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The effect of admixtures on the ignition of inertially confined deuterium-tritium fusion is 
analyzed. The plasma is assumed to be transparent to its own emission and to the fusion neutrons. 
The a-particle component of the heat transfer is taken into account systematically on the basis of 
an equation derived analytically. Ignition conditions are found for the cases with and without 
electron thermal conductivity. Above the ignition threshold, the temperature rises so rapidly that 
the hydrodynamic removal of energy is inconsequential, and the Lawson criterion does not apply. 
Burning waves propagate at a supersonic velocity, but this conclusion does not contradict the 
general theory of detonation and combustion. As an application, the energy which a point 
microexplosion would have to have in order to ignite a thick spherical deuterium-tritium shell 
with inert admixtures is calculated. 

1. INTRODUCTION 

Burning waves in DT plasmas have been studied by 
many workers. For example, Koval'skiil studied ignition in 
an ultradense plasma without a bulk radiative loss. The ef- 
fect of electron thermal conductivity was analyzed in Refs. 
2-4. Burning waves in optically nondense plasmas were 
studied in Ref. 5; the local release of energy in a particles, the 
thermal conductivity, and the radiative loss were all taken 
into account. Detonation waves in a DT mixture were stud- 
ied in Refs. 6-9. 

In the present paper we examine the conditions for the 
onset of plane burning waves in mixtures and chemical com- 
pounds containing chemical elements other than the deuter- 
ium and the tritium. We assume that the plasma is transpar- 
ent to radiation. 

We will see that even a small admixture has a marked 
effect on the nature of the burn:" The emission of electro- 
magnetic radiation and the nonlocal release of energy in a 
particles become the major competing effects, while the role 
played by the electron thermal conductivity and the motion 
of the plasma decreases. The presence of admixtures simpli- 
fies the theoretical description of the ignition, although it 
undoubtedly complicates the ignition itself. 

There are reasons for the research interest in the igni- 
tion of DT plasmas containing impurities. Most of the iner- 
tial-fusion proposals which have been advanced use the as- 
sumption that only an insignificant part of the plasma 
volume (we will call it the "inner part") is heated to the 
fusion temperature by the driver energy, while most of the 
DT plasma (the "outer part") is ignited as burning propa- 
gates out of the inner volume. In this situation, admixtures in 
the outer volume might play a helpful role in the target com- 
pression dynamics, provided that they are not too great a 
hindrance to ignition. 

We are thinking primarily of the suggestion that a mix- 
ture of DT with heavy elements might be used to convert 
driver energy into thermal radiation for indirect compres- 
sion of a fusion target. Such conversion is presently regarded 
as an extremely promising direction in inertial-fusion phys- 
ics. If the shell in which the conversion is to occur is made of 
deuterium and tritium with an admixture of a heavy ele- 

ment, which raises the conversion efficiency, then thermo- 
nuclear burn in this shell after a microexplosion of the main 
target would raise the energy yield and the efficiency. 

In particular, the possibility of using the radiation emit- 
ted from a "cumulative" converging spherical shock wave in 
DT (with or without admixtures) for an ablative compres- 
sion of an inner igniter target has been discu~sed. '~  The re- 
sults of the present study can be used to determine the re- 
quirements which the energy yield of the inner target must 
meet in order to achieve ignition of the outer DT with admix- 
tures. 

Even in the more conventional schemes for inertial fu- 
sion, the presence of impurities in the outer part of the target 
would probably be capable of raising the value ofpR and the 
energy efficiency of the target. For example, an admixture of 
a heavy element in the outer part of the DT volume might 
help block the radiation and keep the compression symmet- 
ric, as a result of radiative heat transfer. In pinches" and 
during plasma compression by a converging shock wave,12 
admixtures would intensity the radiative cooling and there- 
by raise the plasma density. 

Thermonuclear burning in chemical compounds of DT 
(e.g., LiBD, + LiBT,) was discussed in Ref. 13. These 
compounds, in contrast with pure DT, would be in a con- 
densed state at room temperature. We show below that un- 
der the conditions assumed here a fusion burn would not be 
possible in such compounds. 

