( T,H) I exceeds a cer- 
tain value, the domain wall system undergoes either a kink- 
like instability, i.e., a tendency for the domain wall profiles 
to distort sinusoidally, or a translational (modulation) in- 
stability of the domain wall positions; a further possibility is 
a first-order phase transition to a hexagonal CMD lattice. 
For do < d, ( T,H) this type of domain structure is under 
compression; here, too, there is a certain critical value of 
Ad( T,H) for which either translational (modulation) insta- 
bility of the domain walls or a transition to a CMD lattice is 

If we take into account the possibility of forming mag- 
netic dislocations, then for T #O relaxation of a metastable 
stripe domain structure to its equilibrium state from a state 
under tension can take place by nucleation, translation, and 
annihilation of dislocations. These processes will not be dis- 
cussed in this paper. 

1. THEORY 

1.1. Derivation of basic equations 

The behavior of the magnetization vector M in a ferro- 
magnetic film is described by the Landau-Lifshits equa- 
tion:'"I5 

M=w,{- [mWu]+hll [Wff-n(nWff) ]+h,Wff-h,V2Wff) 

(1)  

and the equations of magnetostatics [curl H, = 0, 
div(H, + 47rM) = 01, together with the following bound- 
ary conditions at the surface of the film: 

(nVM) IS=(), (n(H~d-4nlM-H~~)  ) IS=(), 
In (HDi-HD,) I Is=O. 

(2)  

Hereil,, and A, are relaxation constants of relativistic origin 
that take into account contributions from induced uniaxial 
and cubic anisotropy, respectively, A, is the exchange relax- 
ation constant, m = M M -', He' = - S F / S M  is the ef- 
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fective magnetic field, .F is the free energy of the system, 
HDi = M hDi and HD,  = M h,, are the demagnetization and 
scattering fields, respectively, w = gM, where g is the gyro- 
magnetic ratio, and n is a unit vector parallel to the easy 
magnetization axis along the normal to the film surface. In 
spherical coordinates [ 8  = arcsin( [SB:m:z] /m ), + = arctan (m,/m ) ] the expression for the free energy of 
thefilminafieldH = M(h,e, +hl le , ) ,  wherenlle,, has the 
form 

-2h, eos 0 cos $-2h,, sin 8-mh,). (3)  

Let us assume that the relaxation constants in Eq. ( 1 ) 
and the longitudinal magnetic susceptibility are small, and 
limit our discussion to the case of a thick uniaxial ferromag- 
netic film (i.e., 1, )a1", where I ,  is the film thickness and a 
is the interaction constant for inhomogeneous exchange) 
with its easy magnetization axis parallel to n. We also as- 
sume that the film is close to an orientational phase transi- 
tion, i.e., hll  gh, ,  and I f  / >max{4?r,Pu), where 
f = flu - h, . Since we have max{B,$) & 1 in this case, we 
find from ( 1)-(3) and the equations of magnetostatics that 

where 

In calculating the distribution of magnetization and the 
spectrum of spin waves in the film, we can write the angle 8 
as the sum of a static component 8, ( r )  and a dynamic com- 
ponent e(r , t ) ,  where / 8, ( $18 I. Assuming that the period of 
the stripe domain structure in the film is fixed (in a film with 
unbounded transverse dimensions the period d can be arbi- 
trary; for a film with transverse dimensions I ,  the period 
equals d = 1,N; I, where N, is a whole number), a solution 
to the equations of state (4)  can be sought in the form163" 

0. ( r )  - hnAI ( Z ) C O S  ( n k z )  ; 

( r )  = hn& ( z )  sin ( n k r )  . 
where A < 1 is the order parameter, and 

k=2nd-', q=n/l, ,  A,= ( 4 n )  -*hll ,  
Al=al cos ( q z )  +1/z$,h2a,3a, cos (392) ; 

Az='lz~,Ao~i~[bo+b2 cos ( 2 q z ) ] ,  
A ~ = ' / z ~ u a 1 3 [ ~ 1  cos(qz)+c3 cos (342) 1. 

Explicit expressions for the coefficients a,, b,, and c,, are 
obtained from expression ( 13) of Ref. 17 if we make the 
replacement S -8, /2. 

Substituting the series ( 5 )  into (3)  and (4)  and includ- 
ing the boundary conditions ( 2 ) ,  we obtain an expansion of 
the free-energy density in terms of the parameter Aa = Aa, 
for fixed values of k and 6 in the form 

and an equation that determines the dependence of the pa- 
rameter ha on k and &: 

Bz+ (ha) 'B,+ (ha) 4B,=0, ( 7  

where Vis the volume of the film and F, is the free energy of 
the film in the uniformly magnetized state, i.e., 

the functions B,, B,, and B, are determined by the expres- 
sions 

B2='/,xZ (1+8t ,4-E~-2),  

Here, E=l-+P,,A;,  x=ka1I2 ,  xco=kcoa112 
= ( 4 a d / p ,  1 i) 'I4, 5, = xco/x = kCo/k; the expression for 

B, is valid for gx-2  = 1 + ( A  and xzx , .  

