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The overlapping of the energy levels of He-like uranium states with identical principal quantum 
numbers is investigated. Results are presented of a numerical calculation of the states produced as 
a result of mixing of the 2s,,, 8 ~ 1 , ~  and 2p,,, 8 ~ 1 , ~  states and of the respective spectral lines. It is 
shown that the interaction between the ion and its own radiation field splits each of the 
overlapping energy levels into several sublevels. The sublevels are isolated from each other to such 
an extent that interference effects become insignificant. The shapes of the spectra1 lines differ 
substantially from the Lorentz shape and many of the lines are anomalously narrow. 

1. INTRODUCTION 

Recently quantum-electrodynamic effects in the fields 
of superheavy, multiply charged ions have been the object of 
intense interest. In such fields certain features of the electro- 
dynamic interactions can be manifested which are not mani- 
fested in fields created by relatively small charges. Thus, in 
the case of superheavy multicharged ions overlapping of the 
energy levels having identical total angular momentum J, 
projection J,, and parity can take place. For such states the 
quasistationary condition is violated. In this case the shape 
of the natural broadening of the spectral lines corresponding 
to transitions to such states can differ substantially from the 
Lorentzian. Questions concerning the shape of natural 
broadening of the spectral lines and problems associated 
with the overlapping of energy levels were investigated in 
Refs. 1-5. 

In the present work we have carried out an investigation 
of doubly excited states of He-like uranium and the shape of 
natural broadening of the corresponding spectral lines. We 
have used the method for describing unstable states devel- 
oped in Refs. 4 and 5. It will be shown that in the case of 
overlap of energy levels with identical quantum numbers the 
interaction of the ion with its own radiation field splits them 
into several quite well isolated sublevels. In light of the fact 
that the theory of overlapping energy levels of atomic sys- 
tems has been developed only recently and much here is still 
unclear, we have attempted here to clarify some aspects of 
this problem which are important for understanding the re- 
sults obtained in this work. 

2. UNSTABLE STATES OF ATOMIC SYSTEMS AND METHODS 
FOR THEIR DESCRIPTION 

Let us consider the question of the existence of unstable 
electron bound states in the field of the nucleus and how 
their properties are manifested through observable quanti- 
ties. In contrast to the case of stable states, a definite energy 
(in general this energy can even be complex) cannot be as- 
signed to the unstable states, and the problem of their deter- 
mination no longer reduces to the determination of the 
eigenvalues of the energy. In general, an unstable state must 
be characterized by some energy distribution6 

where Ip,E ) is an eigenvector of the energy operator. The 
Green's function of such a state is given by 

Thus, an unstable state can be characterized by an energy 
distribution or the corresponding Green's function. So there 
arises the problem of determining such energy distributions. 
The Schrodinger, Dirac, and Schwinger equations, obvious- 
ly, are not suitable for this purpose. Because of the difficul- 
ties associated with a consistent description of unstable 
states, the question can be raised whether there is any sense 
in a general consideration of such states, since in principle 
the description of any physical process can be reduced to the 
calculation of the S-matrix of the initial and final states, 
which contain only stable particles. But, in the first place, 
the lifetime of such states can be even greater than those of 
ordinary quasistationary states, wherefore their properties 
are no less important than those ofany of the excited states of 
an atomic system. Second, the calculation of the elements of 
the S-matrix which describe the resonant scattering itself 
requires a knowledge of the properties of the unstable state 
to which the given resonance corresponds. 

Let us consider, for example, the scattering of a photon 
by an atomic system. For simplicity we take a hydrogen-like 
ion. We denote by Ei the energies of the bound states of the 
ion, determined without taking account of their interaction 
with the self radiation field of the ion. For photon energies o 
near Ei - E, the scattering amplitude has a resonance (here 
El in the energy of the ground state), and if we do not take 
into account the interaction with the radiation field, then 
this amplitude becomes infinite. Obviously, in the resonance 
region it is necessary in the calculation of such matrix ele- 
ments to depart from the framework of perturbation theory. 
Even though nonperturbative methods have been developed 
in quantum electrodynamics, calculating these amplitudes 
in the resonance region without using the idea of the unsta- 
ble intermediate state to which the given resonance corre- 
sponds runs into enormous difficulties since in this case it 
becomes necessary to consider the interaction of the elec- 
trons with the radiation field in addition to their interaction 
with the nucleus. 