Finally, the results derived here may be of interest for 
research on ignition of pure DT in certain specific situations. 
For example, Panarella14 has suggested that a converging 
shock wave be used to create pressure at the boundary of the 
region with the fusion temperature; this pressure would re- 
tard the expansion of the hot region and would prolong the 
inertial confinement. A leading role in limiting the burn 
would be played by the processes by which energy is re- 
moved from the hot region by a particles and electrons, rath- 
er than by an expansion of the plasma. The ignition condi- 
tions would be determined by the equations derived in the 
present study. In other cases, the use of these equations for 
pure DT mixtures would yield only a lower estimate on the 
ignition criteria, because the motion of the plasma is ig- 
nored. 
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2. STATEMENT OF THE PROBLEM 

We are interested in the processes which occur in an 
immobile, fully ionized plasma with an ion density 
n = const. The plasma contains equal numbers of deuterium 
and tritium ions (n, = n, ); it contains other ions as well. We 
characterize the plasma by means of the relative DT density 
a = 2n,/n, the average charge number (z), and the mean 
square charge state (z2). 

In the one-temperature approximation for the plasma, 
the relaxation of thermonuclear a's and the radiative losses 
are taken into account. We assume that the neutrons and the 
electromagnetic radiation pass freely out of the plasma, and 
we ignore all nuclear reactions except D + T. We wish to 
determine the criteria for the appearance of one-dimensional 
burning waves. 

3. ONE-DIMENSIONAL HEAT-CONDUCTION EQUATION 
WITH a-PARTICLE TRANSPORT 

Various methods have been used in numerical calcula- 
tions on a-particle transport: the one-group approxima- 
t i ~ n , ~  the front-back approximation,'5 and the track meth- 
od.I6 In the one-dimensional case, the equation for heat 
transfer by a particles can be solved analytically. Some of the 
expressions for the coefficients of a-particle transport and 
the method used for studying soliton solutions in the present 
study are close to those used in Refs. 17 and 18. 

To analyze the motion of an a particle with an energy 
E = 3.5 MeV, the plasma can be assumed to be stationary. 
Estimates show that at a plasma temperature T g  100 (here 
and below, temperatures are expressed numerically in kilo- 
electron volts, while other properties are in cgs units, unless 
otherwise stipulated) the only force acting on an a particle is 
the friction force exerted by electrons. At T%0.5 the velocity 
of the electrons is large in comparison with that of the a 
particles, so we have a simplified equation of motion for the 
particles: 

Here Ma, va , and z,, are respectively the mass, velocity, and 
charge of the a particle, and the collision rate p is given by 

with the Coulomb logarithm 

for n- and T- 10. It follows from (3.1 ) that, after it 
appears, an a particle moves along a straight line. After trav- 
eling a distance s it has a velocity 

and it is suffering an energy loss per unit length 

The volume element dr' emits an isotropic flux of a 
particles: 

where 

(Ref. 8). At a distances from the point r', this flux is distrib- 
uted over a surface area of 47~s'. It leads to a bulk energy 
evolution with a power density dQ which is equal to the par- 
ticle flux density multiplied by the energy loss per particle 
per unit length: 

The total power density of the energy evolution at the 
point r is found by integrating (3.7) over dr': 

The inner integral is evaluated over a straight line segment 
between the points r and r', and 8(x)  is the unit step function 
(8= 1 fo rx>0 ;8=Oforx<0) .  

If all functions depend on only a single Cartesian coor- 
dinate, x, we can integrate (3.8) over the transverse coordi- 
nates: 

+ m  

y=vo-i j v ( s )  ds. 

Integrating (3.9) by parts twice, we find 

Finally, if the function v-  'd(J/v)/dx is assumed to vary 
only slightly when y changes by + 1, we find 

in which the local energy evolution EJand the thermal con- 
ductivity associated with a-particle transport have been sin- 
gled out. If the density is homogeneous, the heat flux is pro- 
portional to grad T: 
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where C(T) depends on neither n nor the electron thermal 
conductivity and is given by 

We have omitted a function y/(z) from the expression 
for Ce; that function decreases slowly with increasing charge 
number. Introducing an effective index 

a In J p=- 
d l n T  

in the standard fashion, we find from (3.13) 

Using (ov)z1.3. lo-"  andflz3.5 at T =  5, we find, 
for a pure DT mixture (i.e., with a = (z) = (z2) = I ) ,  
C >  Ce at T >  5. Comparing the energy production rate EJ 
with the bulk radiative-loss power Q,, 

<av> 
E l =  - ~ ~ n ~ . 1 , 4 . 1 0 - ~ ~ ,  (3.16) 

10-1' 

we easily find that the relation E J >  Q, holds at these tem- 
peratures ( T > 5 ) . 

