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An analytic expression is obtained for the dynamic polarizability averaged over the angular 
quantum numbers of Rydberg atoms. Shifts of highly excited levels are considered as well as lines 
due to transitions between them in external Planck and nonthermal (power-law ) radiation fields. 

1. INTRODUCTION 

The interaction between highly excited (Rydberg) 
atoms with external fields is of considerable interest from the 
general physics point of view (in view of the anomalously 
high sensitivity of Rydberg atoms to external perturbations) 
and also in the case of applications, particularly in astro- 
physics. Under conditions encountered in the interstellar 
medium there are rf recombination lines between states with 
the principal quantum numbers in the range n > 700 (see, for 
example, Refs. 1 and 2). In applications of this kind there is 
special interest in the atomic characteristics averaged over 
the angular quantum numbers. 

In the case of slowly varying electric fields (when the 
characteristic field frequency is w - 0) the dynamic polariz- 
ability reduces to the static one, the expression for which is 
given, for example, in Ref. 3. In the other limiting case 
(a -* CQ ) the problem reduces to a discussion of the motion 
of a free electron (see, for example, Ref. 4).  A more detailed 
investigation of the dynamic polarizability in the limit 
w -+ CQ using, in particular, an asymptotic expansion in reci- 
procal powers of the frequency, can be found in Refs. 5-9. 
Analytic expressions for the dynamic polarizability of the 
hydrogen atom in the states with n = 1 and 2 in terms of 
hypergeometric functions can be found in Refs. 4, 10, and 
11. The expression describing the dynamic polarizability of 
Rydberg states as a series of Bessel functions, asymptotic 
with respect to n, is given in Ref. 12. Calculations of the 
dynamic polarizability of Rydberg states and of their shift in 
a Planck radiation field (corresponding to a temperature 
300 K )  are reported in Ref. 13. 

We use the familiar Kramers expression for the oscilla- 
tor strength and find the dynamic polarizability of a Ryd- 
berg atom averaged over the angular quantum numbers. We 
use elementary functions and consider the shifts of Rydberg 
levels and of lines due to transitions between them in an 
external radiation field. A quite unexpected result is that in 
the limit n - UJ for a smooth function describing the radi- 
ation density the expression for the polarizability is a differ- 
ential operator acting on a function describing the radiation 
density. 

If the spectrum of the external radiation obeys a power 
law, then the shifts of Rydberg levels (and of the lines due to 
transitions between them) are power-law functions of the 
principal quantum number n. In the case of a Planck spec- 
trum the shift is a function of a parameter P =  S/kT 
(6  = 2 2  Ry/n3 is the separation between the consecutive 
levels of n and n + 1; Z is the spectroscopic symbol; for a 

neutral atom Z = 1; T is the radiation temperature) and it 
can be approximated by a rational expression. 

2. DYNAMIC POLARlZABlLlTY OF RYDBERG STATES 

The polarizability x of an atom with the principal quan- 
tum number n in an external electric field of frequency w can 
be written in the form (see, for example, Ref. 14) : 

4%' x = -  fn, nt (1 z4 ,$$" A&, - ( k a / Z 2  RY)' ' 

where a, is the Bohr radius; A&,,. = E,. - E, is the differ- 
ence between the energies of the levels n and n' in units of 
Z 2 R y  (the energy of a level is 
En = z n Z 2  Ry, E, = l/n2); fn,,, is the oscillator strength of 
the n+n' transition. To within less than 25%, the oscillator 
strengths for Rydberg states are described by the Kramers 
expression 

where s=n' - n. Since the quantities f,,,, decrease propor- 
tionally to l/(sI3 as a function of the difference between the 
quantum numbers, we can assume that the main contribu- 
tion to the sum in Eq. (1)  is made by transitions with low 
values of s. Therefore, all the quantities occurring in Eq. ( 1 ) 
can be expanded in powers of s/n: 

Since fa,, + , ,-- - fn,, -, , is accurate to within s/n, it follows 
that the first nonvanishing term of the expansion for Eq. ( 1 ) 
can be found by retaining at least two terms in the expan- 
sions of Eq. (3 1. Substituting Eq. ( 3 ) into Eq. ( 1 ) , we have 

where q = &/a. Strictly speaking, the upper limit of sum- 
mation N in Eq. (4)  should satisfy the condition N < n, but 
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since n) 1 holds and all the sums converge rapidly, we can 
equally accurately assume that N = co . 

