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Detailed experimental investigations were made of the structure of the scattered radiation in a 
self-pumped loop parametric oscillator utilizing a photorefractive crystal. The experimental 
results were compared with the predictions of a three-dimensional theoretical model. 

1. INTRODUCTION 

In many self-pumped four-wave phase conjugation sys- 
tems proposed and implemented in the last few years scat- 
tered radiation is generated in the field of noncollinear pump 
waves. A typical example is a loop parametric oscillator 
(Fig. 1 ) in which a pump beam 2 passes through a nonlinear 
medium and is returned, by an external optical feedback 
loop, back to the medium (as beam 4) and intersects itself. 
Under certain conditions it is found that an excitation (abso- 
lute) instability which develops in this geometry gives rise to 
the scattered radiation beams 1 and 3. The scattered beam 3 
travels opposite to the pump beam 4 and, after traversing the 
feedback loop, is transformed into the beam 1 which propa- 
gates opposite to the pump beam 2. The pairs of the scattered 
and pump beams 1, 4 and 2, 3 form a nonlinear refractive- 
index grating in the medium. Diffraction of the pump beams 
by this grating enhances the scattered beams and closes the 
feedback loop giving rise to the absolute instability. 

Such a loop oscillator had been realized experimentally 
in liquids utilizing stimulated Brillouin scattering' and also 
in photorefractive2 and liquid3 crystals. A theoretical de- 
scription of such an oscillator by one-dimensional models 
has been developed quite fully because of the simplicity of 
these models.2s4s5 However, one-dimensional models repre- 
sent only the initial stage of a theoretical interpretation. Self- 
consistent three-dimensional models are needed to deter- 
mine the structure of the scattered radiation and to develop 
criteria for selection of the phase-conjugate component and 
of the quality of phase conjugation. Models of this kind de- 
scribing generation of scattered radiation in the field of non- 
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Here, 28 is the angle between the beams 2 and 3 in the nonlin- 
ear medium, 
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are the transverse Laplacians, v is the amplitude of the non- 
linear refractive-index grating, y is the coupling coefficient, 
and 

IT=IAz(r) 12+lAl(r) 1 2 ,  r=(xr, y ' ,  2'). 

The coupling coefficient y allows for a possible detuning of 
the frequency of the scattered beams from that of the pump 
beams. In the case of a purely diffuse response of the medi- 
um, we have y = yo/( 1 - is). Here, yo is the real coupling 
parameter and S = wr, where w is the frequency offset 
between the scattered and pump waves, and 
r ( r )  - = : I F  ( r )  is the relaxation time of the nonlinear me- 
dium. 

The system ( 1 ) should be supplemented by the follow- 
ing boundary conditions, corresponding to the specified in- 
put intensity of the pump beam 2 and zero intensity of the 
scattered beam 3: 

Az, jn (r) =A, (r) , As, in (r) =O, (2a) 
collinear pump waves had been proposed in Refs. 6 and 7, 

and the transformation of the beams 2,3 into the beams 3, 1 
which made it possible to go over from empirical construc- 

in the course of propagation along the feedback loop: 
tion of self-pumped four-wave phase conjugation systems to 
a purposef~l investigation of these systems and a quantita- A ( r  A Out (r),  A i n )  A out (r). (2b) 
tive comparison of the theory with experiment. 

Here we report a detailed experimental investigation of 
the structure of the scattered radiation in the geometry of a 
self-pumped loop parametric oscillator and we shall com- 
pare the results with predictions of the models proposed in 
Refs. 6 and 7. The rest of the paper is organized as follows: 
Sec. 2 provides a theoretical description of a loop parametric 
oscillator based on the results of Refs. 6 and 7, Sec. 3 reports 
the experimental results, and Sec. 4 gives the conclusions. 