We arrive at an interesting conclusion, which holds 
quite accurately for the case of DT and also for its mixtures 
with small values of (z2): heat is transferred out of the igni- 
tion regions, with E J >  Q,, primarily by a particles, while it 
is transferred in cold regions ( E J <  Q, ) by electrons. It fol- 
lows that in analyzing the ignition of an optically transpar- 
ent plasma we must treat a-particle transport as the domi- 
nant process. 

4. CONDITION FOR THE EXCITATION OF A HEATING WAVE 
IN A LORENTZ PLASMA 

Using the results found above, we can write the energy 
equation as 

Linear perturbations of the temperature superposed on the 
background of the cold ( T = 0)  plasma decay. Perturba- 
tions which are localized along x and which are of finite 
amplitude, such that the condition E J >  Q, holds at the max- 
imum, may grow if the length of the perturbation is large 
enough; otherwise they will decay. It is natural to assume 
that there exists a certain intermediate state, namely a local- 
ized steady-state solution of Eq. (4. l ) ,  which is the bound- 
ary between growing and decaying perturbations and which 
satisfies a steady-state integrodifferential equation 

Solutions of this equation are analyzed in Secs. 4 and 5 of this 
paper. 

To determine whether the integral term in (4.2) can be 
replaced by the differential relation (3.12), and to estimate 
the error of this approximation, we consider a case of meth- 
odological interest, in which Eq. (4.2) can be solved with 
both the differential operator and the integral operator (ap- 
proximately). This is the case of a Lorentz plasma 
( (z) % 1 ), but with a =: 1 and (z) z 1. This situation corre- 
sponds to the presence of a small amount of a large-z admix- 
ture in a DT plasma. In a Lorentz plasma, electron-electron 
collisions do not contribute to the thermal conductivity, and 
the latter can be calculated easily. It differs from (3.14) by a 
factor of 4.3(z)/(z2). Replacing EJ by Q, (which has the 
same order of magnitude) in (3.13) for an estimate, and 
comparing (3.14) with (3.13), we find that under the condi- 
tion 

the electron thermal conductivity is small in comparison 
with the heat transfer by a particles, and the corresponding 
term in (4.2) can be discarded. We introduce the tempera- 
ture To, which is the temperature at which the equality 
EJ = Q, holds, i.e., at which we have 

According to (4.3), the condition To > 8 must hold. In 
this temperature region we haveflzconst -2, and Eq. (4.2) 
becomes 

1 
~(u-~')=(~u-u~~-~+ln----)~(i- I u-u' I 

U = V . - ~ ~  v d r ,  U'=V~-~ v dx. 
0 0 

To find an approximate solution of the nonlinear inte- 
gral equation (4.5), we approximate its kernel K( u - u') by 
the Gaussian function 

3 
K,  = exp[-9(u-~')~]. 

n 
(4.8) 

We choose the parameters of this function in such a way that 
the zeroth and second moments of K and KG are the same. 
The error of this approximation of the equation is 
8.10-5C34($3.5)/C3u4 in order of magnitude and is quite 
small for smooth functions $. After K is replaced by KG, Eq. 
(4.5) has a solution 
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4=1,75'" exp (-27u2/14). (4.9) 

The x dependence of $ is determined by (4.9) and by 
equation 

We will not reproduce it here. We restrict the discussion to 
two integral characteristics: the length Ax of the perturba- 
tion (this length is finite, although u varies from - m to 
+ co), 

OD 

and L, its energy divided by the cross-sectional area, 

We now solve the equation (0 = const) 

which is found from (4.2) by replacing the integral operator 
by a differential operator in accordance with (3.13). A finite 
solution of this equation is 

From (4.13) we can calculate Ax, L, and the maximum 
temperature Tm : 

In the equations found from (4.8)-(4.11), the numerical 
coefficients are 1.2, 3.6, and 7.5, respectively. The replace- 
ment of the integral operator in (4.2) by a differential one 
simplifies the equation, at an inconsequential cost in calcula- 
tion accuracy. 

Eqs. (4.14), along with the definition of To in (4.7), 
lead to the following dependence on (z2) : 

The condition for the appearance of plane ignition 
waves in a Lorentz plasma containing deuterium and tritium 
is that the parameter values in (4.14) be exceeded. 

