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The semiclassical quantization rules are corrected with allowance for barrier penetration. The 
resulting equation determines both the position E, and the width T' of the quasistationary level. A 
comparison is made with numerical solutions of the Schrodinger equation and with exactly 
solvable models. The generalization of the Gamov formula for systems with separating variables 
is found. The possibility of generalizing the results obtained to the relativistic case is discussed. 

The Bohr-Sommerfeld quantization rules determine I 
9 (x) = const . [ p  (x) J -" sin 8  (x) + - 2) 8 = i p d z .  

discrete energy spectra (see, e.g., Refs. 1 and 2). Integrals of i~ 

the form Spdx are taken over the classically allowed region 
x, < x < xl  (see Fig. 1 in Ref. 3 ) , and it is assumed that the (1.2') 
behavior of the potential outside this region is unimportant. 

At the same time, in many physical problems the poten- 
tial possesses a barrier, as a consequence of which the levels 
are quasistationary ( E  = E, - i r /2) .  In view of the expo- 
nential increase of the Gamov wave function as r-, co the 
numerical calculation of the position and width of the level 
presents certain difficulties. 

We shall consider this problem in the semiclassical ap- 
proximation; this leads to analytical formulas that are valid 
for an arbitrary smooth potential (see Sec. 1 ). An analysis of 
these formulas is contained in Sec. 2, in which a generaliza- 
tion of the well known Gamov formula to the case of systems 
with separating variables is also given. In Sec. 3 we give a 
comparison of this approximation with exact solutions of the 
Schrodinger equation for several model potentials, and in 
Sec. 4 we compare the approximation with numerical calcu- 
lations for the Stark effect in a strong field. Section 5 is devot- 
ed to an analysis of the relativistic case (for the example of 
spin-0 particles). Approximate analytical formulas for near- 
threshold resonances, and also some details of the calcula- 
tions, have been placed in the appendices. 

1. GENERALIZATION OF THE BOHR-SOMMERFELD 
QUANTIZATION RULES 

Near the top of the barrier ( x z  x, ) we use the parabol- 
ic approximation: 

where p = (x - x, )/go, and 6, = (Nmw) 'lZ and 
w = [ - U" (x, ) ] are the amplitude and frequency of 
the zero-point oscillations of the particle about the point of 
(unstable) equilibrium; below, .fi = m = 1. The Schrodinger 
equation then has the exact solution 

$(I) =const D-!:,-i, (pe-'*") , (1.2) 

which satisfies the radiation condition [ D ,  (z) is a parabolic- 
cylinder function4]. To the left of the barrier (p < 0, Ip I $-a) 
this function joins with the semiclassical solution 

As usual, the quantization condition arises from the require- 
ment that the phases of the functions ( 1.2) and ( 1.2') coin- 
cide (modulo nr) in the region of overlap a 4 Ip( 4 x, /&, 
which always exists for large n. Using the asymptotic form of 
the function D, (z) for z+ co , we obtain (see also Refs. 5 and 
r \ 

where n = 0,1,2 ,..., r ( z )  is the gamma function, x, < x  <x, 
is the sub-barrier region, and the notation is as in Fig. 1 of 
Ref. 3. Here the parameter a, which for a parabolic barrier is 
defined in ( 1.1 ) , is written in a more general form applicable 
for an arbitrary smooth potential U(x) satisfying the condi- 
tions of applicability of the semiclassical approximation. For 
quasistationary states this parameter is complex, as are the 
turning points x,,, . 

In the simplest cases the integral ( 1.5) can be calculat- 
ed explicitly so that its analytic continuation does not pres- 
ent difficulties. For an arbitrary potential the values of a for 
complex values of E can be found numerically, and, together 
with Eq. ( 1.3 ), determine the spectrum of the quasistation- 
ary states. 

For multidimensional problems with separable vari- 
ables q,, ...,qf Cfis the number of degrees of freedom) the 
quantization conditions have the form 
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Here qjo.') are the turning points bounding the classically 
accessible regions of motion along the corresponding coordi- 
nates, andp, is the semiclassical momentum [see (2.4) be- 
low]. Here, in ( 1.6), 

holds if tunneling along the coordinate qi is possible (an 
"open channel"); otherwise, we have ai = a, and N, = ni 
= 0,1, ... . The solution of this system of equations deter- 
mines the energy E = Er - ir/2 and the separation con- 
stants pi,  which are also complex. 