1.2. Region of stability for a stripedomain structure with fixed 
period 

In Ref. 2 it was shown that in the course of an orienta- 
tional phase transition the uniformly magnetized state that 
exists in a strong transverse magnetic field, i.e., for h, >f lu,  
becomes unstable against a transition to a stripe domain 
structure in thermodynamic equilibrium along the curve 

this domain structure in turn becomes unstable with respect 
to a transition to the uniform state for 

while the critical values of normalized inverse period for 
such a domain structure on the curves given by Eqs. (9a) 
and (9b) equal 

xc* (h l l )  =xc  (h l l )  -0,17xcoh~~;,&kcw (eke) ( lob) 

Here d, is the critical period, x, = x, (0) ,  w ( E , , )  is the 
Heaviside step function, and E,, = h - h i,,, 
hll,, = 2 .  31'2?rx,fl; is the ordinate of a tricritical point 
which separates the first- and second-order phase transition 
curves across which a stripe domain structure with equilibri- 
um critical period d, changes to a uniformly magnetized 
state. Since E,, < 0 implies a second-order phase transition, 
thecurvesforh yc(hl, ) andh, , (hl  ) , anda l so fo rx~(h l l )  and 
x, (hll ), must coincide in this range of A l l  (see expressions 
(9a), (9b), ( IOa), and ( lob) ,  along with Fig. 1); in addi- 
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tion, the order parameter ila (i.e., the amplitude of the z- 
component of the magnetization in the domain structure) 
must vanish on a second-order phase transition curve. In 
plotting the curves we have used values a = 10- l o  cm2 and 
I ,  = 10 - cm that are typical of the magnetic garnet films 
used in experiment. The values of the uniaxial anisotropy 
constant were intentionally taken to be rather small 
(flu = 25), so as to separate the curve for loss of stability of 
the uniform state from the upper branch of the curve corre- 
sponding to a transition from the stripe domain structure to 
a CMD lattice (see below). 

Equations (9)  and (10) were obtained by minimizing 
Eq. (6) for the free energy with respect to the order param- 
eter, i.e., from 

as -= a=s 2 0  
a (ha) 

0, - a (ha)' 

with subsequent minimization with respect to 
x = 2n-d - i.e., the normalized inverse period of the 
domain structure. If this last operation is not carried out, 
i.e., if we assume that the parameter x is arbitrary but fixed, 
then the system ( 11 ) will determine the behavior of a non- 
equilibrium domain structure with x # x,. The first of condi- 
tions ( 1 1 ) is identically Eq. ( 7  1; by choosing the equal sign 
in the second equation, we determine the location of the 
curve along which the stability of a domain structure with 
this x is lost: 

FIG. 1. Theoretical state diagram for a film corresponding to a 
first-order phase transition (dashed curves) and a second-order 
phase transition (solid curves) between uniformly magnetized 
states and an equilibrium domain structure, and the correspond- 
ing field dependence of the normalized wave vector x, of the 
critical domain structure. The value x,. = x,,, at the tricritical 
point is0.3014, a = 10 "'cm2, I, = 10 'cm,D,, = 25; forsim- 
plicity we have plotted the difference between the normalized 
transverse field h, and a constant chosen to equal 24.5 along the 
abscissa. 

expression 

It follows from ( 12) that the curve for loss of stability of 
a domain structure with fixed period d on the plane (h, , hll ) 
is displaced to the left of the corresponding curve for a do- 
main structure with the equilibrium period; for d > d,, i.e., 
K < xd,  this curve is tangent to the equilibrium curve for 
d = d,. Thus, the curve which delineates loss of stability for 
the domain structure with equilibrium period consists of the 
envelope of the family of curves hLf = f( hif ,x ), for x < xd . 
We note, however, that quasistatic variation of the magnetic 
field cannot cause a transition from the equilibrium domain 
structure to a uniformly magnetized state, due to the devel- 
opment of prior instabilities of a different type, as we will 
show below. Since these instabilities occur at finite ampli- 
tudes of the order parameter, we determine the field depend- 
ence of ila by using Eq. ( 7 ) .  As a result we find that 

(BP-4B2B,)"-B, 
(ha) '= 

2Be 
( 14) 

In the limit Ah, = hLf - hl &x2h , I , ~ I E ~  1 ,  we have 

while for x2h 1, 2 1 ~ k  I <Ahl <x2  we have 

where 6 = x,/x, for a second-order phase transition and In order to determine the boundaries of stability of a 
domain structure with fixed period, we first determine the 