The usual way of overcoming this difficulty is the fol- 
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lowing. In the calculation of the scattering amplitude, for the 
basis set one usually uses the wave functions of the electron 
in the field of the nucleus (the Furry representation), which 
already contains this interaction within itself. To calculate 
the photon scattering amplitude in such a basis, a perturba- 
tion theory is constructed which describes the interaction of 
the atomic system with the radiation field. 

To second order in the perturbation theory, in this case 
we obtain a formula accurate to a2 which describes the scat- 
tering of a photon by a bound electron 

Here H,,, is the Hamiltonian of the electrodynamic interac- 
tion in the system, the vectors In) form an orthonormal set of 
eigenvectors of the Hamiltonian H' = H, + H kt, where 
H ,(,, describes the Coulomb interaction of the electrons with 
the nucleus, and n is the entire set of discrete and continuous 
parameters which characterize the state In). 

In the description of resonant scattering from all the 
intermediate states it is sufficient to take into account only 
the bound state to which the given resonance corresponds 
(let this be the ith state). True, in this case the amplitude 
becomes infinite atw = E, - E l ,  but this difficulty is easily 
overcome by taking account of the fact that the system in the 
ith state interacts continuously with the vacuum. 

There are various ways to take this interaction into ac- 
count. In the method proposed in Ref. 7, Eq. ( 3 )  is modified 
by introducing the exact Green's function of the electron, as 
a result of which the matrix element becomes finite at 
o = Ei - E,. Another method, leading to the same results, 
consists in summing an infinite series of graphs which de- 
scribe the interaction of the bound electron with the vacu- 

When the distance between the energy levels of two 
states with identical total angular momentum J ,  projection 
J,, and parity is not large in comparison with the widths of 
the levels, it is necessary in the resonance approximation to 
take both intermediate states into account. In the descrip- 
tion of the interaction of such states with the photon field it is 
also necessary to allow for the presence of a neighboring 
intermediate state and to sum over not only the terms of the 
perturbation theory series describing the interaction of the 
atomic system with the vacuum, but also those terms which 
describe transitions between these states due to the interac- 
tion of the ion with its own radiation field.'z2 

At first glance it would appear that such an approach 
allows one to determine the amplitude of the scattering of 
the photon by the bound electron exactly. However, this is 
not the case. The reason is that the eigenvectors of the Ham- 
iltonian H ' used as the basis set do not form a complete set of 
vectors in the Hilbert space of states of the given problem, 
since H ' differs from the true Hamiltonian H by the absence 
of those terms which describe the interaction with the radi- 
ation field. The physical essence of the given approximation 
is that it assumes that the interaction of the bound electron 
with the self radiation field does not alter the wave functions 
of the given electron in the Coulomb field of the nucleus. 

Since the eigenvectors of the Hamiltonian H' do not 
form a complete set of vectors in the Hilbert state space A?, 

we must supplement this set with vectors from A? orthogo- 
nal to the eigenvectors of the Hamiltonian H '. In the case in 
which the energy levels of states with identical principal 
quantum numbers overlap, as will be shown below, it is no 
longer possible to neglect such vectors. In this case, to calcu- 
late the resonance scattering it is necessary to use as the in- 
termediate states the unstable states determined without re- 
sorting to the quasistationary approximation. 

In Refs. 4 and 5 an approach to the theory of unstable 
states of atomic systems was proposed which allows one to 
describe these states without resorting to the quasistationary 
approximation or to perturbation theory. This approach 
makes use of the formalism of the relativistic T-matrix devel- 
oped in Refs. 5,9, and 10. The essence of the method consists 
in the following. The "undressed" bound states are defined 
as the bound states of the electrons in the field of the nucleus 
in the case in which all the interactions in the system reduce 
to the Coulomb interaction of the electrons with the nucleus. 
The real unstable states are obtained from these states by 
taking account of the interaction of the atomic system with 
the vacuum, i.e., the interaction of the electrons with the 
radiation self-field and vice versa. In Refs. 4 and 5 equations 
were obtained which describe the interaction of the atomic 
system with the vacuum and which allow one to determine 
the Green's function of the unstable states. These equations 
are difference equations in the operators M(z), which de- 
scribes spontaneous emission, autoionization decay, and 
various collisional processes, and C(z), which characterizes 
the energy distribution and is associated with the Green's 
function, and have the following form:5 

Here we have introduced the following notation: 

