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A mechanism for the formation of mesic molecules via negative subthreshold resonances is 
described. At low temperatures and densities, the formation of the dtp mesic molecule results 
primarily from a transition of the D, molecule into a mesic-molecule complex with rotational and 
vibrational quantum numbers K = O - t  1, v = O-+ 2. The transition matrix elements are calculated 
without recourse to the standard dipole approximation. The theoretical value of the reduced 
probability for the formation of the molecule, A , ,  -, , agrees within the errors with the measured 
values. 

1. RESONANCE MECHANISM FOR THE FORMATION OF 
MESIC MOLECULES 

1. The early history of research on nonresonant pro- 
cesses involving mesic molecules has been reviewed by Zel- 
'dovich and GershteYn.' The resonance mechanism for the 
formation of ddp mesic molecules was proposed in 1967 by 
Vesman in an effort to find a qualitative explanation for the 
strong temperature dependence of the rate of this process, 
which had been observed previously by Dzhelepov et al.' 
That mechanism can be outlined as  follow^:^ If a mesic mol- 
ecule (more precisely, a mesic-molecule ion, MMI) has a 
weakly bound excited state with a negative energy E, (Jand 
v are the rotational and vibrational quantum numbers of the 
mesic molecule), the mesic atom (dp - ) can form a mesic- 
molecule complex (MMC) in a collision with a D, mole- 
cule, in the reaction 

( D P ) F + ( D , ) ~ ,  -+[ ( d d ~ ) ~ ~ " d e e I , ~  , (1.1) 

in which the MMI (ddp - ) + replaces one of the d nuclei. 
The excess energy of the negative level of the MMI is ex- 
pended on exciting vibrational (v,.) and rotational (Kf) lev- 
els of the complex. 

The cross section for the resonant formation of a com- 
plex can be written in terms of the entrance 
re (F, vi, K,  -s, vf, K ~ ;  E) as follows 
( f i = e = m ,  = 1): 

where p is the momentum of the mesic atom in the c.m. 
frame, E,, ,  (D, ) and EVFf(C) are the energies of the levels 
of the D, molecule and of the complex, and AE, and AEs 
are the energies of the relativistic splitting of the mesic atom, 
with spin F, and of the mesic molecule, with spin S. The 
resonance occurs when the energy E of the incoming mesic 
atom is exactly equal to the energy of the resonance 
(E, =Er):  

The probability for the formation of an MMC in a gas 
with a density N =  @No (No = 4.25. lo2, cmP3 is the den- 
sity of liquid hydrogen) is found by integrating the product 
N a ( E )  vC& (E) over the energy, where v, is the velocity 
in the c.m. frame, and f, (E) is the Maxwellian distribution 
of the colliding particles. This probability, referred to a den- 
sity Q, = 1, is 

where p is the reduced mass of the basic atom: 2pE, =p:. 
Expression ( 1.4) leads to a characteristic temperature de- 
pendence: a sharp exponential decay of R Ldp as T/E, -0. 
Some careful recent measurements of the temperature de- 
pendence by various experimental teamsG8 have yielded re- 
sults which agree well with the existing theoretical predic- 
tions9 (except at low T). 

2. The resonance formation of a dtp mesic molecule in 
the reaction 

was first predicted theoretically in some pioneering calcula- 
tions by Ponomarev's group, who found a weakly bound 
state of a mesic molecule with the same quantum numbers as 
those of the ddp molecule (i.e., J = v = 1 ), but with an ener- 
gy I&,, I several times ~mal le r . '~  The time scale of the forma- 
tion of the MMC was only rd, = A  ,-,'z 10W8 s-much 
shorter than the lifetime of the muon itself (7, = 2.2. l o p 6  
s). Immediately after the formation of the excited mesic 
molecule, an Auger transition occurs to lower-lying states 
with J = 0, and then nuclear fusion occurs: 

( y d t )  +'He+n+p- . (1.6) 

In the process, the muon is liberated, and an energy 
Ec = 17.6 MeV is released. The muon is then recaptured by 
d and t nuclei, and the cycle in which the muon serves as 
catalyst occurs again. Although there is a possibility 
( < 1%) that a muon will stick to the helium which forms, it 
has time to induce X, - 100 fusion events and to release an 
energy XcEc ~2 GeV over its lifetime ro (Ref. 11). In a 
hybrid fusion-fission reactor, this energy could be increased 
by another factor of 100 (Ref. 12), so we might take another 
look at the question of the practical use of muon catalysis 
(see the review by Gershteyn et a1.13 ). 
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3. The entrance width in ( 1.2) can be expressed in first- 
order perturbation theory in terms of the transition matrix 
element 

As an initial approximation, we adopt a state with a Hamil- 
tonian Hf which describes a D, molecule in which one of the 
deuterons is %placed by an MMI.') The total Hamiltonian 
is H = Hf + V, where 

Here U(rsi) is the energy of the interaction between the 
spectator deuteron S and the corresponding particle (Fig. 1; 
C is the center of mass of the MMI). 