( 12b) spectrum of spin waves for a film with this domain structure. 
Linearizing Eq. (4a) with respect to 0, we obtain the equa- for a first-order phase transition; the amplitudes of the z 

component of the magnetization in the domain structure on tion 

these curves are given by (pnX2 + Tv2) 1 (- a'?2 + h,  - fiu + - 3BP i 

Here = h fi - h fiA, E, = 9 - g:, and E, = 3 - g:; the whose solution with the boundary conditions (2)  has the 

ordinate hII, of the tricritical point, which separates the first- form2'L8 
+== + m  

and second-order phase transition curves across which the n p z  n p z  
stripe domain structure with nonequilibrium period d 0 = yi ( b.1~ 00s - + BnP sin -) exp[i(k.r-ot) 1, 

n=-m p=1  1, 1, 
changes to a uniformly magnetized state, is given by the (17) 
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where k, = Q + nke, . The frequencies of the spin waves are 
smallest for p = 1 and k: = kZ; therefore, modes with 
n = + 1 are strongly coupled at the center of the Brillouin 
zone ( IQ  1 4 k),  for which 

here p = (Aa)  'k 2(2pflUg2) - ' I z  is the effective density of 
the stripe domain structure, C:(w) = Ci - iwvi is the ef- 
fective elastic modulus ( i  = x, y ) ,  and 

the value of C,, is determined by the expression 

go4 6AhLhl,' E, 2 cv=c0{1 --+-- -+- 1 to' 
p l a r l x 2 E , [ E :  

For Ah, ) lakQxE4 I we have 

where 

The frequency of the optical mode w, (Q = 0),  which is 
determined by expression (20), reduces to zero along the 
curve h, = hlf (h,, ); this corresponds to loss of stability of 
the domain structure with fixed period with respect to a 
transition to a uniformly magnetized state. The mode with 
frequency w, [see ( 18) 1 is acoustic, and reproduces the 
translational symmetry of the system. The moduli C, and C, 
determine the rigidity of the domain structure with respect 
to longitudinal displacements of the domain walls and kink- 
like deformations, respectively. 

Making use of Eq. ( 18) and requiring that 

we can determine the stability boundary for a stripe domain 
structure with respect to longitudinal displacements of the 
domain walls: 

and also the critical value of wave vector Q,, ,which is found 
to equal zero; in this case, the elastic modulus also reduces to 
zero. The instability corresponding to this soft mode, which 

appears for a finite-amplitude z component of the magneti- 
zation in the domain structure, corresponds to a uniform 
shift of the domains. 

Note that the function h,, (h,, ) determines the curve 
for loss of translational stability of the domain structure only 
for the case of a quasistatic (infinitely slow) increase in the 
magnetic field intensity. In reality, changes in the field al- 
ways takes place at a finite rate, which may alter the situa- 
tion considerably. Thus, if the field intensity h, starts out 
smaller than h,, in the original state, and then is rapidly 
(compared to the relaxation time of the domain structure) 
increased to a value h, + Sh, > h,,, the mode with maxi- 
mum growth rate will have a nonzero value of wave vector 

while in this case 

CoAhLm Ah* 
m2cr= i ( - ) Ih (  I --). 

2 a ~  A him 
In a film with finite transverse dimensions I,, for which 

the allowed values of wave vector are Q,, = (2n - 1 ) 1; ', 
where n = 1,2, ..., a stripe domain structure becomes unsta- 
ble against harmonic modulation of the positions of the do- 
main walls with period D, = 2nQ;' at a field intensity 
h, = hlf - Ah,, , where 

Naturally other instabilities may develop earlier for n = 1. 
In addition, the assumption that a distribution of coercive 
forces exists in the film (even an unbounded film) leads to a 
finite value for the wave vector of the soft mode. 

In order to analyze the stability of stripe domain struc- 
tures with fixed period against a transition to a hexagonal 
CMD lattice, we follow Ref. 2 and define a minimum value 
of the spin-wave frequency for 

where E, = 2gi  - 1, El, = 46; - 1. 
The calculation shows that 

where the equation for the curve of loss of stability of the 
domain structure has the form 

while 

In a stripe domain structure under tension 
( d  > d, ( T,H) ), relaxation of "elastic" stresses can be medi- 
ated by the appearance of sinusoidal distortions of the do- 
main wall profiles.'-" If we limit ourselves to a discussion of 
films for which I, ) (al, ) 'I4, we find Q, zrl; '; then the 
critical value of the magnetic field intensity h, and the peri- 
od of the sinusoidal distortion A,, which are determined by 
the conditions 
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are given by the expressions 

while 

Thus, in a film with finite transverse dimensions the 
period of sinusoidal distortions is finite and proportional to 

Since the equilibrium period d, increases as h, de- 
creases and h l l  increases, sinusoidal distortions of the shape 
of the domain walls occur in that region of the (h, ,h ,, ) plane 
of the phase diagram in which h, (h ) > h,, . If the trans- 
verse dimensions of the film are unbounded, then the wave 
vector Qys of the soft mode corresponding to the appearance 
of kink-like instability reduces to zero, and the period of the 
sinusoidal distortions A, goes to infinity. The expression for 
the critical field intensity h,, is determined by Eq. (25a) as 
I, - C.O . The presence of a distribution of coercive forces in an 
unbounded film causes the wave vector of the soft mode Q,, 
to become finite.'." In real films (with finite transverse di- 
mensions and coercive fields) the value of Qys will be deter- 
mined by the combined action of these two factors. 

