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The effective charges of the atomic cores are calculated for quasimolecules made up of two 
different atoms with a degree of asymmetry p = Za /Zb < 4.7, where Z, is the atomic number of 
the heavy atom, and Z, > 20 is that of the light atom. Correlation diagrams are constructed for the 
molecular orbitals of these quasimolecules. The consecutive correlation rule (the swapping rule) 
proposed by Barat and Lichten [Phys. Rev. A 6,2 1 1 ( 1972) ] for molecular orbitals is not 
universally applicable. It is violated in the case of orbitals with identical n, (or n,) which are close 
in energy. Correlation rules found here for diabatic molecular orbitals incorporate the fine 
structure of the levels of the quasimolecule. 

The present paper is a continuation of Ref. 1, where 
correlation rules were found for diabatic molecular orbitals 
(MOs) for the inner-shell electrons of diatomic many-elec- 
tron quasimolecules. 

As the atoms making up a quasimolecule move closer 
together, the diabatic development of the MOs is determined 
by the effective fields acting on the electrons in the separate 
atoms. Determining the correlated orbitals in diatomic qua- 
simolecules thus requires determining the effective fields in 
the constituent atoms. 

In the present paper we calculate the effective charges 
of the atomic cores whose field is imposed on the electron 
after the atoms separate from each other. Calculations are 
carried out for heavy and intermediate-size quasimolecules 
formed from two different atoms. With these results it is 
possible to use the rules found in Ref. 1 to construct correla- 
tion diagrams for the MOs of a large number of quasimole- 
cules. A comparison of these diagrams with diagrams con- 
structed in accordance with the rules of Barat and Lichten2 
and those of Eichler et shows that the empirical rule of a 
consecutive correlation of MOs (the "swapping rule") is not 
of universal applicability. In certain cases it is violated. To 
confirm this fact, we calculate the cross sections for charge 
exchange of protons with Mg + ions on the basis of two dif- 
ferent models, and we compare the results with experimental 
data. 

We derive correlation rules for diabatic MOs of diatom- 
ic many-electron quasimolecules. These rules incorporate 
the fine structure of the levels of the system. 

1. For the case in which the shells of the atoms making 
up the quasimolecule lie close together along the energy 
scale, the effective molecular potential in that region of in- 
ternuclear distances R in which the orbitals corresponding 
to these shells overlap can be written as a superposition of 
the fields acting on the electrons in each of the individual 
atoms. (We are using the atomic system of units) : 

2; Zb' v =---- 
eff + va (re) +vb (r*). 

ra  rb 
(1)  

Here Za and Zb (Z,*>Z,*) are the effective charges of the 
atomic cores, ra and r, are the distances from the electron to 
these cores, and ua and u, are spherically symmetric poten- 
tials which incorporate the difference between (on the one 

hand) the effective fields in the atoms and (on the other) a 
purely Coulomb field. 

Using effective potential (1)  for all internuclear dis- 
tances R, we construct two different correlation rules for 
diabatic MOs in Ref. 1. According to the first of these rules, 
the quantum numbers of the correlating orbitals are related 
by 

no=n, 2,'-Zb' } for 1 - l m l ~ n - ,  
lo=l 2.' 

Za*-zbw 
l.=l+i+Ent ( l -  m -n ) I z. 

2.'-z; 
for I-(mI>n- 

Za' 

for MOs which convert into the orbitals of the heavy atom in 
the limit R + co and 

L a  
for noninteger n'- , 

Zb* 

za* 
for integer n' - 

z b *  

for MOs which convert into the orbitals of the light atom as 
R +  co. 

According to the second of these rules, the orbitals 
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which are correlated are those whose quantum numbers are 
related by 

z,'-zbg 
for n. > n- 

Z, 

for the MOs which become the orbitals of the heavy atom as 
R +  w and 

2.' for noninteger n' - 
Zb* 

~ 2 - z ~ '  for integer nr - 
lO=2nTr+ I m 1 +nr 7 

for MOs which become the orbitals of the light atom as 
R -  a. Here no, I,, and m are the spherical quantum 
numbers of the bound atom obtained when the nuclei are 
extremely close together; n, I and n', I '  are the spherical 
quantum numbers of the separate atoms; n, = n - I - 1 and 
n: = n' - 1'1 are the radial quantum numbers; and Ent(x) 
is the greatest integer in x. 