In most paperszn calculations of the entrance width in 
( 1.7), the operator V has been treated in the dipole approxi- 
mation. Here we assume that the mesic molecule is much 
smaller than the D, molecule, and we expand ( 1.8) in the 
ratio of the distance between the mesic molecule and the 
$stance to the spectator. In first order we then find 

= dau/ap, where is the distance from the MMI to the FIG. 1. System of coordinates. S-Spectator deuteron; C--center of mass 
of the dtp mesic molecule. 

spectator, and d is the dipole moment of the MMI. In the 
limit E- 0, the matrix elements for the s wave in the entrance 
channel cease to depend on the energy of the colliding parti- 
cles, and the matrix elements for the higher moments vanish. 
At low temperatures, the D, molecule is in the ground state: 
vi = Ki = 0. As T-0, there is thus only one nonzero matrix 
element, that for the transition'' vi = Ki = 0--' vf, Kf = 1: 

where dfi is the transition dipole moment for the mesic mole- 
cule, and I, = (0, 01 E I vf,  1) is the matrix element of the 
electric field which is acting in the complex on the MMI. 

The most important values for the dtp mesic molecule 
are vf = 2 and 3, although the original estimates yielded'' 

vf = 4 and I V I & + 4 l  = 0.32. l o p 9  a.u. (for the time being, 
we will omit the subscripts Sand P). After the binding ener- 
gy E,, was calculated more accurately,14 the value vf = 3 
(and, possibly, vf = 2) was found, as was the following val- 
ue, according to Ref. 10: 1 V I &-,, = 1.1 10 - a.u. The field 
of the external spectator nucleus causing the transition, 
E, = p/p3, is screened in the MMC by the electrons. When 
this screening is taken into account,I6 the effect is to replace 
the field by E = aU(p)/ap, where U(p) is the molecular 
potential of the '2, term (the Morse potential or the more 
accurate Kolos-Wolniewicz potentialI6 ) . The electron 

TABLE I. Values of the matrix elements I V I&-,,, for v ,  = 0, K,  = 0- v f ,  Kf = 1 transitions 
accompanied by the formation of an MMC with E = 0. 

VinitskiY et al.," 1978 

Cohen and  arti in,'^ 1984 

Men'skihov,"" 1985 
Petrov et al.," 1987 

Men'shikov and Pon~marev , '~  1987 

Faifman et a1.,20 1988 
Lane," 1988 

Scrinzi,'' 1989 
Present study 

Note. '"'E,, is the binding energy of the mesic molecule for which the matrix elements were 
calculated. 'b'The matrix element includes a factor ( 1 + r]l,/rn, )3'2, which is part of Eq. ( 1.8) 
in Ref. 10. "'The value C, = 1.006 (Table 11) was used in the calculation of dfi in place of the 
value C2 = 2'12C, = 0.812 which was used on lines 4-8. When C, is replaced by C,, the result is 
I V~,_,, = 0.51 x lo-' a.u., i.e., a value close to that found by Scrinzi." 
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TABLE 11. Constants used in the calculations. 

screening reduces the value of Iv several fold, and it reduces 
the matrix element by an order of magnitude (Table I ) .  

The J = v = 1 level of the mesic molecule is bound only 
exceedingly weakly, so the size of the mesic molecule in the 
state is anomalously large. Men'shikov pointed out that at 
large distances the dtp mesic molecule decays into 
d + ( tp ) Is, and the mesic-molecule potential can be ignored 
in comparison with the centrifugal potential and the binding 
energy in the Schrodinger equation." The solution of the 
equation for the motion of a neutral mesic atom in the 1s 
ground state, with an angular momentum J = 1 and a nega- 
tive energy E,, , in the absence of a field, is 

Herep, is the reduced mass of the MMI (Table 11), and the 
constant C,  is found by matching with the exact wave func- 
tion. The large value 7c - ' ~ 2 0  ma.u. = 0.1 a.u. demon- 
strates that the mesic molecule is large. The exact wave func- 
tion differs from the asymptotic wave function in (1.10) 
only at relatively small distances, R g 5  ma.u. It thus be- 
comes possible to calculate dfi analyti~ally.'~ In the limit 
E-+ 0, the initial wave function is Y, = 1. A mesic atom can 
be assumed to be a neutral point particle, so the dipole mo- 
ment is determined only by the distance from the charged 
deuteron to the center of mass of the MMI: d = - &R (P ,  
is given in Table 11). As a result we find the following expres- 
sion for df, : 

Quantity 
- 

Pt 
P f 
Pa 
P 
$1 

0 2  

$3 
x 
Qi 
Q f 
CI 

The matrix element is seen to exhibit the behavior 
I VI&_,, c d ;  a I & , ,  I -5'2. 

Men'shikov17" showed that all the even matrix ele- 
ments are zero (I,, = 0) in the simple-harmonic-oscillator 
approximation for the transition Ki = 0- Kf = 1 with 
E = 0. It is thus important to take the anharmonic nature of 
the potential in the MMC into account in I,, (Ref. 18). In 
calculations with a realistic Kolos-Wolniewicz potential, the 
anharmonicity leads to a nonzero value 7, = 1.77.10 - a.u. 
(the finite dimensions of the mesic molecule are being taken 
into account) and to the value I V I&,,,, = 1.49- lo-* a.u. 
Independent calculations carried out by other authors19320 
have yielded approximately the same values (Table I) .  