When the magnetic field intensity h, is increased rapid- 
ly (from a value smaller than h,, in the "above-threshold" 
region h, > h, ), the mode with maximum growth rate (for 
an ideal unbounded film) has a wave vector 

k tf Ah, " 
~ ~ ~ ~ = ~ [ ( ~ - 1 ) ( i - - ) ]  Ah,. , 

for which 

ikCOSh ( b' ) ( 
0 2 = -  I--  )- 2~ P-' Ah,. 

In order to investigate the nonlinear dynamics of shape 
distortions in the domain structure it is necessary to intro- 
duce a field u = ux (x ,y )  that specifies the displacement of a 
point with a given value of magnetization from its position in 
the regular domain structure, i.e., to represent the distribu- 
tion of magnetization in the f ~ r m ' . ~ . ~  

If we limit ourselves to a discussion of long-wavelength 
shape distortions in the domain structure, we can write the 
"elastic" part of the free energy associated with displace- 
ments of the domain walls in the form 

where 

Here C , ,  = - 4 5 4, Co and C,,, = { 4, Co. In expression 
(28b) we have included only those terms in the free energy 
expansion that are necessary for further calculations, i.e., 
those terms that are determined by the symmetries of the 
stripe domain structure (the point group D,, ). 

In order to obtain the equations of motion for the do- 
main wall displacement, we will also introduce a kinetic en- 
ergy and dissipation function: 

Then the Euler-Lagrange equation 

d a s +  a a a%D, a a v d  -- = - - - -  
at afi a x ,  a ( v , u )  ait ax' a ( ~ * & )  (31) 

(2 = Fki, - % ,, is the Lagrangian), which completely 
determines the nonlinear behavior of the domain walls, takes 
the form 

In the linear approximation, the following function is a solu- 
tion to Eq. (32) : 

When this function is substituted into (32), it yields the dis- 
persion relation for acoustic modes in the form (21 ). 

In order to calculate the amplitude of sinusoidal distor- 
tions of the domain wall profiles for h I  > h, we use the meth- 
od developed in Ref. 6 for analyzing the distribution of mag- 
netization in a domain wall formed during a second-order 
phase transition. We seek the static (u = 0 )  solution to Eq. 
(32) in the form 

U=Ut  COS (QG) COQ (Qyy)+ t I t~Ct ,2QSQyl~ t2  sin ( 2 Q d )  
X [-Cx-'Q,-'+3 cos (2Qyy)CQ-'1, (33) 

where C, = CxQ; + CyQ: +4C,k 'Q:;  here u, is a 
small parameter. Using the boundary condition 

~ = = O l ~ = ~ r , , z ,  

we find that Qx = ~ ( 2 n  + 1)  1; ' (n = 0, I,...). The mini- 
mum in the free energy (28) is reached for n = 0. Using Eq. 
(32), we obtain an equation for the amplitude of the sinusoi- 
dal distortion: 

where Cz,, = C,, - &Cf, ,  (2C: ' + 9 C o  ' Q I ) .  Substi- 
tuting (33) into (28), we find that the free energy of the 
system is 9 = - (9/128) C:, (u ,  Qy ),. The minimum val- 
ue of 9 is reached for the maximum value of u : ,  i.e., for 
Qy = Qys . In this case it follows from Eq. (34) that 
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FIG. 2. Theoretical functions h l  ( h ,  ) corresponding 
to the onset of instabilities of various types for a non- 
equilibrium domain structure with normalized wave 
vector K = 0.25 (the values of the remaining param- 
eters are the same as in Fig. 1).  The dotted-dashed 
curves are for sinusoidal distortion of the domain wall 
profiles, the dashed curves are for translational insta- 
bility, the open circles are for a transition to a hexagon- 
al CMD lattice, the solid curves are for a transition to a 
uniformly magnetized state (for a nonequilibrium do- 
main structure this is not possible). 

where 

The arguments presented above indicate that the phase 
transition which results in sinusoidal distortions of the do- 
main wall profiles is second-order for c$, > 0. However, as 
h, approaches hi ,  the quantity C, decreases, so that the coef- 
ficient C $ ,  can change sign. In this case the phase transition 
becomes first-order, so that the sinusoidal distortions that 
appear have finite amplitude. 

Results of our theoretical investigation of the stability 
of stripe domain structures with fixed periods are shown in 
Figs. 2-5, where we have plotted curves on the ( h ,  ,hi, ) plane 
along which such domain structures lose their stability with 
respect to formation of sinusoidal shape distortions (the dot- 
ted-dashed curves), transitions to a CMD lattice (the open 
circles), and displacement of the positions of the domain 
walls (dashed curves) for various values of the normalized 
period x. The values of a, I,, and flu were chosen in the same 
way as in Fig. 1. Calculations for large values offl, show that 

no qualitative changes in the results occur; however, it be- 
comes difficult to plot these results graphically, because a 
number of curves almost merge (see the remarks at the be- 
ginning of Sec. 1.2). The curve for loss of stability of the 
domain structure with respect to a transition to a uniformly 
magnetized state, which cannot be produced by a quasistatic 
increase in the magnetic field intensity, is shown as a solid 
trace. 