5. PARAMETERS OF ASTEADY-STATE THRESHOLD 
PERTURBATION INCLUDING ELECTRON THERMAL 
CONDUCTIVITY 

If the mixture has small values of (z) and (z2), there is 
no basis for ignoring the thermal conductivity in comparison 
with the energy transport by a particles. Let us compare the 
ratio of coefficients C(T)/C, ( T) with the ratio EJ/Q, .  Us- 
ing ( 3.14) - ( 3.17 ), and including the (z) dependence of 
Ce (TI, which was omitted in (3.14) [Ce (T )  - y(zl)/(z)], 
we find 

We see that the ratio in (5.1) is of order unity in the case 
(z2) - (z) - 1. This result means that, under conditions such 
that the relation EJ- Q, holds, the electron thermal conduc- 
tivity is close in order of magnitude to the a-particle thermal 
conductivity and must in general be considered as important 
as the latter. 

It follows from (5.1 ) that the simultaneous description 
of the two thermal-conductivity mechanisms can be simpli- 
fied somewhat. The reason is that the quantity b turns out to 
depend on neither n nor a. It depends only very weakly on 
the temperature T (only throughfl) and on the charge com- 
position of the ions. Furthermore, the dependence on the 
temperature and the dependence on the charge composition 
cancel out to a large extent, since an increase in z is accompa- 
nied by a slight increase in the ratio ( z ~ ) / ~ ,  while there are 
simultaneous increases in the characteristic temperatures, 
and the value o f 0  decreases. We can thus assume that b is a 
constant; for simplicity we set it equal to one2' (0z 3.5-2, 
(z) - 1-2). We thus find 

It might appear that switching to (5.2) cost us dearly in 
calculation accuracy ( -- 30% for (z2) = (z) = 1 ) . How- 
ever, the exact expression for the electron thermal conduc- 
tivity of a plasma with a complex ion charge composition is 
difficult to find. Furthermore, it depends on not only (2) 
and (z) but also the concentration of each ion species. Any 
approximate expression for C, will unavoidably be simply a 
crude estimate, so an error of 20-30% is not excessive. 

Using (5.2), and replacing the integral operator in 
(4.2) by a differential relation, we can put Eq. (4.2) in the 
form 

For a solution which is localized along x, the values of T 
and G grad T tend toward zero at the boundary, so the inte- 
gral of motion of ( 5.3 ) gives us 

Q'(r) I ]  dr. I(T)= 5 ~ ( r ) ~ j ( r )  [-- 
0 

From (5.4) we find the condition for the existence of a 
localized solution of Eq. (5.3) : There must exist a maximum 
temperature T,,, such that 

The sign of I( T) is determined only by the value of T 
and by the parameter 

since the part of the integrand in square brackets in (5.5) is a 
function of only T and S. It follows that (5.6) gives Tm as a 
function of the one parameter S. 

It is convenient to replace S by the temperature To (S) 
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at which the equality EJ = Q, holds, by analogy with (4.4). 
This temperature is found from the equation 

which follows from (3.16), (3.17), and (5.8). Figure 1 
shows a curve of To (S). This curve was found without con- 
sidering the relativistic temperature dependence of the 
brems~trahlung;~~ that dependence is also ignored in (3.17) 
and (5.9). A solution of Eq. (5.9) exists only in the case 
S < So z 33 [for the extreme value To (So ) ~ 4 0 1 .  This solu- 
tion is triple-valued. We understand To (S) here to be the 
central branch of the multivalued function, on which we 
haveO< To <To(So).  

The absence of a solution for S >  So has a simple phys- 
ical meaning: For S >  So, at any temperature above absolute 
zero, the bremsstrahlung loss exceeds the heat evolution in a 
particles. 

Again in the case S < So, however, the condition for the 
existence of a steady-state solution of Eq. (5.3) does not 
always hold. We can find the extreme value of the parameter 
at which a solution still exists: S = S,. Analysis of the func- 
tion I (T )  shows that it is zero at T = 0. As T increases, it 
goes through a maximum (at T = To ), then goes through a 
minimum (at T = T;; Fig. 1 ), and then increases again. The 
existence of a value Tm which satisfies conditions (5.6) and 
(5.7) depends on whether the minimum of I ( T )  lies above 
or below the I = 0 axis. In the limiting case S = S,, this mini- 
mum must lie exactly on the axis (Fig. 2). At S = s,,  the 
value of Tm thus satisfies the following two equations simul- 
taneously: 

For T >  20, as we see from (3.6), the expression for P 
becomes 

Using (3.13) and (5.11), we find from (5.5) 

FIG. 1 .  Curves of To ( S )  (from point 0 to point A )  and of T;, ( S )  (above 
point A ) ,  on which the equality Q, = EJ holds. In region I we have 
Q, > EJ; in region I1 we have Q, < EJ. 