2. THEORY 

Let us assume that the beams intersect in the ( x ' ,  y ' )  
plane. Then, the system of reduced equations for the slowly 

FIG. 1 .  Schematic diagram of a loop parametric oscillator: 2 ) ,  4) primary 
varying amplitudes of the scatteredbeams 1 and in a pho- and secondary pump beams; I) ,  3 )  scattered beams; L is the system of 
torefractive medium, neglecting pump depletion is lenses; Mare rotatable mirrors; PRC is a photorefractive crystal. 
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Here, L and L - ' are the relevant transformation operators. 
The plane (xf,y') of the intersection of the beams and the 
direction perpendicular to this plane have qualitatively dif- 
ferent roles in the operation of the loop oscillator. We can 
reveal this difference by assuming that the feedback loop, of 
length L, is formed by a system of plane mirrors and two 
cylindrical lenses. A cylindrical lens with a focal lengthhi is 
located at a distance L,,II from the crystal along the direction 
of the pump beam and it transforms the radiation in the 
beam-intersection plane. Another cylindrical lens, with a fo- 
cal lengthf,, is located at a distance L,,, from the crystal and 
transforms the beams propagating in the direction perpen- 
dicular to the intersection plane. Consequently, the bound- 
ary conditions of Eq. (2b) can be written in the form 

Here, pl l  andp, are the transverse (relative to the direction 
of propagation of the beams) coordinates in the beam-inter- 
section plane (index 11  ) and at right-angles to this plane (in- 
dex 1); L,,, = L - &,,, L,,, = L - LI,,L2,,/fk ( k  
= II,l) and T< 1 is the transmission coefficient of the feed- 

back loop. The boundary conditions for the scattered beams 
1 and 3 follow from Eq (3)  if we make the substitution 
Ll(2) +L2(1) 

We represent the amplitude of the interacting beams 
Aj (j = 1-4) in the form 

where RjSll and Rj,, are the radii of curvature of the wave- 
front, and Bj are the complex amplitudes which carry all the 
other information about the beams. The relationships de- 
scribed by Eq. (4)  are derived in a local coordinate system 
for each beam, i.e., for the beams 1 and 2 we have 
p l l  = y' cos 8 - x' sin 8, whereas for the beams 3 and 4 we 
havepll = y' cos 8 + x' sin O ) ,  and for all the beams we have 
p* = zf. 

Consider the case when the optics in the feedback loop 
maps the region of overlap (intersection) of the beams on 
itself, i.e., when the effective length of the feedback loop is 
small: L,R,il, L,,, (k,a2, where a is the characteristic scale 
of the change in the complex amplitudes Bj. The boundary 
conditions of Eq. (3)  then lead to the following relationships 
governing the radii of curvature and the amplitudes B of the 
pump beams: 

According to the system ( 5 ) ,  the propagation of radi- 
ation in the feedback loop may be described by geometric 

optics. The transverse structure of the pump beam 2 exhibits 
a scale transformation in the beam intersection plane with 
the scaling transformation coefficient all and in the trans- 
verse direction, with the coefficient a,. From the practical 
point of view the scaling coefficient all is simply equal to the 
ratio of the width of the pump beam 4 in the plane of intersec- 
tion to the width of the pump beam 2. For lall I < 1, the pump 
beam 4 is narrower than the pump beam 2, while for lall I > 1 
the reverse is true. This applies also to the scaling coefficient 
a, ,  but at right-angles to the beam-intersection plane. 

By analogy with the system (5) ,  we can write down the 
following expressions for the scattered radiation beams: 

T P I  p-L 
...in ( p l l ,  p l )=(%)  ' ~ ~ . ~ . t ( -  P I I  ' P I  ) . 
Note that the radii of curvature of the wavefront of the 

pump beam 2 are given by the boundary condition of Eq. 
(2a), which makes it possible to determine them for the 
pump beam 4 from Eq. (5) ,  but the radii of curvature of the 
wavefronts of the scattered beams are unknown at this stage. 
We can find them bearing in mind that the nolinear grating 
of the refractive index Y of Eq. ( 1 ) can be formed effectively 
only if the strong phase dependences in the terms AIA f and 
A FA,, associated with the radii of curvature, are identical. 
Allowance for this circumstance perpendicular to the beam- 
intersection plane gives 

R~;~+R;;-R;:-R;;=o. (7)  

The system of equations (5)-(7) has two solutions. For the 
first of them, we have 

and for the second, we obtain 

The conditions for cancellation of the strong phase de- 
pendences in the beam-intersection plane are found to be 
different from those given by Eq. (7)  because of the noncol- 
linearity of the beams: 

(y'  cos 0-z' sin 0)' (R~,' +R~,') 

- (yl cos O+ zf  sin O ) V R , ~ ~  +R+;)=o (10) 

and they lead to the unique solution 

A solution analogous to Eq. (9) can be obtained only 
for very thin media and small angles 0 of convergence of the 
beams, such that 
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where d is the characteristic beam diameter and I is the char- 
acteristic length of the nonlinear medium. The above in- 
equality is practically impossible to satisfy under typical ex- 
perimental conditions. 