It is clear that for x<x, the nonequilibrium domain 
structure is unstable with respect to both a transition to a 
CMD lattice and the appearance of sinusoidal distortions of 
the domain wall profiles (Fig. 2); as x approaches x, it also 
becomes possible for translational instability to occur (Figs. 
3 and 4).  For x > x,, the only possibilities are either a tran- 
sition to a CMD or translational instability (Fig. 5) ;  the 
curve for the latter shifts towards the region of small values 
of h, as x increases. 

Including the finite transverse dimensions of the film 
affects the position of these curves only slightly. Thus, e.g., 
even for I ,  = 1 mm the curve for nonuniform (modulated) 
translational instability in the positions of the domain walls 

FIG. 3. Theoretical functions hl,  ( h , )  corre- 
sponding to the onset of instabilities of various 
kinds for a nonequilibrium domain structure with 
normalized wave vector x = 0.271 (the values of 
the other parameters are the same as in Fig. 1; the 
notation of the curves is analogous to that used in 
Fig. 2) .  
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FIG. 4. Theoretical functions h,,  ( h ,  ) corresponding 
to the onset of instabilities of various types for a non- 
equilibrium domain structure with normalized wave 
vector x = 0.272 (the values of the remaining pa- 
rameters are the same as in Fig. l ,  and the notation of 
the curves is analogous to that used in Fig. 2 ) .  

deviates from the curve for I ,  4 co by only lo- ' .  where 
As we have already mentioned, for T # O  the period of 

the domain structure can be changed not only by the appear- 32 hl,lc 
eh=ed(kz)., (ha). = -- ( h ~ = - h ~ ) .  

ance of instabilities of various types, but also by the forma- 9BY 1 ei,l 
tion of magnetic dislocations and subsequent translation of 
these dislocations under the action of "elastic" stresses. 

It is noteworthy that for hll +O domains with M-H > 0 
and with M-H <O have different widths ( d ,  and d , ) ;  for 
1 hil 1 <8Aa the period of the domain structure is given by the 
expression 

where E~ z arcsin (h l ,  / 2 d i l a ) .  The equilibrium period d ,  for 
Ihl I < hll,, depends on the field H in the following way: 

Generally speaking, this type of asymmetry in the domain 
structure can modify the conditions for the appearance of 
instabilities of various types, especially far from the second- 
order phase transition curve, i.e., for H, <BUM. 

In order to generalize the theory to domain structures 
in biaxial ferromagnetic films located in a magnetic field 
IH, I <flu M and IH, I - 47rM, we add to the free-energy den- 
sity a term A T  = 1/2& M,, whereo, is the rhombic anisot- 
ropy constant ( 0  <ox <flu ), and make use of the results of 
Refs. 13 and 18, in which the ground-state and spin-wave 
spectra were investigated for films of this kind with stripe 
domain structures and ox = 0, H,  = 0. Following Ref. 18, 
we can show that the "elastic" part of the free energy 9 and 
the spectrum of the acoustic branch of the spin excitations 
are described by Eqs. ( 2 8 )  and ( 1 8 ) ,  respectively, where 

FIG. 5. Theoretical functions h, ,  ( h ,  ) correspond- 
ing to the onset of instabilities of various types for a 
nonequilibrium domain structure with normalized 
wave vector x = 0.350 (the values of the remaining 
parameters are the same as in Fig. 1; the notation of 
the curves is analogous to that used in Fig. 2 ) .  
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2 1 v2n 1 H,, 
+- nvinp-m ~ ~ [ ~ - e ~ p ( - v , ~ n ~ ) ] s i ~ ~ - - - -  2 4 M  

here I, = a; (4 rM ,) - is a characteristic length in the ma- 
terial, and 

m, a,, and A, are the effective mass, energy density, and 
width of a domain wall, r e spec t i~e l~ , ' ~  and v, = kl,, 
Y,  = k d 2 .  The width of a domain d, at the center of which 
M =. - Me, is calculated from the equation WV2 = 0, while 
the equilibrium period d ,  is determined from the condition 
W,,, = 0. As in Ref. 18, in deriving Eq. (38) we have as- 
sumed that A 4 I,, and that the value of a does not depend on 
the curvature of the domain wall. 

Thus, with proper regard for the changes in notation 
implied by the relations given in (38), we can use results we 
have already obtained to find the boundaries of stability for 
the stripe domain structure. In particular, we can use Eq. 
(25) to determine the stability boundaries of a stripe domain 
structure with respect to the appearance of sinusoidal shape 
distortions of the domain walls, along with the period A, of 
these distortions, by numerical calculations. In bounded 
samples, the distortion period A, is finite (compare with 
Ref. 18), while for I, -+ w it goes to infinity. A distribution of 
coercive forces can lead to a nonzero A, in films with arbi- 
trary transverse dimensions. 

Because the period d,  increases as lHl, I increases, the 
stripe domain structure which forms for ]HI ,  / = constfO 
becomes unstable with respect to sinusoidal distortions in 
the domain wall profile as 1 Hll  I decreases. As lHl, 1 increases, 
a reconstruction of the domain structure takes place due to a 
decrease in the thickness d, of energetically unfavorable do- 
mains, which can cause them to collapse or break up with the 
formation of dislocations. 