FIG. 2. Schematic plot of Z(T) for (curve 1 )  1 < S < S ,  and (curve 2 )  
S, < S < S o .  At S =  S,, curve 3 is tangent to the I= 0 axis at the point 
T =  T,  = T;, .  

which holds for T >  20. It follows that Eqs. (5.10) have a 
solution T,,, z 51 (i.e., I = 0 at Q, = EJ ) at S = S,, where 
S, satisfies (5.9) with T z 5 1  andS, -32. When the relativ- 
istic temperature correction to Q, is taken into account ap- 
proximately,20 we find S, ~ 2 7 .  A localized steady-state so- 
lution of Eq. (5.3) thus exists for S5; 27. 

The absence of a steady-state solution in the interval 
27 < S <  33 of this parameter might seem strange, since at 
these values there is a temperature interval To < T <  T; in 
which the relation EJ> Q, holds, so that ignition would be 
possible in principle. As it turns out, however, wave propa- 
gation of burning is not possible at these values of S (Sec. 7). 

Finally, we can express T,, Ax, and L in terms of To. 
As S-S, - 0, the integral parameters Ax and L go off to 
infinity; in addition, the conditions for the applicability of 
our model are violated. According to (5.4), Ax and L should 
be found from 

Under the condition (5.10), these integrals diverge at their 
upper limit. The tendency of Ax to diverge requires consi- 
deration of the Compton effect and the slowing of the fusion 
neutrons. For this reason we will restrict the discussion to 
the case To < 20 ( S <  24). 

We can assume thatpvaries only slightly in this region, 
having a value of about 3 in the interval 5 < To < 10 and a 
value of about 2 in the interval 10 < To < 20. Setting 
p= const in (5.12)-(5.14), we find 

I(T)= 
36v2 (To) 
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Evaluating the integrals for 0  = 2 and P =  3, and sub- 
stituting in expression (3.2) for v and expression (3.4) for 
vo , we find 

In these expressions we can set T0/5 ZS 0.4 at S 5 8; at larger 
values ofS we can determine To (S) from the curves in Fig. 1. 

We have thus found the conditions for the existence of, 

[this equation is found from (4.1 ) by replacing the integral 
operator by a differential operator], are indeed unstable at 
all values of S for which they exist. We designate a steady- 
state solution by @(x), and we designate a small perturba- 
tion superposed on the steady-state solution by ST 
[ST-exp(Rt) 1. Linearizing (6.3), we find 

where 

and integral characteristics of, a steady-state solution of the 
Equation (6.4) for the function GSTis self-adjoint. The 

energy transport equation. These solutions determine the 
Sturm oscillation theorem2' holds for the eigenfunctions of 

conditions for ignition in a mixture of deuterium and tritium 
this equation on the line segment - Ax/2 < x < Ax/2 [we 

with admixtures. As the admixture concentration ap- 
put the origin, x = 0, at the maximum of the function 

proaches zero we have (2) -+ 1, To -t 5, and the quantities in 
@(x)] .  In particular, the Sturm theorem asserts that the 

(5.18 )-( 5.20) are approximately the same as the conditions eigenvalues of the quantity 8 = - AR Can be numbered in 
found through calculations for pure DT' How- order of increasing value ( 8, < 8, < 8, < ...) and that the 
ever, they are inaccurate because the motion of the plasma is 

eigenfunction corresponding to an eigenvalue 8, has pre- ignored. 
cisely m internal zeros on the line segment 

6. INSTABILITY OF THE STEADY-STATE SOLUTIONS; 
GROWTH RATE OF A PERTURBATION ABOVE THE IGNITION 
THRESHOLD 

We repeat that the steady-state solutions found here are 
meaningful only when they are unstable, in contrast with the 
usual situation. 