We consider two cases in the subsequent transforma- 
tions. The first corresponds to a situation in which the field 
frequency w is far from any resonance. The second, when the 
spectral density of the external field U(w) is a smooth func- 
tion, which plays an important role in the vicinity of reson- 
ances. 

In the first case we can expand the second sum in Eq. 
(4) in powers of s/n: 

ca m 

Introducing now the functions 

- - 1-nq ctg (nq) - ( ~ q ) ~ / 3  
2q' 1 

and bearing in mind that - 

we obtain 

In the second case, bearing in mind subsequent integra- 
tion with respect to the external field frequency, we employ a 
relationship which is valid in the case of smooth functions 
f ( x )  and f -0:" 

m ca ca 

The interaction of an atom with a radiation field can then be 
described by 

i.e., in fact, the dynamic polarizability is a differential opera- 
tor acting on a function describing the spectral density of the 
radiation field. The general form of the universal function 
@ ( q )  is shown in Fig. 1. 

We now consider the behavior of the expressions given 
by Eqs. (4) and (7) in the limiting cases of high and low 
frequencies. If w -, co , we obviously have 

The factor 21~/3~"z 1.2, by which the sum of the oscillator 
strengths in the Kramers approximation differs from unity, 
is due to the error introduced by Eq. (2) at low values ofs. In 
the limit w +O, the function x (w) reduces to the usual polar- 
izability. Averaging of the known expressions for the polar- 
izability of a state with the parabolic quantum numbers n,, 
n,, m over all the numbers with the exception of n gives 

It  follows from the expressions (4) and (7) that 

where in the case of n) 1 these expressions differ by a factor 
amounting to 1.27. If we write down the expression for the 
polarizability in the form 

where xK' is the result obtained in the Kramers approxima- 
tion and the correction factor Q is an analog of the Gaunt 
factor assumed to be Q = 33'2/21r (so as to ensure that the 
sum of the oscillator strengths is unity), we find that Eq. (9) 
differs from the exact limit when n - w and w + 0 by a factor 
1.05. 

3. PLANCK RADIATION FIELD 

The shift of a level in an external radiation field can be 
written down with the aid of Eq. (8) : 

m 

The definition of Eq. ( 10) is such that a positive shift Sw > 0 
denotes an upward shift of the level. Hence, if the Planck 
radiation density is 

FIG. 1. Function Q ( q )  for the dynamic polarizability: the abscissa repre- 
sents q = hw/6. 
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we find that 

where a = 1/137 is the fine-structure constant and the func- 
tion 8(P) is given by 

m 

and has the following asymptotic forms: 

The limit P-0 with the additional factor Q is equal to the 
exact result, given, for example, in Ref. 13. In general, the 
integral (12) can be found only by numerical methods. In 
view of the presence of the poles in the integrand, numerical 
integration is a nontrivial matter. This difficulty is bypassed 
by an approximation of the regular part of the function in the 
interval (xk ,x, + , ) using the expression 

fk+,-fk sin (n (x-xk) ) f (x) = f k  +-- 
h > 

71 

where h r x k  + , - xk , fk = f(xh ), and then 
$f(x) cot (n-x)dx is calculated using the sum 

The method of least squares can be used to approximate Eq. 
( 12) with the expression 

FIG. 2. Function 8(@) [curve 1 represents the approximation by Eq. 
( 14) and the points represent Eq. ( 12) ] and the function P4"8 '(@)2"" 
(2) for the shift of Rydberg levels in an external Planck field; the abscissa 
represents @ = 6/kT. 

Equation ( 14) has the same asymptotic forms as Eq. ( 12). 
The function 6(P)  and the errors of the approximation of 
Eq. ( 14) for intermediate values of p are shown in Fig. 2. It 
follows from Eqs. ( 1 1 ) and ( 14) (see also Fig. 2) that the 
maximum shift of the level on the scale of n is reached in the 
limit n - and it amounts to (n/6) A,. The minimum shift 
is negative and it corresponds to P ~ 6 . 2  
[n,, ~ 0 . 7 ( R y / k T )  ' I 3 ]  and amounts to - 0.12AT. The 
shift vanishes for 0 ~ 4  [ n  ~ 0 . 8  (Ry/kT) At room tem- 
perature (300 OK) and for Z = 1, we have n,, ~ 5 - 6 .  