Value (a.u.) for the dtp 
mesic molecule 

1835 
2638 
2233 
3210 

0 , 5  
0,6684 
0,6956 
9 ,900 

1,362.10-a 
1,136.10-2 

1,006 

Expression 

M d / 2  
Md (Md+&Jt + M , ) / ( 2 M d + ~ M t  + M , )  

M d ( M t + M , ) / ( M d + M , + M , )  
2Md ( M t + M p ) ' ( 2 M d + M t + M , )  

P,IMd 
PalMd 
Pi /Pf  

( 2 ~ a  I 1)' - 
- 

2 % ~ ~  

All the results reported above were derived in the dipole 
approximation. However, the size of a mesic molecule in the 
weakly bound state (J = v = 1 ) is X- ' = 0.1 a.u., i.e., not 
particularly small in comparison with the size of the D, mol- 
ecule. [The vanishing of the matrix element I, for a dipole 
transition in the harmonic approximation would make the 
relative contribution of higher multipoles even more impor- 
tant (see also Sec. 3 ). ] We would expect that the corrections 
to the dipole approximation would be large. Further evi- 
dence for this conclusion comes from the results found by 
Lane,,' who used the tp + D2 initial state rather than the 
final state as the zeroth approximation of the initial Hamil- 
tonian (Lane also used a perturbation operator in the dipole 
approximation). For the entrance width Lane found a value 
smaller by a factor of 3, and he argued t h g  the dipole ap- 
proximation was not valid for the operator Vin ( 1.8). Some 
numerical results on the matrix element I VI&,,, with 
E = 0 were recently found by S~r inz i ,~  without the use of 
the dipole approximation. The results turned out to be close 
to the results of Ref. 2 1 (Table I ) .  Below we use the wave 
function ( 1.10) to calculate the matrix elements I V l:,,-2Kf 

Value (a.u ) for the ddp 
mesic molecule 

1835 
2470 
1886 
2537 

0 , 5  
0,5137 
0,7432 

16,63 
1,362.10-2 
1,174.10-2 

0 ,959 

as a function of the energy, and we too will refrain from using 
the dipole approximation. In particular, the results found for 
E+O reproduce the results of Scrinzi2, 

Knowing the matrix element and the energy of the reso- 
nance, we can predict the probability for the formation of a 
dtp mesic molecule and the temperature dependence of this 
probability, working from ( 1.4). The first experiments car- 
ried out at Los A l a m ~ s , ~  showed that the value of A,, - ,  is 
indeed large (an order of magnitude larger than was predict- 
ed by the theory at the time), but it was nearly independent 
of the temperature (Fig. 2).  On the other hand, a depend- 
ence on the gas density @ was found,7 although no such 
dependence is described by expression ( 1.4) (Fig. 3).  It was 

FIG. 2. Experimental temperature ( T )  de~endence*~ of the probability 
for the formation of the mesic molecule, Add,- ,, referred to a density 
Q, = 1.  Experimental conditions: Q, = 0.45-0.6 and tritium concentra- 
t i o n s ~ ,  =0.2, 0.5, and0.8. 

3 1 Sov. Phys. JETP 73 ( I ) ,  July 1991 Yu. V. Petrov and V. Yu. Petrov 31 



FIG. 3. Experimental density (a) dependence7 of the reduced probabili- 
ty for the formation of a mesic molecule in reaction (1.5) at 
T <  130 K at various tritium concentrations. 0-c, = 0.3; A 4 . 4 ;  X- 
0.5; 0-0.6; 0 4 . 7 ;  0 - 4 . 8 ;  ~ 4 . 9 .  The solid line is a fit of the experi- 
mental data. 

thus found that the Vesman mechanism does not operate in 
its classical version in the case of the dtp mesic molecule. 

2. MECHANISM FOR THE FORMATION OF MESIC 
MOLECULES VIA SUBTHRESHOLD RESONANCES 

1. Vesman's mechanism presupposes that the complex 
survives an infinitely long time (Fig. 4a). Actually, there are 
several processes which would limit this lifetime and give 
rise to a nonzero decay width r , /2  in its wave function (Fig. 
4, b-d). For this reason, the 8-function in ( 1.2) should be 
replaced by a Breit-Wigner p r~ f i l e .~  Summing over the re- 
sonances, we find the total cross section for the formation of 
mesic molecules: 

(this expression incorporates the ratio of the width r,,, for 
the absorption of tp atoms, to the total width T,). 

Ifthe absorption does not seriously distort the spectrum 
of the tp atoms, the contribution to the integral from the 
vicinity of the resonance in the course of the integration of 
the cross section over the spectrum will be essentially the 
same as Vesman's zero-width approximation, ( 1.4) (here 
r, 4 E, is assumed). Along with A 2, , however, we find an 

additional contribution from low energies. At E 4 E r ,  the 
denominator in (2.1) becomes independent of the energy, 
and for an s wave in the entrance channel [we are taking 
( 1.7) into account] we find Bethe's l/v, law for the cross 
section. With I',, T(E,, we thus find 

The term A z,, -, is predominant at small T. It does not 
depend on T, while it is proportional to the decay width I?,, . 