The reason is that our assumption that the plasma is 
homogeneous and immobile is justified if the time scale At is 
short in comparison with the time taken by sound waves to 
propagate out of the localization region: 

Ax 
At  -=x --- 

2c8 (To) ' 

where c, is the sound velocity. For a steady-state solution we 
have At- w and condition (6.1 ) does not hold. If the 
steady-state solution is unstable, however, and the growth 
rate /Z satisfies 

the model which we are using here can be used to calculate 
the evolution of the temperature distribution. The tempera- 
ture either exceeds the perturbation threshold (and there- 
fore rises rapidly) or remains below the threshold every- 
where and therefore decays rapidly. The steady-state 
solution of the energy equation, in contrast, has the sole 
physical meaning of being the threshold between growing 
and decaying perturbations. 

We can prove that steady-state localized solutions of 
the equation 

- ~ x / 2  < x  < Ax/2. This theorem is formulated f i r  the 
Schrodinger equation in Ref. 22. 

Points of importance to the discussion below are that 
the function @ (x)  is positive, is even, has a single maximum 
at x = 0, and is equal to zero at x = + Ax/2. 

We now note that the function STl = ~a@/ax,  where 
&<Ax holds, satisfies Eq. (6.4) with R = 0 and vanishes at 
the ends of the segment. In other words, it is a neutral mode 
of the perturbation. 

Furthermore, since we have ST, = 0 at a single internal 
point, x = 0, it is clear that ST, is an eigenfunction corre- 
sponding to the eigenvalue 8,. It follows from the oscilla- 
tion theorem that we have 8, < 8, = 0 for the fundamental 
perturbation mode, so we have Ro > 0. 

The instability of the steady-state solution has been 
proved. The fundamental perturbation mode turns out to be 
unstable, the first mode has neutral stability, and the higher- 
order modes are therefore stable. Since the unstable mode is 
of positive sign, it follows rigorously that an initial tempera- 
ture distribution W(x) such that W >  @ and W - @ <@ 
hold begins to grow with time, while any initial distribution 
W(X)  for which w < @ and @ - w 4 @  hold will decay. 

We now need to find an estimate of the instability 
growth rate 2,. From (5.4) we find a relation between dx 
and d@: 

GdO= (21) '"dx. (6.5) 

This relation holds for - Ax/2 < x < 0. For 0 < x < Ax/2 we 
need to insert a minus sign in front of the radical in (6.5). 
Now introducing the functions 6 and q, by means of 
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we can put Eq. (6.4) in the form 

(PQEE hA9=vlE - - 
0 ' (6.7) 

The sign of (21)1'2 in (6.8) is chosen in the same way as 
earlier. 

Equation (6.7) is a steady-state Schrijdinger equation 
with an energy - AA and a potential act/+. The potential 
is negative and reaches a minimum at the point x = 0. 

To find an estimate of the zeroth eigenvalue, it is natural 
to assume that in calculating the first two eigenvalues we can 
use a quadratic approximation of the potential well. For a 
quadratic potential we have22 

where Uo is the minimum value of the potential. We thus 
find 

In our case we have 8, = 0 and 8, = 2U0/3. We then find 
an estimate of the growth rate: 

Numerically, A, is given approximately by 

Let us substitute expressions (6.10) and (5.19) for A, 
and Ax into condition (6.2). We estimate the sound velocity 
from the formula for a pure DT mixture: 

C,  (T) =0,8. 108 (T/5) "'. (6.11) 

The condition under which we can ignore the motion of the 
plasma becomes 

Whether this condition holds depends only on the DT con- 
tent and the ion charge composition; it does not depend on 
the plasma density. 

For a pure DT plasma, the left side of this inequality is 
of order unity. As the amount of impurity in the plasma 
increases, condition (6.12) becomes satisfied by a progres- 
sively larger margin. Correspondingly, there is a decrease in 
the effect of the plasma motion on the ignition process. 

We reach an important conclusion: In studying the ig- 
nition of an optically transparent plasma with admixtures in 
an inertial-ignition situation, we cannot use one of the funda- 
mental criteria of CTR physics, the Lawson criterion, which 
is based on the inertial-expansion time. The minimum size of 
the ignition region is determined not by the condition for 
inertial confinement but by the diffusion length of the fusion 
a particles or, more precisely, by the parameter Ax. We 

might add that the Lawson criterion is of limited applicabili- 
ty again in the case of a pure DT plasma confined by an 
external pressure. If a plasma of minimal size can be con- 
fined for a substantial time, the ignition region will become 
independent of the expansion time, being determined again 
by the quantity Ax which we have calculated here. 