Rules (4)  and ( 5 ) describe the behavior of one-electron 
terms in very heavy quasimolecules, in which the effective 
fields for the inner-shell electron differ only slightly from the 
field of two Coulomb centers. These rules lead to maximum 
promotion and lowering of the energy terms belonging to a 
given shell. Rules (2)  and (3)  give a good description of the 
behavior of the terms in quasimolecules which are not very 
heavy, in which the effective fields for the inner-shell elec- 
trons do not closely approximate the field of two Coulomb 
centers. These rules differ from rules (4)  and (5)  by an in- 
terchange of the correlation (Fig. 1 ). 

2. The non-Coulomb potentials v, and u, in ( 1 ) can be 
approximated by various analytic expressions. For example, 
Eichler and Wille4 used the Thomas-Fermi model to deter- 
mine the charge and field distributions in the atoms making 
up a quasimolecule. In the present paper we write the non- 
Coulomb potentials in (1)  in the form v, = a a / 6  and 
v, = a b / 4 .  Our motivation for making this choice is that 
the Schrodinger equation for the potential - Z  * / r  + a / r  
can be solved exactly by analytic methods, and this potential 
gives a good description of the energy spectrum of the inner- 
shell electrons of many-electron atoms. 

The energy levels of an electron moving in a spherically 
symmetric field with a potential energy - Z  * / r  + a / r  are 
given by5 

wheres, = [ ( I  + + ) 2  + 2a] To determine the effective 
charge Z * and the parameter a, we fit the energy levels in 
(6)  to the one-electron levels of the atoms making up a qua- 
simolecule as calculated by the Hartree-Fock self-consis- 
tent-field method.6s7 

It is a simple matter to fit energy levels (6)  to the K- 
shell levels of atoms. In this case we can set a = O; we then 
have Z * = ( - 2E ,, ) 'I2. Once we have specified the value of 
Z * for L shells of atoms, we determine the parameter a by 
requiring that (6)  (with I = 0 and n, = 1 ) coincide with the 
energy of the 2s level of the atom. Using these values of Z * 
and a, we then use (6)  (now with 1 = 1 and n, = 0)  to calcu- 
late the energy of the next level. From the set of various 
values of Z * we choose the value which is most successful in 
reproducing the energy of the atomic 2p level. For a shell 
with more than two levels (the M, N, etc., shells), the effec- 
tive charge Z,* is found by fitting the levels in (6)  to those 
atomic levels which lie closest to the levels of the other atom 
of the quasimolecule, which determine the effective charge 
z ,*. 

Using this approach, we have calculated the effective 
charges for the inner shells of quasimolecules made up of two 
different atoms with a degree of asymmetry 
p = Z a / Z b  <4.7 ( Z ,  is the atomic number of the heavy 
atom, and Z ,  > 20 is that of the light atom). The results of 
these calculations are given in Tables I and 11. From the 
results in these tables and the degree of asymmetry p ,  we can 
determine the following quantities, which appear in the rules 
(21, (3)  and (41, (5):  

We can then go on to identify the correlated MOs in the 
quasimolecule of interest, made up of either two neutral 
atoms or positive ions. These tables can legitimately be used 
for charged quasimolecules because the removal of one, two, 
or several outer electrons causes only slight changes in the 
values of the Hartree-Fock energies for the inner-shell elec- 
trons of many-electron atoms.8 

From these tables we can draw a conclusion of practical 
importance: If the degree of asymmetry of the atoms making 
up the quasimolecule satisfies p< 1.66, the correlation of the 
MOs does not depend on the effective charges of the atomic 
cores. This correlation is governed by the correlation rules 
for slightly asymmetric quasimolecules.9 (I t  follows in par- 
ticular that in order to analyze the formation of vacancies in 
inner electron shells of the fragments during the fission of 
the nuclei of heavy elements1' it is necessary to use the MO 
correlation diagram for slightly asymmetric quasimole- 
cules," since the conditionp < 1.66 holds for all the fission 
products. l 2  ) 

For symmetric and slightly asymmetric quasimole- 
cules, the correlation diagrams constructed by rules (2) ,  (3)  
and (4) ,  (5)  are precisely the same as those constructed by 
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TABLE I. The quantity n ( Z :  - Z  ) / Z  : for quasimolecules made up of two different atoms. 

the Barat-Lichten and Eichler-Wille rules. For asymmetric 
quasimolecules, the correlations found for MOs belonging to 
different atoms at R = W ,  with identical values of n, (or 
n,),fromrules (2) ,  (3)  [or (4),  ( 5 ) ]  areoftennotthesame 
as those found from the Barat-Lichten (or Eichler-Wille) 
rules. These differences arise when the energy levels of the 
separate atoms corresponding to these MOs are nearly in 
resonance. 