A?, is the Hilbert space whose elements describe the states 
which contain along with the atomic system the electrons, 
positrons, and photons. The operator G F ( z )  is a "free" pro- 
pagator in the Furry representation. The space RR, in 
which theoperators M(z), G(z), and C(z) are defined, is the 
space of asymptotic states? 

n,=a,q78. 
In this space the bound complexes correspond to vectors 
orthogonal to the vectors from the space of free particles X. 
The boundary conditions for Eqs. (4)  and (5)  have the form 
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Note that the problem of describing the interaction of 
the atomic system with the vacuum does not differ in any 
essential way from the quantum-electrodynamic problem of 
describing the process of "dressing" the electron due to the 
interaction of the "undressed" electron with the vacuum. In 
connection with this, note that Eqs. (4)  and (5)  are a partic- 
ular case of the equations obtained in Ref. 10, which describe 
the interaction of elementary particles with the vacuum. An 
important feature of the equations of this method is that they 
allow one to determine the operators M ( z )  and C ( z )  with- 
out resorting to perturbation theory. 

As for the fact that this system of equations is in general 
infinite, an approximate solution can be found by a method 
analogous to the Tamm-Dankov method, by truncating the 
number of particles. For example, if we limit ourselves to 
accuracy of the order of a2 and ignore the possibility of ioni- 
zation and the creation of electron-positron pairs, then for 

M::' ( z ,  k ,  e h ) = < j ,  k, ehI M ( z )  I i>, 

it is possible to obtain a closed system of equations5 

Here 1 i )  describes a state of the atomic system which is taken 
to be the scattering center, and the vector Ij,k,~* ) describes a 
state of the photon with momentum k and a polarization E* . 

Physically, Eqs. ( 7 )  and ( 8 )  represent a generalization 
of the equations of the Green's-function method, and are, 
like these equations, highly nonlinear. 

But, while as a result of their nonlinearity the equations 
of the Green's function method are not closed, in the case of 
Eqs. ( 7 )  and ( 8 )  nonlinearity does not imply nonclosure. 
This is because these equations are difference equations. In 
this connection, note that from the equations for 

( j , k , ~ *  lM(z)  li), ( i ( M ( z )  l i , k , ~ * ) ,  and ( i l C ( z )  li) it is possi- 
ble to obtain a system of ordinary differential equations 

-- dCi (') - F ,  (M::' ( z ,  k, &&),  M:;' ( z ,  k, eh) , Ck ( z )  ) . ( I I ) dz 

This system of equations has a unique solution if bound- 
ary conditions are prescribed for 
M  $+ ' ( z , ~ , E *  ), M  k p  ) ( z , ~ , E *  ), arid C ( z ) .  Representation 
of these equations in differential form permits a better un- 
derstanding of their nature and shows that the obtained sys- 
tem is closed and that to solve them one need not resort to 
perturbation theory. In addition, in their numerical solution 
it is more convenient to use the equations in difference form 
since in the calculations it is necessary one way or another to 
go over to approximate finite-difference formulas. 

3. NATURAL BROADENING OF THE SPECTRAL LINES 

The matrix elements of the operators M ( z )  and C ( z )  
carry within themselves all the information of the unstable 
bound states and elementary processes in which the atomic 
system participates when it is in these states. The functions 
M i +  ' ( z , ~ , E *  ), M  i p  ' ( z , k , ~ ,  ), and C ( z )  determine the for- 
mula of natural broadening of the spectral lines and their 
relative intensities and describe the processes of emission 
and absorption of photons by atomic systems.495 Using these 
functions, one can construct the resonant scattering ampli- 
tudes without resorting to the quasistationary approxima- 
tion. Thus, for resonant scattering of a photon by the atomic 
system in the case of overlap of the energy levels of the inter- 
mediate states the amplitude can be written accurate to a2 as 

-anis (Ek2-Ek,) [M,':' ( k ,  en, I )  Gi ( z )  M I ; )  ( k ,  eh, 1) 

Here we assume that the initial and final states of the system 
are stable, or that their instability can be neglected. 