The solution described by Eqs. (8)  and ( 1 1 ) is of the 
greatest interest, because in this case the fast phase compo- 
nent of the scattered radiation beams, related to the radii of 
curvature of their wavefronts, is phase-conjugated relative 
to the pump beams. We shall analyze in detail this solution 
and determine the range of its existence, as well as the condi- 
tions for going over from this solution to the solution de- 
scribed by Eqs. (9)  and ( 11 ). 

After explicit separation of the radii of curvature of the 
beam wavefronts and of the image-carrying amplitudes B,, 
we can rewrite the system ( 1 ) in the form of equations for B,. 
We assume that the characteristic length of diffraction 
spreading koa2 of the amplitudes B, exceeds the characteris- 
tic length of the interaction region I: koa2 > I. This means that 
the diameters of the interacting beams do not change signifi- 
cantly within the length of the interaction region and that we 
can ignore the transverse Laplacians A,,,, in the equations 
for B, . 

We shall now replace the coordinate system (x', y', z') 
with a new system (x,y,z) : 

x=-x' sin 0-y' cos 0,  y=x' sin 0-y' cos 0 ,  z=z'.  

In the new coordinate system the pump beam 2 propa- 
gates along the x axis and the pump beam 4 along they axis. 
The beam diameters are not affected by the transformation 
to the new coordinate system. The system of equations for 
the amplitudes B, in the new system becomes 

a 
- B i ( x , Y , z ) = -  (B,B,'+Bz'B,)BL, ax I,. sin 20 

(12) 
a 

- B J ( x , Y , ~ ) = -  (BiBk'+Bz'B3) B2,  a Y I ,  sin 28 

and the boundary conditions are written as follows: 

In the case of the striction or thermal nonlinearity, 
when the denominators of the right-hand sides of the system 
(12) do not include the intensity I,, we can obtain their 
analytic solutions for an arbitrary amplitude of the injected 
pump beam B,(y,z) (Ref. 6).  In the case of photorefractive 
media when the amplitude B, has an arbitrary value, these 
equations can be solved only approximately.' We can avoid 
cumbersome formulas related to finding the approximate so- 
lutions by considering the special case of an injected pump 
beam with a square cross section 2d X 2d in a constant distri- 
bution of the intensity (phase-modulated pumping): 
IB,(y,z) I = const if lyl, I z I  <d  and IB,(y,z) I = 0 in the oppo- 
site case. 

We introduce a function f(x,y,z) proportional to the 
amplitude of the beam 3: 

B3 (x ,  Y ,  z )  =BI'(x,  z ) f  (2 ,  Y ,  2 )  

The amplitude of the beam 1 can then be expressed in terms 
of the functionf: 

sin 20 a 
Bi (x ,  Y, z )  =- - ( I+q)B2' (y ,  z ) - - f  ( x ,  Y ,  2 )  

Y a y  

where q = T / a , ,  a, is the ratio of the intensities of the pump 
beams. 

The substitution of Eqs. ( 14) and ( 15) into Eq. ( 12) 
leads to the following equation for the function f(x,y,z): 

subject to the boundary conditions that follow from Eqs. 
(13)-(15): 

f ( x ,  d ,  2 )  =0, (17) 

The solution of Eq. (16) is obtained by the Riemann 
method allowing for the first boundary condition of Eq. 
(17), which gives the expression (compare with Ref. 6) 

a 

a 
f ( x , y , z ) = - j  d ~ ' ~ f ( a ~ ~ d , ~ ' , z ) v ( x , ~ , a , d , ~ ' ) ,  (18) 

2, 

where 

and I, is a modified Bessel function. 
The substitution of the second boundary condition 

from the system ( 17) into Eq. ( 18) gives an expression relat- 
ing the function f at an arbitrary point in the interaction 
point to its value at the boundary: 

Assuming y = - d in  the above expression we obtain an in- 
tegral equation for the function Y (Ref. 6): 

d 

Y ( x ,  z )  = rT j ax1 Y (XI,  a l z )  
2 (1+9)dTd  

Here, r = r,J( 1 - is) = 2yd /sin 26, where ro is the real 
value of the gain representing convective amplification of 
the scattered radiation and 6 is the dimensionless form of the 
frequency offset between the scattered and pumped beams. 