2. ANALYSIS OFTHE BASIC EQUATIONS 

Equations ( 1.3 ) and ( 1.6) give the generalization of the 
Bohr-Sommerfeld quantization rules to the case of poten- 
tials with a barrier. We list some consequences. 

a )  The case a)  1 corresponds to small barrier penetra- 
bility. Taking into account the expansion (a - + a, ) 

which follows from (1.4), and [in a spherically symmetric 
problem with potential V(r) ] taking the radial momentum 
to be equal to 

p,={2[~,-ir/2-U(r) I}", U(r) =V (r) + (l+'/2)2/2rZ, 

we obtain from (1.3) the Gamov formula for the width of a 
quasistationary state: 

where Tis the period of the radial oscillations of the particle 
inside the well ( ro < r < r, ) . Thus, Eq. ( 1.3 ) leads to correct 
results not only for small a, when the parabolic approxima- 
tion is valid, but also in the opposite case a 4 1. Therefore, it 
may be expected that for intermediate values a - 1 as well it 
will give a correct interpolation of the exact solution. Later 
we shall see that this is so (see Secs. 3 and 4 below). 

b) We shall consider Eqs. (1.6) in the case when the 
penetration of the barrier is exponentially small. In this case 
the tunneling occurs in practice along one particular coordi- 
nate," e.g., qf. In this case for the width r we obtain 

F=cTf-' exp (-2naj), (2.3) 

To obtain these formulas one must substitute 

into ( 1.6), and, assuming the width I' and fi ; to be exponen- 
tially small, expand all the integrals in them (details of the 
calculations can be found in Ref. 7). 

We note that Eq. (2.4) does not specify the most gen- 
eral case of separation of variables, but it applies to many 
physically interesting problems. For example, the Schro- 
dinger equation for the hydrogen atom in a uniform electric 
field 8 admits separation of variables in the parabolic co- 
ordinates { = r + z, 7 = r - z, p ( O < p ( 2 ~ ) ,  with1 

v, ( q )  =vz(q) =-1/2q,  a='/, 

(hereq={or 7). 
Another example is the nonrelativistic two-center prob- 

lem: 

where { and 7 are elliptic coordinates: 

and R is the distance between the fixed centers (nuclei). 
From the examples given the origin of the constant a in 
(2.4) is clear; its numerical value depends on the specific 
problem and is determined in the process of the separation of 
variables. 

The multidimensional problem differs from the one-di- 
mensional problem in the factor c that appears in the pre- 
exponential factor in (2.3); the factor c takes into account, 
as it were, the change in the frequency of collisions of the 
particle with the barrier wall (qf = 9:')) as a consequence of 
its motion along the other coordinates qi (i#J). Below we 
shall see that this factor can differ substantially from unity. 
I f f  = 1, (2.3) goes over into the usual Gamov formula 
(2.2). 

C) The preceding formulas can be made more precise by 
including in the analysis a correction of order ?i2 to the usual 
semiclassical approximat i~n .~~ '~  In the case the phase 19 in 
( 1.2') is equal to 

r 

where 

(here, p' = dp/dr), and from the exact solution (1.2) for 
r = - p )  la1 we obtain 

in which thepi are the separation constants X{= ,/3, = const, 
and the Ei denote averages over the semiclassical wave func- 
tion: 

1 1 +- [ ( a )  ( a  -5) T ~ + O ( T ~ ) .  (2.9) 
2 4 

Using for the momentump(r) the parabolic approximation 
( 1.1 ) and calculating the integrals appearing in 8(r) ,  we can 
convince ourselves that the expressions (2.8) and (2.9) can 
be joined. We then arrive again at the quantization condition 

10 Sov. Phys. JETP 73 (I), July 1991 Popov etaL 10 



( 1.3), in which, however, the function ( 1.4) is replaced by 
472: 

cpz (a) =cp (a) -1/24a. (2.10) 

Comparison with (2.1 ) shows that from p ( a )  we subtract 
the first term of its asymptotic expansion for a + a. As is 
well known, the formal parameter fiz of the semiclassical 
approximation (for the energy) goes over in the final formu- 
las into l/n2. Since p2(a)  = O(a - 3 ) ,  the replacement 
p - p2 in ( 1.3) ensures that the resonance energy is calculat- 
ed to terms of order n - 4. 