According to the Barat-Lichten rules, the MOs which 
are correlated are those whose quantum numbers satisfy the 
condition npA = nTA, where npA is the number of zeros of the 
radial wave function of the electron in the combined atom, 
and nFA is the corresponding number in the separate atom. 
According to the Eichler and Wille rules, on the other hand, 
the quantum numbers of the correlated MOs must satisfy the 
condition npA = nzA, where nzA is the number of zeros of the 
angular wave function of the electron in the separate atom. 
The rules npA = nPA (or npA = nzA) are not sufficient to 
unambiguously determine the correlated MOs. For this rea- 
son, both Barat and Lichten, on the one hand, and Eichler 
and Wille, on the other, introduce an auxiliary empirical 
rule. According to the latter rule, each energy level of the 
individual atoms, starting from the lowest, is correlated with 
the lowest unoccupied level of the combined atom which 
satisfies the condition n:A = nPA (or npA = nzA). 

The correlation swapping rule for MOs requires going 
from the limit of separate atoms to the limit of the combined 
atom without disrupting the arrangement of levels with 
identical n, (or n, ). According to rules (2) ,  (3)  and (4) ,  
(5),  in contrast, a low-lying level of the separate atom can 
correlate with a high-lying level of the combined atom; the 
same is true of a high-lying level of the separate atom with a 
low-lying of the combined atom. For the orbitals of the com- 
bined atom which correlate with orbitals of the separate 
atoms with identical n, (or n,), rules (2) ,  (3)  [or (4),  (5) ]  
lead to the same results as are found by the Barat-Lichten 
(or Eichler-Wille) rules. The reason is that rules (2) ,  (3)  
and (4) ,  (5)  contain the Barat-Lichten and Eichler-Wille 

rules [as can be verified easily by subtracting the second 
equation from the first in (2) ,  (3)  and again in (4),  (5) ] .  

To illustrate the violation of the MO swapping rule we 
consider the behavior of the 3da orbital of the A1 + + ion 
(2p63d) and that of the 3saorbital of the Mg + ion (2p63s) in 
( AlH) + + + and ( MgH) + + quasimolecules. The 3d levels 
(n, = 0, E = - 0.517 a.u.; Ref. 13) and 3s levels (n, = 0, 
E = - 0.525 a.u.; Ref. 13) are nearly in resonance with the 
1s level (n, = n, = 0, E = - 0.5 a.u.) of the hydrogen 
atom. Fitting levels (6)  to the 3p level (E = - 0.801 a.u.; 
Ref. 13) and the 3d level of the A1 + + ion and also to the 3s 
and 3p levels (E = - 0.390 a.u.; Ref. 13) of the Mg + ion, 
we find Z ,* = 2.628, a = - 0.959 for the aluminum ion and 
Z ,* = 2.627, a = - 0.125 for the magnesium ion. For the 
hydrogen atom the corresponding values are Z f = 1, a = 0. 

Figure 1 shows diabatic correlation diagrams con- 
structed for MOs from rules (2) ,  (3)  for the (AlH) + + + 

quasimolecule and from rules (4) ,  (5)  for the (MgH) + + 

quasimolecule. [The correlation of the 3sa orbital of the 
A1 + + ion in the (AIH) + + + quasimolecule and the corre- 
lation of the 3da orbital of the Mg + ion in the (MgH) + + 

quasimolecule are determined from the first equations in (2)  
and (4) .  For this reason, the correlation of these orbitals 
does not depend on the effective charges, whose values are 
found by fitting levels (6)  to the levels corresponding to the 
other orbitals of the M shell.] The behavior of the terms 
according to the MO swapping rule is illustrated by the 
dashed lines in Fig. 1. We see that this rule leads to an addi- 
tional crossing of terms at intermediate internuclear dis- 
tances (at large distances, there is a term crossing as a result 
of a difference between the charges of the ions). 

The effective fields acting on the electron of interest in 
the (AIH) + + + and (MgH) + + quasimolecules are ap- 
proximately the same as the field of two Coulomb centers. 
Consequently, the behavior of the diabatic MOs of the elec- 
tron of interest at intermediate internuclear distances should 
be the same as the behavior of two-center Coulomb MOs in 
this region. Analysis of the energy terms of an electron in the 

TABLE 11. The quantity n' ( Z , +  - Z z ) / Z z  for quasimolecules made up of two different atoms 
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FIG. 1 .  Diabatic correlation diagrams of MOs. a-Constructed from 
rules (2)  and (3 )  for an (AlH) + + + quasimolecule; b--calculated from 
rules (4)  and (5)  for an (MgH) + + quasimolecule. Only the u terms are 
shown. 