Equation (19) has a solution only for a discrete set of 
the eigenvalues I?, and S. Solutions of this kind [represent- 
ing eigenfunctions of Eq. ( 19) ] determine modes of the in- 
vestigated loop oscillator. The eigenvalues To and S govern, 
respectively, the thresholds and frequency shifts of these 
modes. The spatial structure of the scattered radiation 
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beams can be found for a specific mode using the relation- 
ships (14), (15),and (IS), (19) ifthesolutionofEq. (19) is 
known. 

The modes of the investigated oscillator can be labeled 
by three indices n, m, and I (n, m, and I are all nonnegative 
integers). The first two indices will be called transverse, be- 
cause they label modes with different transverse structures 
of the scattered radiation field in the plane of intersection 
(n)  and at right-angles to this intersection (m). The third 
index (I) determines the frequency offset between the scat- 
tered and pump beams. It follows from Eq. (19) that the 
coordinates in the beam-intersection plane are not equiva- 
lent to those in the perpendicular direction. In fact, Eq. ( 19) 
is an integral equation in terms of the coordinates inthe 
beam-intersection plane, whereas along the coordinate z the 
relationship represents the nonlocal point mapping a,z+z. 
The difference is manifested also in the functional depen- 
dence (19) on the parameters a, and all.  Since we have 
all q = T/a,, the parameter all occurs in Eq. ( 19) only in 
the combination with r/( 1 + q),  i.e., it simply renormalizes 
the effective magnitude of the nonlinearity, whereas the pa- 
rameter a, occurs explicitly in Eq. ( 19). 

Equation ( 19) was derived using the boundary condi- 
tions of Eq. ( 13), which follow from Eq. (8),  and corre- 
spond to B, = l/a,. The second solution of Eq. (8)  [given 
by Eq. (9)  ] corresponds to Dl = a, and leads to the follow- 
ing boundary conditions for the scattered beams [compare 
withEq. (13)l:  

B1, in (y, 2 )  = (Talllal) "B,, o u t  (ally, a l - ' ~ ) ,  

and also to an integral equation which differs from Eq. ( 19) 
because it represents the point mapping a, 'z+z. The non- 
local mappings a,z-z and a, 'z-z are encountered in the 
theory of unstable laser resonators; they describe two modes 
--converging and diverging-which in principle can exist in 
such resonators. It is knownR that only the diverging mode is 
stable and can be found experimentally. For a, < 1, the map- 
ping a,z-z is diverging, whereas a, 'z-z is covergent, 
while the reverse is true for a, > 1. This means that the solu- 
tions of Eq. ( 19) corresponding to generation of a scattered 
beam with the radius of curvature of the wavefront phase- 
conjugated relative to the pump beam are obtained only for 
a, < 1. The scattered radiation generated by a loop mirror 
for a, > 1, is not phase-conjugated relative to the pump and 
the radius of curvature of its wavefront in the direction per- 
pendicular to the beam-intersection plane is described by 
Eq. (9).  

In an analysis of the solutions of Eq. ( 19) we note that 
in the present case of constant-intensity pumping the mode 
structure of the scattered beams is particularly simple along 
the z axis: 

The function ( x )  can be represented as a power se- 
ries: - 

The coefficients F Pm*" satisfy the following system of alge- 
braic equations: 

T" 
a ,  = - c+" exp[ 

I'T I[ f T '  ] '+'+I 

21 J !  al( l+q)  a l  (I+q)1 
1 

Let us exhibit the structure of the solutions of Eq. (21 ) 
in the limit of low values of the transmission coefficient of 
the feedback loop I r Z T / a ,  I < 1. The first few families of the 
solutions generated by Eq. (21) are: 

Talm exp "9 ' ) ) = I ,  

x 
(22) 

T 
m ( o . m . l ) ( x ) = i  + - - [ r ( o s m s ~ ) l z ( d ) + .  . . 1; 

2% 

The lasing thresholds r, and the frequency shifts S of 
the families of (O,m,l) modes are determined by the first of 
the relationships in the system (22), the solution of which 
gives 

The lasing thresholds and the frequency shifts of the 
(l,m,l) and (2,m,l) modes are found from Eqs. (23) and 
(24) in a similar manner. 