It is of interest to compare the shift of Eq. ( 11 ) with the 
additional radiation broadening of the level n due to absorp- 
tion and stimulated emission. Using once again the Kramers 
approximation for these processes, we obtain 

where 

The function w(0) has the following asymptotes: 

In general, the sum in the above expression cannot be calcu- 
lated analytically. Its approximation, relying on the asymp- 
totic forms ( 16) and bearing in mind that in the limit P-0 
the derivative w(P) has a logarithmic singularity, can bew- 
ritten in the form 

The quality of the approximation for intermediate values of 
p i s  illustrated in Fig. 3. The ratio of the shift of a level to its 
width is 

Therefore, in the case of extremely high temperatures kTS6  
the ratio of the shift to the radiation width of a level is pro- 
portional to T and n2, and then the level shifts upward. At 
low temperatures we must bear in mind that an exponential 
rise in Eq. ( 18) is related to an exponentially small broaden- 
ing by an external field. The total width of a level is then 
governed by the mechanisms such as spontaneous decay and 
the ratio of the shift to the width decreases on increase in P. 
If the dominant mechanism is spontaneous decay, then at 
low temperatures it is proportional to (kT)4. 

The shift of the lines between the Rydberg states n + s 
and n is obviously 

70 Sov. Phys. JETP 73 (I), July 1991 I. L. BeYgman 70 



Using the approximation of Eq. ( 14), we obtain 

where 

In Eq. ( 19) the plus sign corresponds to an increase in 
the line frequency, i.e., it represents a blue shift. The func- 
tion p4'38 ' (P)/2'l3 is shown in Fig. 2. The maximum blue 
shift corresponds to 0 = 4 [n z0.8(Ry/kT) '13] and it 
amounts to 1.8AT (kT/Ry) 'I3s; the maximum red shift cor- 
responds to P = 8 and it amounts to 0.8AT ( k T / R ~ ) l ' ~ s .  
The shift vanishes for P = 6. 

Let us now compare our expressions with the results 
reported in Ref. 13. For the radiation temperature of 300 K 
assumed in Ref. 13 the shift of the Rydberg levels in the limit 
kT+ co amounts to 2.417 kHz. The majority of the calcula- 
tions reported in Ref. 13 applies to states with small angular 
momenta. A calculation of the shift of the levels with all 
possible values of the momenta I for a given value of n is 
given only for n = 30. For this value of n (P = 0.039) the 
shift of a level with the maximum possible momentum I = 29 
exceeds the limit by 0.13% (which the authors of Ref. 13 
regard as a measure of the error). The average shift is 3% 
less than the limit. Equations (1 1) and (14) give shifts 
which are 0.05% smaller than the limit. 

4. EXTERNAL FIELD WITH A POWER-LAW SPECTRUM 

Let us assume that the radiation field has an effective 
temperature T, at a frequency w ,  and that its power expo- 
nent is Y. The radiation density can then be written in the 
form 

Using Eqs. (15) and ( lo),  we obtain (in this section we 
assume that Z = 1 ) 

kT,  tior 2+v 
6w=-d -(- ) n3('-')0 (v) , 

72 RY 

FIG. 3. Function w(B) [the continuous curve is the approximation by 
Eq. ( 17) and the points represent Eq. ( 15) 1 for the broadening of 
Rydberg levels in an external Planck field; the abscissa represents 
B =  6/kT. 

where the function e (v)  is given by 
ea 

and S(Y) - < is the Riemann < function. The integral in 
O(Y) can be calculated by expanding @ ( q )  into elementary 
fractions and then separating in each term of the series the 
following integral as a factor: 

m 

dx 

This integral is extended over the whole real axis and calcu- 
lated by the standard method of the theory of functions of a 
complex variable. The integral in Eq. (17) converges if 
0 < Y < 1. In the opposite case it is necessary to cut off the 
spectrum at the lower (or upper) end. 

The width of a level, deduced under the same assump- 
tions as for a Planck field, can be written in the form 

If we take Y = 0.6 and the frequency is w, = 2p X 100 MHz, 
Eq. (23) gives the result obtained in Ref. 15. 

The relative shifts of levels and lines are then described 
by 

(the lines shift in the red direction). 
The author is grateful to L. A. Vainshtein and V. P. 

Shevel'ko for discussions. 
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