In the same way, it is possible to take into account also 
the next corrections to the semiclassical approximation,'0-12 
but the calculations become considerably more complicated. 
It is evident that allowance for corrections up to fiZK inclu- 
sive leads to the quantization condition ( 1.3) with a function 
PK: K-i 

q K  (a) =cp (a) - (2.1 1) 
f-1 

where 

are the coefficients of the asymptotic series (2.1 ) and B,, are 
the Bernoulli  number^.^ Since pK (a)  = O(a - 'ZK- " ) for 
a - co , the accuracy of the calculation of the resonance ener- 
gy E, is then increased to n -2K (approximations corre- 
sponding to functions pK (a) with K > 2 are not considered 
further in this article). 

d )  The function p ( a )  has singularities at the points 
a = a, = (k  + +) (k  = 0, 1, ... ) in the upper half-plane: 

cp (a) = i  In (a-ah) +O ( I ) ,  a-a,, (2.12) 

which correspond to poles of the scattering amplitude for 
scattering by the parabolic barrier U(x) = - +02x2. Here, 
a pole in the scattering amplitude corresponds to a logarith- 
mic singularity of the function p ( a ) ,  since the latter is di- 
rectly related to the phase shift. 

e) If the energy of the level approaches the top of the 
barrier, the quantization integral 

has a logarithmic singularity: 

I (a) =I,+1!2a In a-Z,a+Iza2+. . . , a+O, (2.13) 

in which w = [ - U"(X, ) ] "~  and$ =p(x,E = Urn) and 
Ei are the semiclassical momentum and turning point for 
E = Urn [we note that XI = x, ius the point of the maximum 
of the potential U(x) 1. SinceF(x) = w Ix - x, I for x-x, , 

the poles in the integrand of (2.14) cancel completely and 
the integral converges. 

For resonance levels in the neighborhood of E z  Urn we 
can obtain the following formulas (see Appendix A): 

En=Um+2nw 
L 

L2+nZ/4 
(n-n.) + . . . , 

(2.15) 
I', In2 ---+ 2na (n-n.)+ ... 
a L L2+n2/4 

Here, 

and n = n. corresponds to the number of the level at the 
point at which it intersects the boundary Re E =  Urn. 
Hence, for the ratio n, = r,/AE, we obtain 

This relation is asymptotically exact (n- co ) for an arbi- 
trary potential. Thus, when Re E = Urn the resonances still 
do not overlap: n, = (In 2)/27 = 0.1 103. Hence in the re- 
gion of energies E> Urn as well several sub-barrier reson- 
ances can be observed (although their widths increase rapid- 
ly with increase of 4 see Eq. (A8 ) in Appendix A).  

f) The main parameter of this theory is a; see ( 1.5). In 
the parabolic approximation we have a = J ,  but this is valid, 
generally speaking, only for small a [here, J = ( Urn - E)/w 
is an adiabatic invariant for a harmonic oscillator with fre- 
quency w] . The next terms of the expansion of a ( J )  in pow- 
ers of J can  be found by taking into account that 

+1 

-=- da(J) a j [ Z  (U(r) -E)I-' ax, u(o)=o, 
3 t r *  

and using the Newcomb-Lindstedt formula for the period of 
the oscillations of an anharmonic o~cillator. '~ Finally we 
obtain 

a=J+cJ2+c,J3+. . . , 
c ~ = - ~ / ~ ( u ~ - ~ / ~ u ~ ~ ) ,  (2.17) 

C,=-5/r (U4-7/2~3~i-7/4~22f 6 3 / 8 ~ 2 ~ L 2 2 2 3 i / 6 & u ~ )  ? 

where u, are the coefficients in the expansion of U(x) about 
the point of the maximum: 

U(x) =U,-'/zaZ(~-xm)z[I+uip+uzpZ+usp3+ . . . I ,  

and p = (x - x, )/{, = wl"(x - x, ) is the dimensionless 
coordinate. 

As an example we consider 

This potential has a maximum at r = r, : 

with U" (r, ) = - w2 for ang and a. For energies E close to 
Urn, we have 
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where 

For E = Urn the two turning points r,,, collide, and for 
E > Urn they emerge into the complex plane. 