The asymptotic expressions (22)-(25) and analysis of 
Eq. ( 19) generally show that the modes with a nonzero fre- 
quency shift ( I  # O )  and the higher transverse modes in the 
beam-intersection plane (n  #O)  have high excitation thresh- 
olds. The greatest interest lies in the low-threshold family of 
(O,m,O) modes with zero frequency shifts and approximate- 
ly the same structure in the beam-intersection plane, but 
with different structures at right-angles to this plane. The 
thresholds of the first few modes are plotted in Fig. 2 as a 

FIG. 2. Dependence of the excitation thresholds of the first three trans- 
verse (0, m, 0) modes on a, in the case when a,,,= 1 and T =  0.3. The 
numbers alongside the curves represent the mode Index m. 
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function of the scaling coefficient a, on the assumption that 
all = 1 and T =  0.3. 

The different transverse modes correspond to the differ- 
ent quality of the phase-conjugation process, which is as- 
sumed to be described by the overlap integral 

where A,,  is the input amplitude of the pump beam and 
A,,,,, is the output amplitude of the scattered beam; the inte- 
gration in the above expression is carried out over the trans- 
verse cross sections of the beams. The input amplitude of the 
pump beam is determined by the boundary conditions, 
whereas the output amplitude of the scattered beam is calcu- 
lated using Eqs. ( 14), ( 15) and ( 18), ( 19) subject to Eqs. 
(8)  and (11). The overlap integral is defined so that the 
ideal phase conjugation process corresponds to H = 1. In 
any real situation we have H < 1 and its value gives a quanti- 
tative measure of the phase-conjugation quality. 

Calculation of the overlap integral in the model of a 
loop oscillator with a striction nonlinearity9 shows that in 
the case of the lowest (0,0,0) mode the overlap integral is on 
the average within the range 50-80%, depending on the pro- 
file of the pump beam, on the transmission coefficient T of 
the feedback loop, etc. In the present photorefractive nonlin- 
earity case the quality of phase conjugation should be some- 
what higher because the occurrence of the intensity in the 
denominator of the expression for the refractive-index grat- 
ing of Eq. ( 1 ) smooths out the profile of the scattered radi- 
ation and makes it closer to the profile of the pump beam. 
The quality of phase conjugation increases with the param- 
eter a,. The higher modes correspond to a much lower quali- 
ty of phase conjugation. The angular divergence of the high- 
er modes transverse to the beam-intersection plane is greater 
than the divergence of the fundamental mode and increases 
with the index m. From the point of view of the quality of 
phase conjugation it is preferable to ensure that the scaling 
coefficients a, and all are close to unity, but then-in princi- 
ple-we may expect excitation of several transverse modes 
because of the proximity of their thresholds (Fig. 2).  

The above analysis shows that selection of the phase- 
conjugated component in the beam-intersection plane oc- 
curs automatically because of the noncollinearity of the in- 
teracting beams, which establishes an integral coupling 
between them [see Eq. ( 19) 1. Compression of the secondary 
pump beam (a, < 1) is necessary only for the selection of the 
phase-conjugated component perpendicular to the beam-in- 
tersection plane. The condition a, < 1 may be avoided by 
some method which ensures "mixing" of the coordinates of 
the beams in the beam-intersection plane and perpendicular 
to this plane. This can be ensured, for example, by rotating 
the transverse cross section of the beam in the course of its 
passage along the feedback loop by an angle different from 
zero and from 180", but without altering the direction of the 
beam p~larization.~ For example, in the case of rotation by 
90" and spherical optics (all = a, = a ) ,  the relevant bound- 
ary conditions are [compare with Eq. ( 13) ] 

and they yield the following equation for the eigenfunction 
[compare with Eq. ( 19) ] : 

where K is a certain kernel. 
The analysis of Eq. (27) carried out in Ref. 6 shows that 

the boundary conditions of Eq. (26) ensure selection of the 
phase-conjugate component for any value of the scaling co- 
efficient a .  

We shall now list the most important theoretical con- 
clusions. 

1) The physical mechanisms responsible for the forma- 
tion of the scattered radiation in the beam-intersection plane 
are qualitatively different from those transverse to this 
plane. 

2) Phase conjugation in a loop parametric oscillator is 
possible in the limit of high Fresnel numbers if the secondary 
pump beam 4 in the interaction region at right-angles to the 
beam-intersection plane is narrower than the primary pump 
beam 2:a, < 1. The relationship between the widths of these 
beams in the beam-intersection plane can be arbitrary. 