FIG. 2. Cross sections for the charge exchange of protons with Mg + ions. 
Solid line: Calculated from the Rosen-Zener model. Dashed lines: Calcu- 
lated from the Landau-Zener model. 1-7 = 0.05; 2-r = 0.1; 3- 
T = 0.2. 

we have calculated the charge-exchange cross sections from 
the Landau-Zener model. The probability for a transition 

of two with charges Za = and Zb = (Ref. 14) during one passage through the crossing point is found from 
shows that the 3du and 4fu terms (classified in accordance 
with the quantum numbers of the combined atom do not w=exp (-T/VR), 
cross in the region R = (3-6) a,. 

It is important to determine the true correlation of MOs 
in quasimolecules made up of hydrogen atoms and the ions 
of metal atoms. The reason is that the behavior of the MOs of 
these quasimolecules determines the mechanism for the neu- 
tralization of protons by positive atomic impurity ions in a 
thermonuclear hydrogen plasma. There is a high probability 
that this neutralization will allow fast hydrogen atoms to 
escape from the plasma to the wall. This escape is the reason 
for the sputtering of the wall material.15 

Figure 2 shows the cross section for the charge-ex- 
change of protons with Mg + ions as calculated in the recti- 
linear-path approximation in the c.m. frame. The exchange 
interaction is found from 

A (R) =AR21T exp[-R(l+y)/2], 

where 

(Ref. 16) and a = 2.4 (Ref. 15). The transition goes by the 
Rosen-Zener mechanism with a probability 

(v, is the radial velocity of the motion" ), near the point 
R,  = 4.9a0, where A(R) becomes equal to ,y(R), which is 
the difference between the terms of the initial and final states 
of the system. (Transitions are unlikely at small values of R, 
since the system passes through this region diabatically at 
the collision velocities under consideration here. In the 
asymptotic region, the charge-exchange cross section calcu- 
lated in the Landau-Zener approximation near the term 
crossing point Ro = 19.01a0 is negligibly small.18 ) 

Under the assumption that terms cross at the point 
R = R, in the region of intermediate internuclear distances, 

where the parameter T was assigned values close to the actual 
values. These cross sections are shown by the dashed lines in 
Fig. 2. Also shown in this figure are measurements of the 
cross section for the formation of Mg + + ions in collisions of 
protons with Mg + ions.19 

A comparison of these cross sections shows that the 
results calculated from the Rosen-Zener model agree well 
with the experimental data, while the cross sections calculat- 
ed from the Landau-Zener model differ significantly from 
the measured values at all values considered for the param- 
eter T. This result indicates that the Landau-Zener mecha- 
nism does not operate, so the terms do not cross at intermedi- 
ate internuclear distances. The experiments thus confirm 
that the correlation of MOs in the (MgH) + + quasimole- 
cule is described by rules (4) ,  (5) .  

3. Let us find some MO correlation rules which incor- 
porate the fine structure of the levels of the quasimolecule. 
In the effective potential ( 1 ) we need to consider the terms 
V, and V, in this case. They give rise to splitting of the 
atomic levels in accordance with the total angular momen- 
tum of the electron, j. Since the projection of this total angu- 
lar momentum of the electron onto the molecular axis 
R = Imj I is related to the projection of the orbital angular 
momentum m and the spin projection m, of the electron onto 
the same axis by R = lm + m, 1, we can write the following 
expressionz0 for MOs which belong to the given shell of the 
separate atom, at R = w : 

where i = 1,2, ..., 2 ( n  - 5 2 ) ;  p zl,bi, are screened two-center 
Coulomb MOs, which are the solutions of the Schrodinger 
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equation with potential ( 1 ) without u,, and u,; and x, , , ,~ 
by the spin wave functions of the electron. The expansion 
coefficients in (7 )  and the MO energies are found by diago- 
nalizing the 2 (n - fl ) -dimensional matrix of the Hamilto- 
nian of the quasimolecule. 

In the limit of separate atoms, the screened Coulomb 
MOs p,,,, convert into parabolic Coulomb functions. If we 
express these parabolic Coulomb functions in terms of 
spherical Coulomb f~nct ions ,~  the expansion (7 )  takes the 
following form at R = co : 

where 
n-n+rn.-i 

n-l n-I n,-n,+Q-m, 

'7' n,=o 2 

quasimolecule at small values of R (Ref. 14). At given val- 
ues of no, I,, and 0, the Coulomb molecular term with 

( m  1 = - 112 lies below the term with Im 1 = + l/2. A 
comparison of these terms with the levels of the combined 
atom leads to the following relations between jo and lo : 

Some correlation rules for diabatic MOs which incor- 
porate the fine structure of the quasimolecular levels are 
found by replacing n, and Iml in the correlation rules for 
screened Coulomb MOs [Eqs. (4)  and (5) in Ref. 11 by 
their values from (9)  and ( 10). 