As can be seen from (2.19), the coefficient of J2 vanish- 
es for a = 1 or a = - 2. These values of a in (2.18) corre- 
spond to exactly solvable models, which are considered in 
the next subsection. Here, all the subsequent coefficients of 
the expansion (2.17) are identically equal to zero, i.e., 
a (J) - J for all E > Urn. This implies that for the potential 
Urn - U(x) the period Tof the oscillations does not depend 
on the amplitude. In particular, this property is possessed by 
the potential 

g2 1  U ( r )  = - + - 02r3, 
2r2 8 

for which T = 2?r/w irrespective of the values of E and g. 
g) We make a comment concerning the relationship of 

Eqs. ( 1.3) and (2.1 ) to the results of previous authors. The 
influence of barrier penetration on the semiclassical quanti- 
zation rules has been considered previously by Rice and 
Good,14 C ~ n n o r , ~  D r ~ k a r e v , ~  and Kondratovich and Os- 
trovskiy. lS The expressions obtained in Refs. 6 and 15 for the 
correction to the quantization rule correspond to the func- 
tion 

rp ( a )  =arg r ('l,+ia) + a ( l - l n  a ) ,  

which is practically the same as (1.4) if a is real and a)1, 
i.e., if the penetration of the barrier is small. However, this 
approximation determines only the shift and not the width of 
the level [to obtain Eqs. (2.2) and (2.3) it is necessary to 
take Im p ( a )  into account]. As the energy of the level ap- 
proaches the top of the barrier, when la 1 5 1, this approxima- 
tion loses it validity. A formula equivalent to ( 1.5) was ob- 
tained by C ~ n n o r . ~  We note that in the papers indicated 
above there was no consideration of the solution of Eq. ( 1.3) 
for above-barrier resonances, when the parameter a is com- 
plex, and the correction of order fi2 to the semiclassical ap- 
proximation was also not taken into account. 

The theory of the penetration of multidimensional po- 
tential barriers without the assumption of spherical symme- 
try has been stimulating considerably interest recently. 
Usually, separation of variables is not assumed in this case, 
and the penetration of the barrier is assumed to be small. In 
this case the problem reduces to the determination of the 
most probable sub-barrier trajectory, as has been demon- 
strated for the example of the two-dimensional anisotropic 
anharmonic o~cillator '~ (see also Refs. 17 and 18). It is evi- 
dent that (for potentials with separable variables) Eq. (2.3) 
can be obtained in this way, although this result is not con- 
tained in the papers indicated above. For a specific problem 
(the Stark effect in the hydrogen atom, f = 2) such a formu- 
la was obtained in Ref. 19. 

The quantization rules ( 1.3) and ( 1.6) can have var- 
ious physical applications. We turn to the consideration of 
some examples. 

3. EXACTLY SOLVABLE MODELS 

First of all, we consider several potentials with spheri- 
cal symmetry, for which the Schrodinger equation can be 
solved analytically. 

1 ) The rectangular barrier: 

We have the following equation for the energy E of the quasi- 
stationary states: 

( x - i k )  ( x + k  ctg kL) - e - - ~ x ~  

( x f i k )  ( x - k  ctg k ~ ~ i -  

w h e r e l = 0 , k ~ = 2 ~ , x ~ = 2 ( ~ ~ - ~ ) , k ~ + x ~ = 2 U ~ , a n d  
fi= 1. 

Assuming exp( - 2xR) 4 1, from this we obtainzosz1 

where E = (Uo -Eo)/Uo(O < E  < I ) ,  E =Eo + AE, 
- ir/2, and the values of xo and Eo = k ;/2 are calculated 

with neglect of the penetrability of the barrier, i.e., k, cot k& 
- - - xO. Since the coefficient of transmission through a 

rectangular barrier is equal to1 

and the period of the oscillations is T = 2L /ko, we have 

which coincides with the Gamov formula for L )  l/xo. The 
difference from (2.2) in the pre-exponential factor is due to 
the fact that the potential under consideration is not smooth. 
Note that the level shift AE, is exponentially small, and 
changes sign at E = 3 (i.e., at Ef = + U,). 