Now let us consider the question of the shape of the 
natural broadening of the spectral lines corresponding to 
transitions from the states with overlapping energy levels. In 
principle, in the description of the process of radiation of the 
atomic system it is necessary to consider the element of the 
S-matrix which describes the process of excitation and sub- 
sequent radiation of the ion. We assume that the excitation 
of the ion is due to collision with an electron whose state with 
momentum p and spins we will describe by the vector Ip,s). 
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The amplitude of such a process coincides with the resonant 
part of the scattering amplitude which describes the scatter- 
ing of the electron by the atomic system, and can be written 
in the following form: 

< I z ,  p2, s2, k, ehlS,ILi, pi, s l )=<l , ,  p,, s,, k ,  &hlSilli, pi, s i )  
+ ( 1 2 ,  p2, S t ,  k, EhlSj(Li, Pir s t ) ,  (13) 

( 1 2 ,  p2, S Z ,  k, Sl ( L i ,  pi, s ~ ) = G  (Er,+Ep,f I k I -EI , -EP, )  

X 
( I , ,  k ,  ehl M ( z )  IiX, p2, s21 M ( z ' )  I I,, P I ,  s i )  

z-Ei-Ci ( z )  
z=EI,+E,,-E,,, z1=El,+EP,.  (14) 

For the probability (density) that as a result of collision of 
an electron with momentum p and spin s a photon will be 
emitted with momentum k and polarization E, we can write 

1 < L 2 ,  p2, s?, kr EIISRIL~, pit si)12 
= 1 < 1 2 ,  pz, S 2 ,  k, ~*1SilLi, PI, si)I2 

+ I < L 2 ,  P2, S z ,  k, &h.lSj(Lir Pir 
+<L,, p,, s,, k ,  ehlSi.lLl, P I ,  s i ) ( lz ,  S2r k, EkISjILi, Pi, ~ 1 )  

+ ( I 2 ,  p,, s,, k ,  E,IS,'IL,, pi, S I ) ( ~ Z ,  p2, sz, k, &hlSilLi, pi, ~ 1 ) .  

(15) 

It can be seen that this expression contains interference 
terms. Questions associated with such interference effects 
were considered in Ref. 1 1. If interference is neglected, then 
the probability defined by Eq. ( 15) becomes equal to a sum 
of probabilities corresponding to transitions from the ith and 
the jth excited states. In this case the notion commonly used 
in spectroscopy of contours of spectral lines corresponding 
to transitions from definite excited states was justified. Thus, 
for the probability of emission of a photon with energy w 
during a transition of the atomic system from the ith state to 
the ground state we obtain the following expression: 

where d is a normalizing factor. Here we have made use of 
the fact that the matrix element 

in Eq. (14), which describes the process of excitation of the 
atomic system, can be assumed to be independent of z in the 
resonance region since the dimensions of this region are gen- 
erally much smaller than the interval of irregularities of the 
excitation process. As a result, the profile of the correspond- 
ing spectral line does not depend on the excitation process. 
For ordinary processes the contribution of the interference 
term is negligibly small. In the case of close levels, which is 
the case that we are considering, the contribution of the in- 
terference terms, generally speaking, can be substantial. 
Then the contour of the natural broadening of the spectral 
lines will depend not only on M h,? ' (z ,k,~,  ) and C,  (z), 
which characterize the given unstable states, but also on the 
value of the matrix element 

which describes the process of excitation of the atomic sys- 

tem. In addition, in order to calculate the experimentally 
observed profile of the emission contour, we must carry out a 
statistical average over all factors leading to excitation of the 
ion. An exception is the case of coherent excitation of the 
ion, considered in Refs. 2 and 11. On the other hand, statisti- 
cal averaging will obviously give rise to a decrease in the 
contribution of the interference terms. Also, the nearness of 
the levels in general no longer implies that they overlap sig- 
nificantly. The reason for this is that when one speaks of 
overlap of closely spaced energy levels, one usually assumes 
that the spectral line shapes are Lorentzian. In general, the 
line shapes can depart significantly from a Lorentzian shape 
and it may turn out that the nearness of the energy levels 
causes such a deformation of the contours that overlap and 
the corresponding interference effects become insignificant. 