A new circumstance here is the appearance in the sum 
of a contribution from negative subthreshold resonances 
(there is no such contribution in Vesman's zero-width ap- 
proximation. These resonances contribute only to A :,_ , . 
To explain the absence of a T dependence of A, it is thus 
sufficient to assume that the reaction in which the mesic 
molecules are formed occurs primarily through a very small 
negative resonance with a decay width T,, which is not 
small. This is precisely the situation which prevails in the 
case of the formation of dtp mesic molecules (in contrast 
with ddp moleculesj, and the predominant transition is 
vi =O,Ki =O-vf =2,Kf = 1. 

2. Let us calculate the energy of this resonance. The 
energy of the MMI level, E , ,  , is the sum of the nonrelativistic 
value for point nuclei, &ER, and a shift AE:, , which incorpo- 
rates the relativistic corrections, the corrections to the Cou- 
lomb potential for the finite dimensions of the nuclei, the 
corrections for the polarization of vacuum and the polariza- 
bility of the deuteron, etc. A value &ER = - 660.3 meV was 
recently calculated by a variational method to within 0.1 
meV (Refs. 24-26). The shift A&:, is known only within a 
far greater error. This shift has changed by several millielec- 
tron volts over the past few  year^:^'-^^ 

Ref.27 28 29 30 31 32 
32.2 18.9 29.7 29.2 28.9 26.2 meV. 

The most reliable value at the moment is A&:, = 26.2 meV 
(Ref. 32). 

The fine and hyperfine splitting of the levels of the mesic 
atom and of the MMI for the transition F = 0-S = 1 give us 

FIG. 4. Feynman diagrams of the formation and decay 
of a mesic-molecule complex ( MMC) .' a-Vertex 

a b corresponding to reaction 7 1.5); b--Auger transition 
of the mesic molecule; c--decay of the complex, i.e., 
the inverse of reaction ( 1.5); d-transition of the com- 

e- plex to a state with other quantum numbers (and also 
with the same quantum  number^^^,^' ), as a result of 
collisions with surrounding molecules. 
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\ .178,9-I 40,8 
F=O S=O,I= 1/2 

0 FIG. 5. Relativistic splitting of the levels of a (tp) mesic 
atom and a (dtp), mesic molecule (in millielectron 
volts)." 

I 
I 

A E ~  = 36.8 meV (Fig. 5; Ref. 13). The mesic molecule 
formed in the reaction (tp) . + d-, (dtp) , thus has a bind- 
ing energy 

eiith=ellNR+AellR+AeOl= -597,3 MeV. (2.3) 

The energy of the excited levels of the MMC was found with- 
in 0.1 meV in Ref. 33. Taking account of the energy shift of 
the ground states in the MMC with respect to D,, we find, 
for the transition v = 0 -, 2, K = 0 -, 1, 

E,,,  (C) -E,, (D,) =584,2 MeV. 

Accordingto (1.3), wehave~:~(000-121) = - 13.1 meV. 
The energy of the resonance with vf = 2 and Kf = 1 is thus 
indeed very small, and it is negative. 

3. The decay width r, is the sum of several components: 
r,, , which is the width of the inverse decay to tp + D, (Ref. 
4); re,, which is the width of electromagnetic transitions of 
the excited MMI to lower-lying states (primarily through 
Auger  transition^);^^ r f ,  which is the width for fusion di- 
rectly from the J = v = 1 state;35 and the collisional width 
I?,,,,,, (@), which reflects both inelastic collisions5 and elas- 
tic collisions (ternary36 and multiple3' ) of the MMC with 
surrounding molecules. We thus have 

At a moderate density we have T,,,,, (@) a Q,. Since we have 
A :,, - , a r,/E according to (2.2), the reduced probabili- 
ty for the formation of an MMI becomes a linear function of 
<P [for the actual probability-not the reduced probabili- 
ty-it is a nonlinear function: A,, - , = @A,, - , (@) 1. It 
thus becomes possible to find a natural explanation for the 
experimental density dependence. 

4. As Q, -0, the r,,,,,, component of r,, can be ignored. 
For dtp, the value3' rf = 2- 10 - meV is much smaller than 
re, = 0.78 meV (Ref. 39), and we have r,, = re,. The 
expression for A & contains an additional small factor, 
( 4 ~ " ~ / e )  - 'rem/E, = 0.02, which is not present when the 
resonance with the same value of E,. is at a positive energy, 
T = E, [see ( 1.4) 1, and Vesman's mechanism operates. 
Nevertheless, the value R :, is large enough to give us the 

experimental value (Sec. 4).  The mechanism for the forma- 
tion of mesic molecules via subthreshold resonances, when 
the finite width of the latter is taken into account, thus gives 
us a complete explanation of all the experimental facts on the 
d t ,  mesic molecule. For the ddp mesic molecule, the width 
r,, is smaller by a factor of several thousand ( 3.10 - 4  meV; 
Ref. 9),  and the resonances Ki = 0-Kf = 1 lie at a positive 
energy. Consequently, Vesman's resonance mechanism op- 
erates. 