2) The parabolic barrier (I = 0) : 

The substitution x = (2w) 1/2e-iT'4(r - R )  brings the 
Schrodinger equation to the standard form 

where Y = - ( 1/2 + ia) and a = - E /w. The spectrum of 
quasistationary states is determined from the condition of 
regularity at zero: ~ ( 0 )  = 0, whence 

wheres = wl/'R. Assumingn) 1 and IE I 4 1/2w2R ', andus- 
ing the asymptotic form of the parabolic-cylinder func- 
t i o n ~ , ~  from the exact equation (3.5) we obtain 

On the other hand, in this case 
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where E = - E /Vo = 2a/s2 and 

The usual Bohr-Sommerfeld quantization condition 
and the Gamov formula take the following form: 

s 2 @ ( & )  =2n(n-'I1), n=l. 2, . . . , (3.7) 

[arlh ( ~ - E ) ' ~ I - '  exp (-as2&). (3.8) 

Equation (3.5) can be rewritten in the following form: 

which is convenient for numerical calculation. Here the ra- 
tio of hypergeometric functions ,F0 has been replaced by a 
Pad6 approximant [N/N] , and this, for N .= 5, already en- 
sures an accuracy of the order of 10 - in the calculation of 
the energy. The results of the calculation are collected in 
Table I. Writing the potential (3.4) in the standard form 

we have 

where g is the dimensionless coupling constant. We have 
denoted by g, that value of the coupling constant for which 
the level "touches" the top of the barrier (i.e., 
Re En = Urn = 0). In the first two columns of Table I we 
give the ratios gcl/gn and gc1/gn, which characterize the ac- 
curacy of the semiclassical approximation. Here, 
gcl (sn) = 4 2 ( n  - 1/4)' is the value that follows (for 
E = 0) from (3.7), and kc, is the value that follows from 
(3.6), including the function p (a ) .  It  can be seen that gcl 
andkc, approach the exact values g, from opposite sides, and 
that, starting from n = 2, the kc, have a higher accuracy than 
the gcl. Thus, allowance for the penetration of the barrier 
considerably improves the accuracy of the semiclassical ap- 
proximation. 

Table I also contains the "reduced" widths 

and the quantities 6, = y, /yn - 1 [ y, have been calculated 
using the exact equation (3.9), and yn have been calculated 
from (3.6)]. As follows from Table I, the semiclassical 
equation (3.6), obtained under the condition n s  1, also re- 
mains applicable for small quantum numbers, including the 
ground state." The introduction of the correction for the 
penetration of the barrier makes it possible to calculate both 
the position and the width of the resonance level, and in a 
wide range of energies. 

We have also checked that the asymptotic relation 
(2.16) is fulfilled. The derivative dE,/dn at n = n, was re- 
placed by 1/2 Re CE,, , (R :) - E n - ,  (R :)), where the 
value R is determined from the condition Re En (R ,*) = 0. 
Although nn tends to the limit 77, rather slowly, the form of 
the expansion (2.16) is fully confirmed (in view of the large 
numerical value of the constant k it is necessary to incorpo- 
rate it in the expansion parameter L - *)  . 

3) For 

it is possible to find the exact solution for arbitrary angular 
momentum I. The effective potential U, including the centri- 
fugal energy, has the same form, but with the replacement 

TABLE I. 

I 

Note. The figures in brackets denote the order of the number, i.e. ( - k )  = 1 ) - k .  The reduced 
widths y, correspond to the coupling constantg = g, at which, in the potential (3.4), an ns level 
appears (i.e., Re En = 0). The quantities 6, = j,  /y ,  - 1 determine the error in the semiclassi- 
cal equation (3.6) for the width of the level. 
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If a > 1 + + (the condition for "collapse to the center"'), 
the potential U(r) possesses a barrier. Let us consider this 
case. 

Cutting off U(r) at some r = r04r1, we obtain 

where 

r,,, are the turning points, E = (E - Urn )/2 urn (E > 0 for 
< Urn, since Urn = - +gw<O), 

Qc1(&) = i [ ( ~ +  l ) l n ( ~ +  1) - E  In&], 

and the phase y' (which is independent of the energy) is the 
contribution from the region 0 < r < r,. 