3) The quality of phase conjugation increases with the 
scaling coefficients a, and a i l .  The optimal quality corre- 
sponds to values of these coefficients near unity, but in the 
limit a, -. 1 we can expect excitation not only of the funda- 
mentalmode, but also bf higher transverse modes because of 
the proximity of their thresholds (Fig. 2). 

4 )  For a, -. 1, the scattered beam is not phase-conjugat- 
ed. The radius of curvature of its wavefront transverse to the 
beam-intersection plane is given by Eq. (9) .  

5)  Phase conjugation in a loop oscillator system may be 
achieved by rotation of the transverse cross section of the 
beam propagating along the feedback loop, provided the an- 
gle of rotation differs from zero and 180". Phase conjugation 
then occurs for any ratio of the pump beam diameters. 

3. EXPERIMENTS 

The system shown schematically in Fig. 1 was assem- 
bled in order to investigate experimentally the spatial struc- 
ture of the scattered radiation in a loop parametric oscilla- 
tor. We used a helium-neon laser (A = 0.63 p m )  of =: 10 
mW power emitting the TEM, mode. A collimated laser 
beam -3 mm in diameter was directed to a cerium-doped 
strontium-barium niobate (SBN) crystal whose thickness 
was =:3 mm. After passing through this crystal, the beam 
was rotated by two metal mirrors and returned to the crystal 
at an angle of - 35" (in air) relative to its previous direction 
of propagation. (For the selected beam diameters and the 
angle between them the beam-intersection region was only 
partly inside the crystal, which was not quite in agreement 
with the theoretical model.) The optic axis of the crystal was 
parallel to its entry face and was in the beam-intersection 
plane. The incident laser radiation was polarized in the same 
plane. This geometry made it possible to utilize the largest 
electrooptic coefficient r,, of the crystal. The radii of curva- 
ture of the wavefronts and the beam diameters were altered 
by placing lenses in the feedback loop. 

Investigation of the structure of the back-reflected radi- 
ation showed that it depended qualitatively only on the ratio 
a = d4/d2 of the diameters of the secondary (d,) and pri- 
mary (d,) pump beams in the crystal. When this ratio was 
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FIG. 3. Structure of the back-reflected beam recorded in the far-field zone 
as a function of a = all = a, .  The value of a increases from a to c: a )  
a < l ; b ) , c )  a >  1. 

a < 1, the distribution of the intensity in the back-reflected 
beam was a circular spot in the far-field zone and its diver- 
gence was close to the divergence of the pump beam (Fig. 
3a). For a > 1, the beam had an oval shape (Figs. 3b and 3c) 
elongated per perpendicular to the beam-intersection plane 
inside the crystal. The beam divergence in this direction de- 
pended on the dianieter and radius of curvature of the wave- 
front of the secondary pump beam, whereas the divergence 
in the beam-intersection plane was close to the divergence of 
the incident pump beam. Such a dependence of the structure 
of the back-reflected beam on the parameter a had been re- 
ported earlier for a loop parametric oscillator utilizing sti- 
mulated Brillouin scattering.'&12 

The reflected beam was investigated under conditions 
when it was not the phase conjugate of the pump beam 
( a  > 1) by placing a lens with a focal length f = 64 mm in- 
side the feedback loop. The distance from this lens to the 
crystal along the direction of propagation of the laser beam 
was greater than twice its focal length, ensuring a >  1. A 
change in the length L, made it possible to alter the value of 
a .  The dependence of the radius of curvature of the wave- 
front of the back-reflected beam is plotted in Fig. 4 as a func- 
tion of a for the direction perpendicular to the beam-inter- 
section plane and two values of the total feedback loop 
length. The continuous curves represent the results obtained 
using the theoretical expressions in Eq. (9)  on the assump- 
tion that R, = CO, whereas the points are the experimental 
values. 

FIG. 5. Structure of the reflected beam in far-field zone: a) 
a, =all  = a z 1 . 5 ; b ) a l l  = 0 . 9 , a , z 1 . 5 ; c ) a l l ~ 1 . 5 , a , z 0 . 9 .  