Since we have pR - 1 (R = P,p,, p, = 1.4 a.u. is the 
size of D, ; see Table I1 regardingp, ) at E = 11 meV, even at 
low values of Tnot only s waves but alsop, d, and f waves can 
contribute in the entrance channel. As a result, resonances 
with higher values of Kf and with an energy shifted upward 
by anamountBfKf ( K  + 1) (Bf = 2.4meV) ~ i l l f o r m . ~ ~  In 
calculating the reaction cross section we thus need to know 
several matrix elements for transitions vi = 0, Ki -vf, Kf 
and their energy dependence. 

3. MATRIX ELEMENTS FOR THE TRANSITION v=O, K, 4 v,, K, 

1. As we pointed out back in Sec. 1, the dtp mesic mole- 
cule consists primarily of a point tp atom and a d nucleus, 
which interact with each other weakly. We take this circum- 
stance into account by setting r, = r, in the perturbation 
operator ( 1 .a). Introducing coordinates as shown in Fig. 1, 
we find the perturbation operatorZ2 

Here p is the distance from the spectator deuteron to the 
center of mass of the MMI, R is the distance between the 
deuteron and the tritium in the dtp, and 8, is given in Table 
11. In first-order perturbation theory, the transition matrix 
element is 

V,< = jd3r d ' ~  d 3 p Y  ,' (r, R, p) 

Here Yi (r, R p,) is the initial wave function of the tp atom 
and the D, molecule; it is given by 
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x o  (rd-ra) rd-rs 
W i  = exp (ipX)cpls (r,--r,) I rd-rs I i m  I q - r 8 ~  1. 

The plane wave in (3.3) describes the relative motion of the 
tp atom and the D, molecule, with a momentump; X is the 
distance between their centers of mass, given by 

p,, is the wave function of the 1s state of the mesic atom; and 
,yo and Y,,,, are the radial and angular parts of the wave 
function of the D, molecule. 

The wave function Yf describes the MMC in the final 
state:" 

Here Y,, (R)  is the wave function of the J = v = 1 state of 
the mesic molecule, and X, ( p )  and YKim, are the radial and 
angular parts, respectively, of the wave function of the me- 
sic-molecule complex. We replace the wave function of the 
mesic molecule by its asymptotic expression ( 1.10). In our 
case, it is more legitimate to use this asymptotic expression 
than the wave functions which were found by numerical 
methods in Ref. 40 and which would appear to be more accu- 
rate. As we will see below, the matrix elements in (3.2) de- 
pend on distances out to 100 ma.u. The effect of such dis- 
tances on the energy of the level of the dtp mesic molecule is 
very small. The wave functions (designed for calculating the 
energy of the level very accurately) are thus quite different 
from the exact asymptotic expression in ( 1.9) at these dis- 
tances (see also Refs. 22 and 41). The contribution from 
p < 5 ma.u., in contrast, where we cannot use the asymptotic 
expression, is no greater than 1 % in the matrix element. To 
calculate the matrix element we thus do not need to know the 
behavior of the wave function at small p; it is sufficient to 
determine the coefficient C, in ( 1.10). Joining the asympto- 
tic expression in ( 1.10) with the variational wave function in 
the intermediate region,p = 10-40 ma.u., we find the values 
of C, shown in Table I1 (Ref. 41 ) . 

2. We substitute the wave functions into the matrix ele- 
ment (3.2). The integral with the wave functions of the me- 
sic atom, p,, , yields 1. For our purposes, it is convenient to 
take the remaining integral over R and p in terms of the 
variables r, and r,, which are the distances from the specta- 
tor to the dtp center of mass and to the deuteron center of 
mass, respectively [Fig. 1 (r ,  = p, r, = p - P, R) ] : 

C ,,,=-J iB3 
2'"xp, d3r1 d3r2 eap (--i/3,rlp)exp [- - Bz (r,-r2)p] 

xo(r2) . X" (r1) x +.,I [ pz-' (rl-r2) I - Y K  i , m t  (r2) - 
rz 

[YIM(R)-CI$,(R)(2x) In (3.6) we evaluate the 
integrals over the angles of the vectors r ,  and r,. For this 
purpose we expand the difference function 

B mM = exp [- 2 (rl-r2)p] Q M [  132-1 (ri-r2) I (3.7) 
8 2  

in a series in orbital angular momenta corresponding to the 
angular coordinates of the vectors r,  and r, and also the 
momentum p. This expansion is (see the Appendix) 

The summation is to be understood here over all possible 
angular momenta I,, I,, T, and j and their projections m, , 
m, , t, and m,. The function 9, introduced in the Appendix, 
depends on the magnitudes of the vectors r ,  and r, (and also 
on the magnitude of the momentum, p ) ,  but it does not de- 
pend on the orientations of these vectors. It is also indepen- 
dent of the angular-momentum projections m,  , m,, t, and 
m,, depending on only the values of these angular momenta 
themselves. The function 9 can be expressed in terms of 
modified spherical Bessel functions. 