As usual in problems with collapse to the center, to 
eliminate the dependence of the spectrum on the region of 
short distances it is convenient to fix the energy of one of the 
levels (n = no). This leads to the quantization condition 

QC1 (en)-QEl(e0) =--nn/g, (3.13) 

(n = 0, + 1, ...). From this, in t h e c a s e ~ 9 1 ,  weobtain 

En=Eo exp (-2nn/g), (3.14) 

which is characteristicz3 for an attractive potential 
U n: - l/? (near the top of the barrier this approximation is 
inapplicable). In the given case, 

and the Gamov formula takes the form 

Let us compare these results with the exact solution. 
The substitution 

brings the Schrodinger equation to the form 

whence 

xl(r) =const E-'"W,,(E), (3.16) 

where W , ,  is the Whitaker function, with x = iE /w and 
p = ig/2. This solution corresponds to a quasistationary 
state, since, for r -  w , 

(the radiation condition). For a > 1 + + the wave function 
oscillates for r + 0: 

xl(r) =const E"' (At-'g12+BgBfZ), 
(3.17) 

A=I'(ig) /I'('/,+ig (e+l) ) , B=I'(-ig)lr ('12+ig&), 

and the boundary condition X ,  (0) = 0 does not determine 
the energy spectrum, since it is fulfilled for arbitrary E. 

Following Ref. 23, to obtain the quantization condition 
we impose the requirement that the wave functions corre- 
sponding to the energy En and to a certain (fixed) energy Eo 
be mutually orthogonal. It follows directly from the Schro- 
dinger equation that 

rn 

(E.-E~) j r n X o  dr 
0 

As R + w the right-hand side vanishes, since 

Elb ( x ~ ~ x ~ - ~ ~ ~ x ~ ) Q  fX"+~~- 'e -~a  @ exp ('/pior') 
h=-I+ i(E,+Eo)/o. 

On the other hand, 

When (3.17) is taken into account the orthogonality condi- 
tion takes the previous form (3.13) if in place of Qcl (E) we 
substitute 

Thus, we have obtained the exact quantization condition for 
the potential (3.11 ). 

For g )  1, we can use the asymptotic expansion for In 
r (z + 1/2), which gives 

where c = c(g) is a constant that does not depend on E and so 
is important in (3.13). The quantum corrections to the 
Bohr-Sommerfeld quantization rule [the third and fourth 
terms in the right-hand side of (3.19) ] increase without lim- 
it as E -0, and therefore Eq. (3.13) is not applicable near the 
top of the barrier. Allowance for the correction for the pene- 
tration of the barrier reduces to the replacement 

Then 

In this case the quantum correction remains bounded for all 
E > 0 (or E< Urn ), and therefore Eq. (3.13), with Qcl re- 
placed by 0, can be used for E=: Urn as well. This is the 
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advantage of ( 1.3 ) in comparison with the usual Bohr-Som- 
merfeld quantization rule. 

If we substitute a = a, + irn/2w into (3.18) and as- 
sume r, 4 w a n ,  it is not difficult to obtain a refinement of the 
Gamov formula. As we should expect, this differs from 
(3.15) only in the pre-exponential factor: 

1-p"" 
b. = [ln p,, +- 

24aZ 
+o(a-.) I-', 

where 8, = 1 + g/a = 1 + EL ' (in the sub-barrier region, 
8, > 1). 

4) For the potential 

the exact solution can also be expressed in terms of the Whi- 
taker function: 

x~(r)=constW,,,(2hr), x=-Z;/h, p=ig,  (3.22) 

where il = ( - 2E) and g has the previous value (3.12). 
The wave function corresponding to a quasistationary state 
is obtained from this with il = - ik. We arrive at the follow- 
ing equation for the spectrum of the quasistationary states: 

which can also be written in the form (3.13) if we replace the 
function Q,, ( E )  by Q: 

with k = (2E) 'I2. The given potential can be considered 
without difficulty in the semiclassical approximation. In 
particular, here 

where E = ( Urn - E)/Urn (the quasistationary levels lie at 
0 < E < 1 ), and Jo = g/2 is the value of the invariant J at 
E = 0. Hence, for E- Urn, 

( W  = 5 2 / g / 3 ) .  On the other hand, 

ish, and for E > 1 the spectrum is discrete. 
In the latter two examples we have obtained for the 

quasistationary states comparatively simple analytical solu- 
tions, which, however, so far as we know, have not been 
considered in the literature. It is evident that this is due to 
the collapse to the center that occurs in such potentials. We 
note that Eqs. (3.18) and (3.23) cannot be obtained by ana- 
lytic continuation of the known1 solutions for the discrete 
spectrum. In fact, the latter follow from the condition of 
regularity of the wave function at zero (A, = 0), whereas 
the spectrum of the quasistationary levels is determined 
from the condition A,/B, = Ao/Bo, where A and B are the 
coefficients for r-0; see (3.17). 