A separate investigation of the role of the beam-inter- 
section plane and of the direction perpendicular to it in the 
formation of the scattered radiation was carried out using a 
system of two lenses. A negative (diverging) spherical lens 
was placed in the feedback loop to ensure a > 1, whereas a 
positive (converging) cylindrical lens placed behind the 
spherical lens made it possible to alter the scaling coefficient 
either in the beam-intersection plane (a,  ) or at right-angles 
to this plane (a, ) without altering the value of this coeffi- 
cient along the second direction. The experimental results 
(Fig. 5)  show that phase conjugation was possible when the 
pump beam was compressed only perpendicular to the 
beam-intersection plane. 

One further prediction of the theory was checked by 
placing in the feedback loop a system of prisms which rotat- 
ed the transverse cross section of the beam by 90". The polar- 
ization rotator then returned the polarization of the beam to 
the intersection plane. Under these conditions (Fig. 6 )  the 
divergence of the back-reflected beam remained close to the 
divergence of the pump beam even for a > 1. 

According to the theory, the excitation thresholds of 
the higher transverse modes should be close to the threshold 
of the fundamental mode if a is close to unity. Such modes 
were observed experimentally for a z 0 . 9  during the tran- 
sient stage of the operation. The transverse modes were ex- 

FIG. 4. Dependence of the radius of curvature of the wavefront of the 
reflected beam at right-angles to the beam-intersection plane on 
a = ail = a, when a > 1, plotted for two lengths of the feedback loop: 1 ) 
L = 48 cm; 2) L = 56 cm. The points are the experimental results and the 
continuous curves are theoretical. 

FIG. 6 .  Structure of the reflected beam plotted for all = a, = a--, 1.5 (a)  
and for the same value of a, but after rotation of the transverse cross 
section of the beam by 90" (b) .  
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FIG. 7. Structure of the reflected beam in the case when 
a,, =a, = a-0.9: a)  t-2 min; b) t-4 min; c)  t z 1 0  min. 

cited first (Fig. 7a), but after a certain time (Fig. 7b) only 
the fundamental mode with the lowest threshold survived 
(Fig. 7c). As a rule, for a ( l  the scattered radiation ap- 
peared directly in the form of a bright spot and the pattern 
shown in Fig. 7 was not observed. It was possible, however, 
to record it by ensuring a careful imaging of the face of a 
crystal on itself, which ensured a short effective length of the 
feedback loop. 

Finally, we determined the distribution of the intensity 
over the cross section of the reflected beam at the exit from 
the crystal for a ~ 0 . 5  (curve 1 in Fig. 8).  For comparison, 
we also determined the distribution of the pump intensity 
(curve 2) .  For this value of a the reflected beam was narrow- 
er than the pump beam. For a=  1, the distribution of the 
intensity in the reflected beam was practically identical with 
the distribution of the pump beam, indicating that the quali- 
ty of phase conjugation increased as a function of the param- 
eter a. In contrast to the experimental predictions, there was 
no significant difference between the experimental distribu- 
tions of the intensity in the reflected beam in the beam-inter- 
section plane and perpendicular to this plane. This was due 
to the fact that in our experiments the beam-intersection 
region was only partly inside the photorefractive crystal. 

4. CONCLUSIONS 

We carried out a detailed experimental investigation of 
the structure of the scattered radiation in the geometry of a 
loop parametric oscillator utilizing a photorefractive crystal 
(Fig. 1 ) and compared the results with the predictions of the 
three-dimensional model developed in Refs. 6 and 7. Ac- 
cording to this model, the main theoretical parameters gov- 
erning the structure of the scattered beam in a loop oscillator 
in the case of large Fresnel numbers are the scaling transfor- 

FIG. 8. Distribution of the intensity in the cross sections of the beams 
recorded in the plane of the face of the investigated crystal for a-0.5: 1) 
reflected beam; 2) pump beam. 

mation coefficients all and a, of the pump beams in the 
plane of their intersection and perpendicular to this plane. In 
practice the scaling coefficient all is equal to the ratio of the 
width of the secondary pump beam 4 in the beam-intersec- 
tion plane to the width of the pump beam 2. For lali I < 1 the 
pump beam 4 is narrower than the beam 2, whereas the re- 
verse is true if lall I > 1. This applies also to the scaling coeffi- 
cient a, ,  but perpendicular to the beam-intersection plane. 
The most important theoretical predictions are given at the 
end of the theoretical section. Experimental investigations of 
the spatial structure and dynamics of formation of the scat- 
tered beam, carried out under conditions corresponding to 
different values of all and a, ,  agree with the theoretical pre- 
dictions. 
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