Let us now consider the case in which the overlap of 
energy levels is small and perturbation theory can be applied 
to the solution of Eqs. (4) and (5) .  To first order for 
(j,k,~* IM(z) li) we obtain 

Allowing z, in Eqs. (4)  and (5)  to approach ico and noting 
that according to Eq. (6)  (iIM(ico ) li) and (il C(ico ) li) are 
equal to zero, to second order for G(M(z) Ji)  and Ci ( z )  we 
obtain 

Here we ignore the fact that Eqs. (18) and (19) contain 
ultraviolet divergences. Thus, Eqs. ( 18) and ( 19) are to be 
understood in a formal sense, and the renormalization coun- 
terterms must be included in these expressions in the calcu- 
lations. To second order in the perturbation theory the other 
matrix elements of the operator M(z)  are equal to zero. To 
third order for (i,k,~, IM(z) li) we can write 

Finally, to fourth order for C, (z) we obtain 

If we restrict ourselves to these terms of the perturba- 
tion theory series, then for (i,k,eA IM(z) (i) and Ci ( z )  we 
obtain the following expressions: 

Substituting expressions (22) and (23) into Eq. (16), we 
obtain for a three-level atomic system 
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If we note that (jI Z ( z )  p) is a nondiagonal matrix element of 
the eigenenergy operator and that Ci ( z )  = AEi - ( 1/2) ri, 
then it is easy to see that Eq. ( 24 )  coincides with the corre- 
sponding expression for the probability of emission obtained 
in Ref. 1. But, whereas in Ref. 1 expression ( 24 )  was ob- 
tained by summing an infinite series of perturbation theory, 
in the iterative solution of Eqs. (4)  and ( 5 )  this result is 
obtained by summing only the first few terms of the iteration 
series. Taking the subsequent terms of the series into account 
leads to an expression for the probability of emission, deter- 
mined with the help of Eqs. ( 4 )  and ( 5 ) ,  that differs from 
expression (24) .  And this difference can be significant, since 
for a strong enough overlap the perturbation-theory series 
for the solutions of Eqs. ( 4 )  and ( 5 )  begins to diverge. This 
result shows what a significant contribution those interme- 
diate states whose vectors are not elements of the Hilbert 
space A? can make. 

4. SPECTRAL LINE SHAPES OFTRANSITIONS IN DOUBLY 
EXCITED He-LIKE URANIUM 

In order to examine the influence of the interaction of 
the ion with its own radiation field on the shape of the natu- 
ral broadening of the spectral lines, we have chosen states 
which are formed from the 2s,,, 8p,/, and 2p,, 8s,, states 
as a result of mixing due to the Coulomb interaction between 
the electrons. Such a choice is motivated by the fact that for 
the given configuration of He-like uranium the interaction 
with the radiation field is comparable with the Coulomb in- 
teraction between the electrons, and the distance between 
the energy levels of such states is not great in comparison 
with the width of theselevels. We have used Eqs. ( 7 )  and ( 8 )  

to calculate the atomic characteristics of these states and the 
shapes of the corresponding spectral lines, i.e., we have lim- 
ited ourselves to accuracy of order a 2  and not taken into 
account intermediate states containing free electrons or po- 
sitrons in addition to the atomic system or nucleus. 

Note that the numerical solution of Eq. ( 8 )  in the vicin- 
ity of certain points on the real axis becomes unstable. There- 
fore, along with Eqs. ( 7 )  and ( 8 )  we also use the following 
equation for Im Ci ( z )  : 

To obtain this equation, it is necessary to set z ,  = z  and 
2, = z* in Eq. ( 8 )  and to note that 

M (z) =M+ (2') , C (z) =C+ (2'). 

Equation ( 8 )  can be used to calculate Re Ci (z), and Eq. 
( 25 )  can be used to calculate Im C, ( 2 ) .  And whereas we 
have already calculated the values of ( I , ~ , E ,  ( M ( z )  li) and 
Re Ci ( z )  for certain z, for arbitrary z  Eq. ( 25 )  is efficiently 
solved by iteration. Taking proper account of Eq. (251, 
which is in fact a particular case of Eq. ( 8 ) ,  allows one to 
overcome the difficulties associated with the use of Eq. (8 )  
in its difference equation form. 

FIG. 1. General form of the spectral picture of the 
transitions to the Is,,, Ss,,, state from the A state (sol- 
id line) and the B state (dashed line). 
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With the help of Eqs. (7) ,  (8) ,  and (25) we have calcu- 
lated M :+ ' (z ,k ,~,  ),M :- ' (z,k,~, ), and Ci (z) for the 
states ( 2 s ~ / ~  8 ~ 1 / 2  + 2 ~ 1 , 2  8 s ~ / 2  ) A  i J =  O1 and 
(2s,,, 8p,,, + 2p,,, 8s,,, ), [ J  = 0 1  and have constructed 
the spectral line shapes of the transitions from these states to 
the state Is,,, 8s,,, [J  = 1 1. State A differs from state B in 
that the "undressed" energy of the first state is less than the 
"undressed" energy of the second. Curve 1 in Fig. 1 depicts 
the line shape corresponding to the transition 
B+ Is,,, a,,, [ J  = 1 I .  As follows from the form of the pro- 
files, the interaction of the ion with its own radiation field 
deforms them in such a way that there is practically no over- 
lap. Thus, for example, in the region of the central peak of 
profile B the following estimate is valid: 