4. STARK EFFECT IN A STRONG FIELD: CONDITIONS FOR 
APPLICABILITY OFTHE GAMOV FORMULA 

We apply the quantization condition ( 1.3) to the calcu- 
lation of the Stark effect in a strong field.!' Here the energy of 
the level can be close to the top of the barrier or even above 
the top (sub-barrier and above-barrier resonances, respec- 
tively). Below we use atomic units ( 4  = e = me = 1) and 
reduced variables s 

where E ( n l n 2 r n )  = Er - i r /2  is the energy of the quasista- 
tionary state In,n,m), is the electric-field intensity in 
atomic units rn:/fi4 = 5.142x lo9 V/cm, n,, n,, and m are 
parabolic quantum numbers (m>O), and 
n = n, + n, + m + 1 is the principal quantum number of 
the level. 

Among all the sublevels In,n,m) with a given n the 
states of greatest interest from the experimental point of 
view are the states In - l,O,O) and those close to them in 
their quantum numbers, as these are the most stable. Such 
states are manifested24325 as peaks in the photo-ionization 
cross sections of atoms near the energy E = 0 (the ionization 
limit in the absence of an external field). 

For the states with m = 0 in the hydrogen atom the 
integrals in the quantization conditions can be calculated 
analytically (see Appendix B). As a result we arrive at Eqs. 
(BlO), in which4) 

and, therefore, the barrier penetration and the width r van- 

where 

p, is the semiclassical momentum for the coordinate 7, and 
v,,, are the turning points (7 = r - z = - n2&u/F, E < 0). 
Form=Owehaveu,,, = 1/2[1+(1  sothatthe hatth the 
barrier in U2(7) vanishes at z, = 1 [which is a singular point 
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for the hypergeometric functions appearing in (B10) 1. For 
m (n we obtain from (4.3) 

Thus, all the quantities appearing in the quantization condi- 
tions have been calculated explicitly in terms of the hyper- 
geometric functions F( ...; z)  =,F1( ...; z) .  Therefore, the 
procedure for analytic continuation to arbitrary complex 
values of E, PI, and Pz does not present difficulties in the 
present case. 

In solving the system (B10) numerically it is possible 
either to discard the terms a F/8nZ or to solve the complete 
system of equations (we call these two variants of the calcu- 
lation the l/n and l/n2 approximations, respectively). We 
have calculated E, and r for various states Inlnzm) of the 
hydrogen atom, using these equations and also an indepen- 
dent method-summation of the divergent perturbation- 
theory series in powers of 8 by means of PadC-Hermite ap- 
proximants (PHA); for details of the latter method, see Ref. 
2 1. We give some results. 

We consider first the positions of the Stark resonances 
In ,,O,O) with nl = n - 1. Table I1 gives the values of 
- E:, = - zn2,5' ;n - 1.0.0) for n = 20 (analogous results have 

also been obtained for n = 10 and n = 50). It can be seen 
that the effect of barrier penetration on the position E, of the 
resonance is not great [compare rows (a)  and (b)  for the 
same F], although with increase of the field it increases 
slightly (the PHA method is very accurate in the weak-field 
region, but for F2 0.3 it already has a lower accuracy than 
the semiclassical equations). 

The corresponding results for the imaginary part of the 
energy are given in Fig. 1. It follows from this figure that the 
penetration correction to the width of the levels is very im- 
portant in the region FS F., but with further increase of Fits 
role is reduced. For 0 2 0 ,  with an accuracy sufficient for 

FIG. 1 .  Reduced width E; = n2T, for the /9,0,0) with n = 10. Curve a: 
l/n approximation without allowance for barrier penetration, i.e., 
p ( a )  -0; curve ci: l/n approximation with allowance for barrier penetra- 
tion [see (4.2)]; curve c: result of the PHA method (Ref. 21); curve d: 
l/n approximation improved as in (4.7).  

experiment, in most cases we can confine ourselves to the 
l/n approximation. 