Note that we cannot use Eq. (38) to obtain conditions 
for stability of a stripe domain structure with respect to a 
transition to a CMD lattice, or for the appearance of transla- 
tional (acoustic) soft modes, since this equation was derived 
by using the approximation of geometric domain walls and 
distributions of the vector M within individual domains that 
are unaffected by the action of the field HII  . If we build into 
the theoretical model the vortex character of the distribution 

of the vector M in a stripe domain structure (i.e., the fact 
that there exist twisted domain walls and a nonuniform dis- 
tribution of M within the domains themselves that depends 
on magnetic field), these instabilities can indeed arise; how- 
ever, they do so only in the case where all the domain walls in 
the domain structure are "single-polarity," i.e., where the 
direction of the vector M is the same at the center of every 
twisted domain wall. In this case, the vector M at the center 
of a domain at the film surface makes an angle with the sur- 
face normal which increases as the period of the domain 
structure d decreases, while the amplitude of the change in 
the component M, in the domain structure decreases at the 
same time. Strictly speaking, the distribution of the vector M 
in a domain structure with single-polarity twisted domain 
walls is topologically equivalent to the distribution of M in a 
domain structure close to an orientational phase transition; 
therefore, all the conclusions of the theory developed at the 
beginning of this section apply to this case as well. 

Another possible type of stripe domain structure is one 
with opposite-polarity twisted domain walls. For this struc- 
ture, a translation along the x-axis by d /2 causes the vector 
M at the center of a domain wall to change direction by 180". 
In this case, the vector M at the center of a domain at the film 
surface is oriented along the normal for any period d of the 
domain structure, and only sinusoidal instabilities of the do- 
main wall profile are possible ford > d,. For d < d,, no insta- 
bility occurs as d decreases, although in this case the energy 
of the domain structure goes to in fin it^.^' Since the domain 
structure model with geometric domain walls used in Ref. 13 
is essentially equivalent to a domain structure with opposite- 
polarity domain walls, the conclusions of that paper regard- 
ing the possible existence of instabilities of such domain 
structures with respect to discontinuous changes in the peri- 
od are incorrect. 

Let us consider how a field H, affects these results. 
Since the magnitude of d ,  decreases as H, increases (for 
H,, = const ), a stripe domain structure that forms for some 
value of HI,  with H, = 0 becomes unstable with respect to 
the appearance of a sinusoidal modulation in the domain 
wall profiles as H, increases for any type of initial domain 
wall polarization. If the field H = H, is directed along the 
domain walls, under certain conditions repolarization of the 
vectors M is possible at the centers of these domains, i.e., a 
transition from a structure with opposite-polarity domain 
walls to a single-polarity domain wall structure.I9 This repo- 
larization can occur via the creation of pairs of vertical Bloch 
lines; their subsequent mutual repulsion then drives them 
beyond the edges of the film. 

These results can be easily generalized to other phase 
transitions, both first- and second-order, that are accompa- 
nied by reconstruction of the period of a stripe domain struc- 
ture as the external parameters change (temperature, mag- 
netic field, pressure, etc.): for example, in phase-space 
regions where reorientation of the magnetic moments occurs 
in orthoferrites, in regions of existence of intermediate states 
in antiferromagnets, in the neighborhood of compensation 
points in ferromagnets, etc. 

The theory we have developed can also be used to de- 
scribe the behavior of metastable domain structures in a film 
of uniaxial ferroelectric placed in a plane capacitor with a 
gap of d /2 between the electrodes and the surface of the 
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ferroelectric, which is in the neighborhood of its Curie point. 
For this it is sufficient to write the free-energy density in the 
form2' 

where 5- = ( To - T){; I ,  P is the polarization vector, 5 is 
the gradient energy parameter, 6; ' is the polarizability in 
the plane of the film, E is the electric field intensity, eUi and 
a, are, respectively, the chemical potential and surface 
charge density at the ith electrode, e is the electron charge, 
and Vis the volume of the ferroelectric, while in the expres- 
sions of Secs. 1.1 and 1.2 we make the following replace- 
ments: 

Here Eo = U/e, U =  U, + U,, and Go is the characteristic 
frequency in the Landau-Khalatnikov equation 

2. EXPERIMENT AND DISCUSSION OF RESULTS 

In our experimental investigations of instabilities of a 
regular stripe domain structure we used epitaxial films made 
of uniaxial ferrite garnets with the composition 
(YGdYbBi) , (FeAl) , O,, , grown on a nonmagnetic sub- 
strate of Gd, Ga, O,, with ( 11 1 ) orientation. The intrinsic 
domain structure of these films is usually labyrinthine; a reg- 
ular stripe domain structure is created using the following 
method. A wide-gap magnetic head is used to record a har- 
mdnic oscillogram on magnetic tape. The spatial wavelength 
do of this oscillogram is close to the equilibrium period of the 
corresponding labyrinthine domain structure of the film d, 
at room temperature. This tape with its recording is pressed 
against the magnetic film in close contact with it, and is then 
removed by sliding it across the entire surface of the film in 
such a way that the direction of translation of the tape coin- 
cides with the direction of the "dashes" of the recording. 
This procedure allows us to create an almost ideally regular 
stripe-domain structure in the film (Fig. 6a), which is pre- 
served even after the magnetic tape is removed. As the exter- 
nal parameters (HI I ,  H , ,  and T) are varied, instabilities of 