The profile of line A consists of two anomalously narrow 
peaks. The profile of line B consists of a relatively wide cen- 
tral peak and two narrow peaks which lie near the peaks of 
profile B. The profiles of the spectral lines corresponding to 
the transitions from states A and B to any other state have the 
same form. In essence, the effect is that of splitting of the 
energy levels. And this splitting is caused by the interaction 
of the ion with its own radiation field, which in this case has a 
strong effect; the absence of overlap of the spectral lines also 
plays a part. 

Physically, this phenomenon arises because the proba- 
bility of emission of a photon with energy w during a transi- 
tion from the A state tends to zero for those values of w at 
which the probability of emission during a transition from 
the B state has a resonance maximum. At the same time, the 
probability of emission during a transition from the B state 
tends to zero for those w at which there is a resonance maxi- 
mum of the probability of emission during a transition from 
the A state. All of this has a quite simple explanation. As we 
noted above, emission here is part of a more general process, 
including within itself also the excitation of the ion, for ex- 

ample, as a result of collision with the electron. There are 
two resonance channels for such a process: through the in- 
termediate state A and through the intermediate state B. If 
the probability that the process will proceed through one 
channel at some given energy is large, then the probability 
that the process will go through the other channel is quite 
small. This is because the unitary condition must be fulfilled. 
Thus, interference effects are practically absent in this case. 

Line shapes A and B can be interpreted as a set of spec- 
tral lines corresponding to energy levels formed as a result of 
the splitting of "undressed" levels. Figures 2 and 3 show the 
spectral lines respectively in the right and left wings of the A 
and B profiles at a scale which shows the structure of these 
lines. Here it should be noted that anomalous narrowness 
(e.g., the width of the left line in Fig. 2 is of the order of 0.1 
eV) does not mean that the corresponding states are long- 
lived. Such an interpretation is valid only in the case of quasi- 
stationary states and is inapplicable in the present case. 

Note also that in the calculations we have neglected a 
number of important factors, such as the corrections asso- 
ciated with the finite size of the nucleus and the polarization 
of the vacuum. They can be taken into account in the usual 
way. In fact this leads only to a shift of the energy levels and 
of the entire spectral shape depicted in Fig. 1. Besides, as was 
mentioned above, system of equations (7)  and (8)  takes ac- 
count only of those intermediate states containing ions and 
photons. To obtain a more accurate result, it is necessary to 
take into account intermediate states which contain free 
electrons and electron-positron pairs in addition to the ion 
(nucleus) and photons. For some states corrections which 
take the contribution of such states into account can be sub- 
stantial. 

5. CONCLUSION 

For the case of doubly excited states of He-like uranium 
we have shown that when the distance between the energy 
levels of states with identical principal quantum numbers is 
not large in comparison with the widths of these levels, the 
interaction with the radiation self-field leads to such a defor- 

FIG. 2. Left wing of the spectral picture. 

78 Sov. Phys. JETP 73 (I), July 1991 R. Kh. GaYnutdinov and K. K. Kalashnikov 



mation of the emission profiles that we obtain a complete set 
of spectral lines. In essence, the interaction with the radi- 
ation self-field gives rise to a splitting of these energy levels. 
It is important that overlap is practically absent, and inter- 
ference effects are therefore insignificant. Thus, intersection 
of the energy levels leads to splitting into several sublevels 
which are quite well isolated from one another. One may 
hope that these effects will obtain experimental confirma- 
tion. But in order that the calculations of the emission spec- 
tra may be compared with experimental data, it is necessary 
to take all of the above-mentioned corrections into account. 
Some of the corrections can be made with the help of ordi- 
nary methods of atomic theory. The remaining corrections 
can be introduced with the help of a corresponding modifica- 
tion of system of equations (7) ,  (8 ) ,  and (25 ) . 

The authors express their deep gratitude to L. N. Lab- 
sovskii and V. Ya. Fainberg for useful discussions and valu- 
able remarks. 

FIG. 3. Right wing of the spectral picture. 
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