We now substitute expansion (3.8) into expression 
(3.6) for the matrix element V, and we evaluate the integrals 
over the orientations of r ,  and r, . We can do this by expand- 
ing the plane wave in a series in angular momenta: 

where j, is the spherical Bessel function. The integral over 
the angles P2 equates I, to the initial angular momentum Ki, 
while the integral over i., reduces to an integral of three 
spherical harmonics. Also adding the angular momenta L 
and T to the total angular momentum A, we finally find 

(I, I ) .  Here dfi is the transition dipole moment calculated 
with the wave function (3.5) [see ( 1.11 ) 1. 
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We are interested in the square of the matrix element, 
summed over all the final projections of the angular mo- 
menta (mf, M, m, ) and averaged over the initial projections: 

Substituting (3.10) in here, we finally find 

As shown in the Appendix, series (3.13) is a power 
series in the quantity 

At small values of S we have BZ= cc ST. The quantity S plays 
the role of the parameter kR for a mesic molecule (its size is 
- x - ' ). In contrast with kR for the D, molecule (Sec. 1 ), 
this parameter reaches a value on the order of unity only at 
E = 1 eV. For S( 1, we can restrict the series in Tin (3.14) 
to a few terms (in actuality, the calculations were carried out 
with terms -6,; at an energy E< 10 meV, for example, this 
approach corresponds to an error of order 1 % ) . With these 
values of K, and Kf, the summation over the other angular 
momenta in (3.14) is then restricted to a few terms. 

Expression (3.13) for the matrix element simplifies 
dramatically in the case E = 0. In this case, K, may differ 
from Kf only by unity. For the matrix element for the transi- 
tionK, =O-Kf= 1 wefind(1.9): 

where 

k, and i, are spherical Bessel functions, introduced in the 
Appendix, and y = x/P,. Distances r- 1 a.u. are important 
in the integral, so we have y r b  1. Ignoring the exponentially 
small terms in ( 3.15), and introducing the variables p = r, , 
x = ( r l  - r2 )/&, we finally find 

3. Expression (3.16) can be used to find an accurate 
result, which can then be compared with the dipole approxi- 
mation in Refs. 17 and 20. In the estimates for X, we can use 
the harmonic approximation (since the mass of the pf nuclei 

is large). Relatively large distances z = p - p, contribute to 
the matrix element To, during the formation of both dtp and 
ddp (although they contribute for different reasons in these 
two cases). For the even transition Y = 0 + 2 (dtp ), the re- 
gion in which the potential differs from a harmonic potential 
is important in To,. This region is at large z. For the case of 
odd but large vf (vf = 7 in the case of the formation of ddp), 
the final wave function oscillates markedly, "cutting up" the 
integral in the region z < vf (Mfflf (flf is the oscillation 
frequency). In both cases, the correction coming after the 
dipole correction in the expansion of the potential should be 
important. 

The potential in (3.16) falls off exponentially at dis- 
tances a, ' z 1 a.u., and the product xOx, falls off exponen- 
tially at distances - (Mfflf) - "2--0.2 a.u. The integrand is 
thus truncated by xOxv.  The correction in the argument of 
xo (Z - P2x) for the circumstance that the mesic molecule is 
not of point size is {zP, (Mf f l f )1 /2~-  ' ~ 0 . 3 4  < 1 in order 
of magnitude, and the expansion in { converges. One should 
bear in mind here that the factor x" = n! slows down the 
conversions. The first nonvanishing term in the expansion of 
I,, in P,/x (this is the dipole approximation) gives us 
I;:' = - 1.73 a.u. (Ref. 18). The next correction is, after an 
integration over x, 

In the anharmonic approximation, (3.17) is dominated by 
the second term: 

Since ZAl' and MA:' have opposite signs, the correction is 
significant. When the wave functions of the more accurate 
Kolos-Wolniewicz potential are used [without an expansion 
ofxo(p  -P2x)] ,  we find?;:' + Af 6;' = - 0.85.10-* a.u. 
This value is closer to the exact value, To, = - 1.03 a.u. 

For the formation of ddp, expression (3.16) with the 

FIG. 6. The matrix elements / V I:,-,, for the transition v = 0-2 versus 
the energy E (c.m.) for reaction (1 .5 ) .  
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FIG. 7. The cross section a,, _, for the formation of an MMC versus the 
energy E [ & , ( K = O + l )  = - 13.1 meV]. 

parameter values in Table I1 yields ?,, = - 2.77.10- a.u. 
The dipole approximation leads to 1;;' = - 3.45. 
a.u., i.e., to a value 1.55 times I V/&, , ,  . 