FIG. 6 .  Development of instabilities of a stripe domain structure as the 
curve for an orientational phase transition is approached in fields H ,  = 0 
(a) ,  1.17 kOe ( b ) ,  1.55 kOe (c ) ,  and 1.94 kOe (d ) .  

various types develop in this regular stripe domain structure 
for certain critical values of these parameters. These critical 
values of the external parameters are interrelated through 
certain functional relations, which are conveniently repre- 
sented by the correspsnding curves plotted on state dia- 
grams for the film in the planes H, HII (for T = const), THll 
(for H, = const ), etc. The procedure for determining the 
form of these state diagrams is described in detail in Ref. 2; 
therefore, we limit ourselves here to listing the terminology 
used in that paper: 0 denotes a uniformly magnetized state, 
n a stripe (labyrinthine) domain structure, and P,  and P, 
different-polarity hexagonal (or amorphous) CMD lat- 
t i c e ~ . ~ '  

Figure 7 shows a state diagram for film No. 1 and the 
location of curves for loss of stability of an original stripe 
domain structure with respect to a sinusoidal distortion of 
the domain wall profiles ( d o  = 11 pm; curve I ) ,  a zigzag- 

FIG. 7. Experimental state diagram of a domain structure 
with equilibrium period and the locations of curves for loss of 
stability of a domain structure with fixed original period with 
respect to the appearance of instabilities of various types on 
the H ,  H I  plane; 0 is a uniformly magnetized state, 11 is a 
stripe domain structure, and P,  and P, are different-polarity 
CMD lattices; 1 is for sinusoidal instability for the domain 
wall profiles, 2 is for the appearance of a zigzag-shaped dis- 
tortion of the domain wall profiles, and 3 is for the formation 
of fingers at the corners of the zigzags; BCSD denotes the 
beginning of collapse of the stripe domains (a  manifestation 
of translational instability of the domain structure in real 
films). 
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FIG. 8. Experimental state diagram of a domain structure 
with equilibrium period and the locations of the curves for 
loss of stability of a domain structure with fixed original 
period with respect to the appearance of instabilities of 
various types on the plane HI, T. The notation is the same 
as in Fig. 7. 

shaped distortion (2),  and the appearance of fingers at the 
vertices of the zigzags (3); see also Fig. 3. The dashed curve 
marks the beginning of the collapse of individual stripe do- 
m a i n ~ . ~ '  The orientation of the projection H, in the plane of 
the film was chosen in such a way that the state diagram 
possessed mirror symmetry about the abscissa (compare 
with the diagram Fig. 2 in Ref. 2);  in this case the period of 
the equilibrium domain structure is a monotonic function of 
H, for Hll = const (or HII for H, = const). 

The locations of curves 1-3 and the curve which marks 
the beginning of the collapse ofindividual stripe domains are 
determined in the following way. We first create a regular 
stripe domain structure with period do in the film by contact 
with magnetic tape, where do coincides with the equilibrium 
period for H = 0. Then the film is placed in the gap of an 
electromagnet, and for a preassigned value of 
it, = arctan (HI /H, ) the reaction of the domain structure 
is observed visually as the field intensity increases. Once we 
have determined the position of a point on the curves 1-3 (or 
on the curve marking the beginning of the collapse of indi- 
vidual stripe domains), decreasing the intensity of the mag- 
netic field to zero naturally does not lead to the reconstruc- 
tion of the original stripe domain structure with period do; 
therefore, we once more carry out the operation of contact- 
ing the film with the magnetic tape, placing the film in the 
gap of the electromagnet, choosing another value of the an- 
gle it,, measuring the critical field, etc. The accuracy with 
which the critical fields were determined was - 1 Oe; in or- 
der to simplify the plots the experimental points are not 
shown in Figs. 7 and 8. 

The location on the H, HI, plane of the curve that marks 
the beginning of the collapse of individual stripe domains 
depends strongly on the density of magnetic dislocations in 
the domain structure. The curve shown in Fig. 7 was plotted 
for the minimum attainable dislocation density ( < 1 cm 2 ,  ; 
if there are many dislocations, then the process of dissocia- 
tion of pairs and repulsion of the magnetic dislocations be- 
gins at much weaker fields a l l .  

For small it, (in the interval lit, /GO. 1 for film No. 1 ) 
the period of the equilibrium domain structure decreases as 
the field intensity increases; therefore, an original domain 
structure with do = d, (0) > d, (H)  has a tendency to be- 
come labyrinthine by passing through all the stages of insta- 
bility. For larger values of 19,1 we observed only a gradual 

collapse of the stripe domains, because d,  (H) > d, (0) = do 
holds in the presence of the magnetic field. 