7. TIME-VARYING TEMPERATURE RISE 

After the ignition threshold is exceeded, a temperature 
perturbation begins to grow and expand. For SgS, ,  we can 
assume that the value of EJ above the threshold increases 
much more rapidly than Q, with the temperature. When the 
condition EJS Q, holds, Eq. (6.3) can be put in the follow- 
ing form, where we are using (3.13) : 

In contrast with the equation studied in Ref. 4, the ther- 
mal conductivity is due to a particles, rather than electrons, 
so we are dealing with the HS regime (in the terminology of 
Ref. 4) of the temperature growth, in the course of which the 
length Ax of the perturbation increases. Comparing terms 
on the right side of (7.1 ), we find3' 

The expansion velocity is given in order of magnitude by 

The ratio of V to the sound velocity c, near the threshold is 
equal in order of magnitude to expression (6.12); under the 
conditions 1 gSgS, we have V/c, > 1. Above the threshold 
we have V/c, - To% 1. 

Strictly speaking, the wave propagation of the tempera- 
ture at a supersonic velocity would make it wrong to label 
this process "combustion," since the velocity of a classical 
combustion wave is always below the velocity of sound.23 A 
more legitimate term would be "detonation" or, more pre- 
cisely, "weak d e t ~ n a t i o n . " ~ ~  

These comments may sound strange since detonation 
usually stems from the propagation of a shock wave, and 
there is no shock wave in our case. However, in a pioneering 
study of detonation we find the following point empha- 
sized:25 " ... A detonation may propagate at a velocity greater 
than that calculated from the Jouguet rule ... when the ignit- 
ing agent ...p ropagater more rapidly than a shock wave ... ." 

In the case of weak detonation in a mixture of DT with 
admixtures, the igniting agent is the a-particle thermal con- 
ductivity, which differs from the classical gaseous thermal 
conductivity23 in that it can support the propagation of a 
burn at a velocity VS c, (in which case we have n z const). 

In the course of the time-varying growth, when the tem- 
perature reaches a value Th - 5&200, above which the con- 
dition Q, > EJ holds, the temperature rise comes to a halt. 
During the subsequent evolution of the solution of Eq. (6.3), 
steady-state traveling waves T(x - Vt) such that 

and 
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play an important role. From (7.3) we find 

i.e., T;, satisfies Eq. (5.9) (the condition S < S ,  must hold 
here). In contrast with To, the value of T;, belongs to the 
upper branch of our triple-valued function (see Fig. 1 and 
Sec. 5).  In this case the wave is a transition between two 
linearly stable states. 

By analogy with the Kolmogorov-PetrovskiWiskunov 
theory,26 the velocity Vis found as an eigenvalue of a bound- 
ary-value problem. The equilibrium positions ( T = 0, 
T, = 0 )  and ( T = T;, T, = 0)  are saddle points and are 
connected by a common separatrix if there is a unique value 
of V for a given S. Multiplying Eq. (7.3) by GdT/dx, and 
integrating the result from - co to + co, we find 

We have already learned that under the conditions 
l<S<Sc  Eq. (6.3) has a steady-state threshold solution 
with T- To. Above this threshold ( To ( T( T;, ) a perturba- 
tion grows and expands. Finally, at T- T;, we have shown 
that steady-state traveling waves exist. The velocity of these 
waves is negative according to (7.4): The value of I at the 
point T;, is negative under specifically the condition S <  Sc 
(Fig. 2). The propagation of such waves sends a T = 0 state 
into a T = T;, state (Fig. 3a). 

Traveling waves in the case Sc < S < So are of a funda- 
mentally different nature. In this case we have I( T;, ) > 0 
(Fig. 2) and V> 0. The wave thus sends a T = T;, state into 
a T = 0 state and causes quenching, rather than ignition, of 
the fusion reaction (Fig. 3b). Such waves lead to a decay of 
the original temperature distribution, even if it has an ampli- 
tude - T;, and an arbitrarily great length. 

In precisely this S interval we find the value S = 28.5, 
which corresponds to the solid chzmical compound 
LiBD, + LiBT,. Under the conditions which we have as- 
sumed here, a thermonuclear burn could not propagate in 
this compound (and the case against propagation would be 
even stronger in any other solid compounds of deuterium 
and tritium with higher values of S ) .  