Substituting in the values of n, and (m(  from (9), we 
find 

(...) are the Clebsch-Gordan coefficients, and $,,, are the 
spherical Coulomb functions. In the basis of spherical Cou- 
lomb functions, the 2 (n - a) -dimensional energy matrix is 
block-diagonal (atomic orbitals with identical values of the 
orbital angular momentum I and with spin projections 
m, = 1/2 and m, = - 1/2 are coupled; Ref. 21 ) . For each 
I = fi - 3/2 + i ( i  = 1,2,3 ,..., n - 0 + 1/2) we obtain two 
levels, with total angular momenta j = I - 1/2 and 
j = 1 + 1/2 (an exceptional case is 1 = a- 1/2, for which 
we have a single level, with j = I + 1/2). 

The levels of the separate atoms with the two-center 
screened Coulomb terms can be compared with and without 
allowance for the splitting of the Coulomb terms in regions 
in which they cross. Noting that u, and ub split terms with 
identical values of Im 1, while V, and Vb split terms with 
Alm 1 = 0, + 1 (Ref. 22), we find the following results for 
the quantum numbers of the correlating MOs: 

If we ignore the splitting of the Coulomb molecular terms, 
we find the following results for the quantum numbers of the 
correlating MOs: 

In this approximation, each orbital of a given shell of the 
separate atom thus converts into one of the screened Cou- 
lomb MOs with quantum numbers n, n, = j - fi (or 
n, = n - I -  I ) ,  and Iml = 1 - j + f l  as the nuclei move 
close together. These quantum numbers are related to the 
quantum numbers of the combined atom, no and I,, by the 
correlation rules for two-center screened Coulomb MOS.,~ 

In the combined atom, there are two levels, with total 
angular momenta jo = 1, - 1/2 and jo = lo + 1/2, corre- 
sponding to each value of the orbital angular momentum lo 
(an exceptional case is lo = 0-  1/2, in which we have a 
single level with jo = 1, + 1/2). At small internuclear dis- 
tances, the relative order of magnitude of the screened Cou- 
lomb molecular terms is determined by the well-known non- 
relativistic formula for the levels of a one-electron 

for MOs which convert into the heavy atom in the limit 
R +  co and 

z a *  
for noninteger n' - 

Zb* ' 

Za' 
%= jf-Q+nf 7, 

z b  za' 
for integer n' - 

2;-2,. 
l,=l'+j'-Q+nl Zb*  

Z b  

for MOs which convert into the orbitals of the light atom as 
R +  co. 

Substituting in the values of n, and Im 1 from ( lo) ,  we 
find the correlation rules 

n o = n + l + ~ n t ( n r - n F ) ,  ) Zag-&* 

for n&n- z a w - Z b *  
lo=n-j+~+Ent ( n.-n ?) za' 

z a  

for MOs which convert into the orbitals of the heavy atom as 
R -  co and 
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2.' 
for noninteger n' - , 

Zb* 

for MOs which convert into the orbitals of the light atom as 
R -+ 43. We see from ( 11) that we have jo = lo + 1/2 in both 
cases if 1, = - 1/2, or we have jo = lo + I-  j (or 
jo =lo + 1'-j ') i f lo#f l -  1/2. 

Rules ( 12) and ( 13) do not allow a crossing of terms 
with identical values of n and different values of I, while rules 
( 14) and ( 15) allow such crossings. For this reason, ( 121, 
( 13) and ( 14), ( 15) may be thought of as respectively adia- 
batic and diabatic correlation rules for MOs belonging to a 
common shell. If we subtract the second equation from the 
first in ( 12) and ( 13), we find n:A = the Barat-Lichten 
MO correlation rule. Making the corresponding subtraction 
in ( 14) and ( 15), we find nFA = j - a ,  which is the relativ- 
istic analog of the Eichler-Wille MO correlation rule. 

Rules (12), (13) and (14), (15) areageneralizationof 
rules (2),  (3)  and (4),  (5) to relativistic MOs. The rules 
found here are valid for quasimolecules which are not too 
heavy, with Z, + Z, ga - ', where a =: 1/137 is the fine- 
structure constant. Nevertheless, a comparison with results 
calculated on the terms of heavy quasi molecule^^^ shows 
that these rules also apply to quasimolecules with 
Z, + 2,s 137. 

I wish to thank 0. B. Firsov and M. I. Chibisov for 
furnishing the results of their work and for a discussion of 
these results. 
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