In films for which the anisotropy is predominantly un- 
iaxial, the presence of cubic and rhombic components leads 
only to an insignificant change in the critical fields for ap- 
pearance of instabilities of various types as we change the 
original direction of ordering of the domain walls in the 
stripe domain structure; the monotonic character of the 
function d, ( H ,  ) for it, = const is not disrupted in this case. 
For p, -0, (or DP -flu ) this dependence can become non- 
monotonic; therefore, e.g., after the development of a kink- 
like instability, further increases in H, can reestablish a 
structure with plane-parallel domain walls, etc. Strong ani- 
sotropy in the plane of the film suppresses kink-like instabili- 
ties of the domain walls. 

Using analogous methods, we investigated the stability 
of the stripe domain structure with respect to spontaneous 
phase transitions. As an example we show in Fig. 8 the state 
diagram for film No. 2 (do = 9 p m )  on the THll plane. The 
location of curves 1-3 and the curve for the beginning of the 
collapse of individual stripe domains (with notation the 
same as in Fig. 7) were determined by smoothly increasing 
the temperature with HII = const. The sole feature in the 
behavior of this domain structure that differs from what was 
discussed earlier is the existence of a certain narrow interval 
of values of IH, I for which the original domain structure 
transforms into a hexagonal CMD lattice (P ,  or P, ) on the 
curves II + P,  or II -P, near the Curie temperature 
T ,  ~ 4 4 0  K. The accuracy of our temperature measurements 
in these experiments came to - 0.1 K. 

For films 1 and 2, the periods of the sinusoidal distor- 
tions in the shape of the domain walls were 26 and 25 pm, 
respectively (see, e.g., Fig. 6),  and were weak functions of 
the external parameters. The results of Sec. 1.2 of this paper 
and Refs. 7 and 18 suggest that this may be due to the pres- 
ence of a distribution of coercive forces in the film, in which 
case the wave vector of the "softened" mode with maximum 
growth rate depends strongly on the difference between the 
field h, and the threshold field h,, for the appearance of 
sinusoidal instability; it may also be due to the influence of 
the finite transverse dimensions of the film. Apparently, this 
latter reason can be discarded because films 1 and 2 were 
irregular in shape and possessed different transverse dimen- 
sions. Furthermore, we were unable to take into account 
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nonuniformity of the properties of real films (in the plane of 
the structure) which first of all is equivalent to a coercive 
field, and secondly leads to a local variation of the critical 
field h,, . 

If magnetic dislocations are present in the original 
stripe domain structure, then the average period d of the 
domain structure can change within certain limits due to the 
motion of these dislocations. In a defectless film with finite 
dimensions for fixed values of H and T the dislocations are 
spaced in such a way that the average period d equals the 
thermodynamic equilibrium value d, ( H, T) (if possible) ; a 
change in any of these parameters will cause translation of 
the dislocations without hysteresis (if they do not interact) 
to new positions. 

Comparison of the experimental data with the conclu- 
sions of the theory indicate good agreement between them. 
All types of instabilities of a stripe domain structure predict- 
ed by the calculations were observed experimentally, includ- 
ing the kink-like distortions of the domain walls profile as 
well as their collapse and conversion to a CMD lattice. 

We note that the problem of kink-like instabilities of a 
stripe domain structure was discussed in Ref. 1 1. However, 
the theoretical analysis carried out in Ref. 11 cannot be ap- 
plied to real samples, because the model of an isotropic crys- 
tal used in that paper does not admit the existence of a regu- 
lar stripe domain structure (the stable domain structure, 
according to the classification of Ref. 2, corresponds to the 
"liquid-crystal" phase). The expressions for the effective 
elastic modulus of the domain structure and the functional 
dependences of the domain structure period on the film 
thickness and field given in this paper are erroneous. 

I '  For sufficiently rigid boundary conditions the height of the barrier is 
large, and the probability of a transition between states with differing 
numbers of domains is vanishingly small.' 
For an orientational phase transition from a uniformly magnetized state 
this type of domain structure does not nucleate. 

"The curves Il -0, Il - P I ,  and Il - P, determine the boundaries of the 
regions of stability for the equilibrium stripe (labyrinthine) domain 
structure, whose period for any attainable values of the external param- 
eters H and Tcorresponds to an absolute minimum of the energy. For 
the creation of such structures we use the method of "magnetic jarring" 
(see Ref. 2). The curves PI,, -0 and PI,, - H  for equilibrium CMD 
hexagonal lattices have an analogous meaning. However, domain struc- 
tures that appear during 0- H ,  0-PI , ,  , n -PI,, , and PI,, - Il first- 

order phase transitions are not in equilibrium as a rule. 
4 '  The collapse of stripe domains in a regular domain structure takes place 

over a rather wide interval of variation of magnetic field; these latter 
domains collapse for values of HI and H, that roughly correspond to 
the curve Il -0 for the equilibrium domain structure. The overwhelm- 
ing majority of stripe domains collapse by "breakup" of the domains, 
i.e., the formation of dislocation pairs with subsequent rapid repulsion 
of the dislocations to the film boundaries. 
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