FIG. 3. Time evolution of the temperature distribution. a- 1 < S <  S,; b- 
S, < S< So. The curves are in chronological order. 

8. RANGE OF APPLICABILITY OFTHESE RESULTS 

The temperature rise leads to a violation of the condi- 
tions for the applicability of the model which we have adopt- 
ed here. Let us calculate the optical thickness with respect to 
Compton scattering (the cross section is a, = 6.65.10- 2 5 )  

for a perturbation with a length Ax, which we express in 
terms of the temperature with the help of (5.19) (or, equiv- 
alently, Ax-uo/v): 

Starting at temperatures T-40-50, with T- 1-2, we can no 
longer ignore the Compton effect in connection with the ra- 
d ia t i~n ,~ '  even if the inverse bremsstrahlung ( - n 2 )  is negli- 
gible. The length of the perturbation at such values of T is 
such that the heating of the plasma by thermonuclear neu- 
trons must be taken into account. At even higher tempera- 
tures we need to take into consideration the burnup of the 
fuel (S #const) and the departure of the electron tempera- 
ture from the ion temperature. 

By virtue of the condition T <  40-50, the range of appli- 
cability of the results on the time-varying stage, in which the 
temperature increases rapidly to T- T ; ,  is very limited. In 
particular, for 1 <S < S, we have T; (S) > 50. On the other 
hand, the ignition criteria are completely reliable, particu- 
larly for 1 <SgSc (in practice, we would haves-3-10). In 
this case we have T< 50, and, on the other hand, the condi- 
tion (6.14) holds. 

As an application, let us find the condition for the igni- 
tion of weak detonation in the wall of a spherical cavity with 
a radius Ro )Ax in connection with a point thermonuclear 
microexplosion inside the cavity. We assume that the energy 
of the microexplosion is released in the form of a particles 
and that this energy heats the wall to a depth -Ax/2. After 
the microexplosion, the total flux of a particles at the bound- 
ary of the cavity is zero (as it is at the point x = 0 of the 
steady-state profile). Consequently, the threshold tempera- 
ture profile near the cavity boundary is determined by the 
function O(R - Ro ) for values of the radial coordinate R 
between Ro and R, -t Ax/2. The threshold energy is half of 
(5.20), multiplied by 4n-R i: 

M x 1 0  [R,,/(l mm)]2.(Td5)5 '2 MJ. (8.2) 

9. CONCLUSION 

1. The dominant effects during the appearance and 
propagation of a thermonuclear burn in an optically trans- 
parent DT plasma with impurities are the nonlocal release of 
energy in a particles and the radiative losses. 

2. The motion of the plasma is inconsequential. The 
Lawson criterion based on the inertial-expansion time is no 
longer applicable. 

3. The burn propagates in an unusual weak-detonation 
regime. 

4. Ignition criteria have been derived with the help of an 
equation derived analytically for the heat transfer by fusion 
a particles. 

5. For a pure DT plasma, these criteria can serve as 
lower estimates or as estimates for the case in which the 
plasma expansion is retarded by an external pressure. 

I am indebted to S. V. Bulanov and V. V. Yan'kov for a 
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discussion of these results and to P. V. Sasorov for useful 
consultations. 

'' It is not completely legitimate to call this process "combustion," as we 
will see below. 

') Essentially the only case in which b can differ greatly from unity (spe- 
cifically, it would be much greater than unity) is the case of a Lorentz 
plasma, which we discussed above. In that case, we can use the criteria 
derived in Sec. 4. A comparison of those criteria with Eqs. (5.18)- 
(5.20) shows that incorporating the electron thermal conductivity 
(b  = 1 ) changes T,,, and L only slightly from their values for a Lorentz 
plasma (b, 1 ) and causes a slight increase in Ax. These results show us 
once more that the electron thermal conductivity is important only at 
low temperatures (it smooths the edge of the distribution and increases 
Ax).  It is not important at high temperatures, where we find most of the 
energy of the distribution. 

3, Under the condition /3 = 1 (EJ- T )  we can derive an exact self-similar 
solution of Eq. (7.1), with an x dependence (1 - ~ ~ / l * ( t ) ) ~ ' ~ .  This 
result confirms the estimates of Ax and V given above. In the case 
/3 = const > 1, self-similar separation of variables is possible, but it is 
difficult to derive an explicit expression for the x dependence and to 
accurately determine the constants in the expressions for Ax and V. 
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