4. At low energies, only the v = 0-2, Ki = 0-Kf = 0, 
1,2, 3 and Ki = 1 - Kf = 0.2 transitions are important. Fig- 
ure 6 shows the energy dependence of the matrix elements 
for these transitions as calculated from (3.16). As expected, 
the matrix element of the K = 0-+ 1 transition dominates for 
E< 10 meV. This matrix element is larger than the others by 
a factor of  hundred^.'^,^* 

4. CROSS SECTION AND PROBABILITY FOR THE REACTION 
AT SMALL TAND cO 

1. Using the calculated matrix elements, we can deter- 
mine the energy dependence of the cross section for reaction 
( 1.5) for v = 0- 2 transitions (Fig. 7) : 

The total width of the inverse decay to various initial 
states k enters the total width r , ,  Kf in (4.1) (Refs. 17, 18, 
and 20): 

The following relation holds between the matrix elements 
for the forward and inverse transitions: 

The simplest case in which to make a comparison with 
experiment is at low densities (~,, , , ,  ,/ ( re, ) and low tem- 
peratures ( T( 11 meV) . At T  = 23 K (2  meV), for exam- 
ple, only 3.6% of the levels of the D, molecule with Ki = 1 
are populated. At such temperatures, we can also ignore the 
inverse decay (I', ,/ ( re, ). The total cross section for the 
formation of mesic molecules is shown in Fig. 7 for the theo- 
retical value = - 13.1 meV of the energy of the princi- 
pal subthreshold resonance, for the transition K = 0- 1 
(Sec. 2).  This cross section has a resonance peak for the 0 + 3 
transition at = 11 meV. However, this cross section is 
determined primarily by the subthreshold resonance of the 
K = 0- 1 transition. 

The transition probability with cross section (4.1 ) , re- 
ferred to a density cP = 1, is 

where f(E) is the spectrum of the tp atoms. This spectrum 
X W (xi) 1 v I & , - ~ K ~ .  rcT may differ from an equilibrium Maxwellian spectrum be- 

KiKf 
( E  - er9 + r" Kf'4 cause of the strong absorption at low velocities and also be- 

cause of the contribution of slowing tp atoms. If 
(4. ) udrP - , O: v&, however, the product a,, , u, will be inde- 

Here W(Ki ) is the population of the levels of the D, mole- pendent of the energy and can be taken through the integral 
cule at the given temperature. For the equilibrium popula- sign. We then have Sf(E)dE = 1 by virtue of the normaliza- 
tions of ortho- and para-deuterium we have43 tion (if we ignore the formation of dtp during the slowing of 

1 the tp). Incorporating the decay of the muon changes only 
W ( K , )  = - q ( K , )  (2Ki+l  )exp ( - e * / T ) ,  (4.2) the normalization. At T =  2 meV, and with a Maxwellian 

Z V O ,  spectrum, we have A,, - , = 2.2. lo8 s -  I .  As expected, the 
where transition K = 0- 1 dominates (Table 111). Its matrix ele- 

TABLE 111. The energies E,,,, and the contribution to A,,-, of the various transitions 
K, -+K,(v= 0 - 2 )  at T =  2 meV. 

K, = 0, W = 0,964 I Kt = 1, W = 0,036 

~ K ~ K ~ .  MeV I kdtyd (K[ - Rt).s-' " i ~ f .  MeV 1 b t w - d  (XI *J$),s-' 
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FIG. 8. Theoretical temperature ( T )  dependence of the probability 
for the formation of an MMC [ E , ( K  = 0- 1) = - 13.1 meV, 

@<O.I]. 

ment increases slightly with the energy (Fig. 6).  The effect 
of the spectrum of the tp atoms thus cannot be important. 
The small contribution (8%) from the positive resonance 
for the K = 0- 3 transition decreases when we allow for the 
erosion of the spectrum of tp atoms. 

2. At small values of T, the calculated value of A,, _, is 
nearly independent of the temperature (Fig. 8), in total 
agreement with the experimental results (Fig. 2). For a 
quantitative comparison, we need to know the experimental 
value of A z: -, at low densities. A linear extrapolation of 
the data of the Los Alamos group to Q>+O (Fig. 3) yields 
A z: - , = 2.1. lo8 s - which is close to the theoretical val- 
ue. However, measurements by another experimental group, 
at Villingen (Switzerland; see the review in Ref. 44) show 
that at @ < 0.1 the cycle time decreases nonlinearly, and at 
@=0.03 the value ofAZ;-, is 1.3.108 s - '  (Ref. 45). In 
order to reach this value, we would have to shift the energies 
of all the resonances several millielectron volts downward. A 
final refinement of the positions of the resonances would 
require more-detailed measurements at small values of T 
and @. 

5. CONCLUSION 

The theory predicts (and the experiments confirm) 
that the dtp mesic molecule in reaction ( 1.5) form at low 
temperatures primarily by virtue of the subthreshold reso- 
nance with the transition Y = 0 + 2, K = 0 + 1. Although the 
individual features of Vesman's mechanism are preserved 
here (the energy expenditure of the excitation of vibrational 
and rotational levels of the complex), this mechanism can- 
not be regarded as a resonance mechanism, since with a posi- 
tive energy the tp atom could not reach a resonance with a 
negative energy. The formation cross section is probably of a 
near-resonant nature, since it is due to the Breit-Wigner limb 
of the negative resonance which arises from the finite life- 
time of the MMC.5 The mechanism of subthreshold reson- 
ances makes the temperature and density dependence of the 
dtp formation probability totally different from that for ddp, 
in which case the classic Vesman resonance mechanism op- 
erates. 

In this paper we have calculated the probability for the 
formation of the dtp mesic molecule without making use of 
any adjustable parameters. The calculations have been 
greatly simplified by the circumstance that we do not need to 
know the exact wave function of the mesic molecule. It is 
sufficient to know simply two numbers: the constant C,  in 
the asymptotic behavior and the exact energy E , ,  of the 

weakly bound state. The transition matrix elements were 
determined without invoking the dipole approximation for 
the interaction of the mesic molecule with the field of sur- 
rounding particles. It turns out that the dipole approxima- 
tion increases the probability for the formation of the dtp 
mesic molecule by a factor of nearly 3, and that for the ddp 
molecule by a factor of 1.6. 

The theoretical binding energy of the dtp mesic mole- 
cule in the S = J = u = 1 state is &:: + A E ~ ,  = - 597.3 
meV [see (2.3)] and is presently known to within a few 
millielectron volts. This error is determined primarily by the 
error in the calculation of the various relativistic and other 
corrections (see Subsection 2.2). The experimental value of 
~ q ; ~  agrees with the theoretical value and is known to within 
approximately the same error, because there are no reliable 
data on A,, - , at low densities and temperatures. Conse- 
quently, the progress which has been achieved toward an 
understanding of the process by which mesic molecules form 
and progress in computational methods since the pioneering 
work by Vesman, back in 1967, has made it possible to im- 
prove the accuracy in the determination of E , ,  by a factor of 
thousands. 

We wish to thank S. S. Gershtein, I. I. Gurevich, and 
especially L. I. Ponomarev for interest in this work and for 
useful comments. We are also indebted to E. A. G. Armor, 
D. D. Bakalov, J. S. Cohen, L. I. Men'shikov, M. Leon, M. 
Rafelski, A. Scrinzi, M. P. Faifman, D. Harley, and A. I. 
Shlyakhter for a useful discussion of individual questions. 

APPENDIX. EXPANSION OFTHE WAVE FUNCTION OFTHE 
MESlC MOLECULE IN ANGULAR MOMENTA 

Let us expand the wave function of a mesic molecule in 
orbital angular momenta. Doing so brings out the angular 
dependence of this wave function. For this purpose we will 
use a Fourier representation of this wave function. This rep- 
resentation is (p, R = r,  - r, ) 

(for brevity, we will use y = x/P, ). This is a convenient 
expression in that it allows us to use an expansion of the 
plane wave in spherical waves (3.9). We then find 

Here the summation is to be understood over the angular 
momenta I ,  and I ,  and their projections m ,  and m , ,  and 
n,,, is the angular integral 

The radial part of the integral over k is 
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sin kr, sin kr2 
X--. 

kr, kr2 (-44) 

We extend the integral to minus infinity (making use of the 
even parity of the integrand) and evaluate it in terms of its 
poles. As a result we find 

DL,h='lznyZP~,~,(yrl, yr2), 

where 

PLt1,(x,, xz) = l i L , ( ~ ~ ) k ~ ~ ( ~ ~ ) ~ ( ~ z - ~ ~ ) + k t ~ ( ~ ~ ) i ~ ~ ( ~ z ) ~ ( ~ ~ - ~ z )  I ,  

(AS) 

and i, ( r )  and k, ( r )  are modified spherical Bessel functions, 
given by 

Substituting (A3) and (AS) into (A2), we finally find 

Similarly, we can expand the function @ ,  (r, - r, ) in a 
series in angular momenta. To do this, we go back to (A1 ) 
and shift the integration variable: 8 = k - q, where 
q = P3 p/&. Also using the known formula46 

(Q, are the Legendre polynomials of the second kind), we 
find the following representation of the function @,: 

[Here we have made use of the circumstance that kY,, (k) 
is a linear function of the Cartesian coordinates of the mo- 

mentum]. We now evaluate the integrals over the angles 
specifying the orientation of the vector k, and we obtain Eq. 
(3.8) in Sec. 3 of the test proper. In that equation, the role of 
the function 9 is played by the quantity 

The integral over the magnitude k of the momentum, is 
dominated by k = y. Consequently, if the condition 6 4  1 
holds [S is defined in (3.14) 1, the argument of the Legendre 
polynomial is large. We know4' that at large values of x the 
quantity Q,(x) has an x -  behavior, so it is sufficient to 
restrict the discussion to functions 9 with small values of T. 
Also of assistance in evaluating the integrals in (A10) are 
the formulas 
.=a 

[in the first of these formulas, it is assumed that n + I ,  + I ,  
is odd, while in the second it is assumed that this quantity is 
even; the function P(r ,  , r, ) is defined in (A5) I .  These for- 
mulas are derived by extending the integral to minus infinity 
and evaluating it by means of its poles. 

Expanding the Legendre polynomials in (A10) in in- 
verse powers of the argument, and using ( A  1 1 ), we can cal- 
culate the expansion ofthe functions 9 in S with any desired 
accuracy. In practice, the calculations were carried out to 
second order inclusively; the corresponding error is on the 
order of 1 %. 
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