We note that this approximation has entirely acceptable 
accuracy even for small n. For example, from (4.3) and 
(b. 10) it is not difficult to obtain an approximate asymptotic 
form F( t9 ) of the width of a level in a weak field: 

r ( n ~ n ~ )  (8) ~const.F-(2n2+rn+i) exp (-2n/3F). (4.5) 

It differs from the exact1 asymptotic form T( $ ) for $ -0 
only by a numerical factor close to unity: 

f (ntn2rn' (8) lI'(ninzrn' (8) =a (n,) a (n ,+n~) ,  (4.6) 

where 

o (x) = (2n)- '"r (xf I )  [ (2x+1) /2e]-(x+'h). 

TABLE 11. Position of the Stark resonance / 19,0,0) in an electric field %'. 

F=n'B  I l i n  I 1111: I PHA 

{ jn j  0 i25489 
(b )  0.25 619 

{[;I ::E? 
(a )  -0,0643 
(a )  --0,1716 
( a )  -0,3842 
(a )  -0,5923 
( a )  -1,1896 

0,lO 
0,20 

0,25 

Note. The table gives the reduced energies - E; ,  taken with the opposite sign. (a) indicates the 
calculations using Eqs. (B10) without barrier penetration [i.e., we set p (a )  EO]; (b) indicates 
the calculations with allowance for barrier penetration. 
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In particular, T/r = e/n- = 0.865 in the case of the ground 
level, T / r=o .94  for the state 10,1,00), 
T/r = ( e / ~ ) " ~ ( l  - 1/24n + ...) for the states 10,0,n - 1) 
corresponding to circular electron orbits, and so on. The 
difference of f' from I' is connected with the fact that the 
semiclassical approximation is not applicable for small 
quantum numbers. Nevertheless, for all n,, n,, and m the 
dependence of T and on the field is the same. 

The semiclassical approximation can be improved in 
such a way that in the weak-field region the width of the 
levels coincides with the exact asymptotic form. For this it is 
sufficient to introduce a correction to the parameter a (a  
correction that depends on the quantum numbers of the state 
but does not depend on 8 ) : 

where a ( x )  = - ( 1 / 2 ~ )  In w ( x ) .  This correction is nu- 
merically very small: a ( 0 )  = 0.0115, a ( 1 )  = 0.0043, and 
a ( x )  = (48n-x) - ' for x %  1. It is interesting to note that 

where g, is the function introduced in ( 1.4). 
We note first of all that the PHA have high accuracy 

( - 10 - - 10 - for the energies of the levels) for F ~ 0 . 3 .  
Therefore, in the region F <  0.4 curve c coincides, to within 
the accuracy of the figure, with the exact solution. For curve 
a at F< F. we have5' r -0 ,  and this is a defect of this ap- 
proximation. Allowance for the penetration of the barrier 
removes this defect, while the introduction of the correction 
(4.7) not only restores the correct asymptotic form r(8) 
for Z? + O  but also leads to results that practically coincide 
with those obtained by the PHA method. 

A detailed comparison of the various approximations is 
contained in Table 111, which pertains to the state 10,1,0), 
for which, with increase of the field, the resonance energy E, 
decreases monotonically and the width r increases. Here we 
have given the results of the l/n and l/n2 approximations 
and the PHA method; some results have been taken from the 
recent paper by T e l n ~ v . ~ ~  The agreement between the differ- 
ent calculations is good. We note the following: 

1 ) The position E, of the resonance is calculated in the 
l/n and l/n2 approximations more accurately than is the 
width r .  As already noted above, for F <  F. these approxi- 
mations without the correction p ( a )  do not determine the 
width of a level. 

2) Although the semiclassical approximation is valid, 
generally speaking, for n , 1, its region of applicability is 
"stretched out" to small quantum numbers. 

3)  In very strong fields (F2 1) the quantities E, and r 
can be calculated without allowance for the penetration, 
especially in the l/n2 approximation (this tendency is no- 
ticeable even in Fig. 1).  Thus, analytic continuation of the 
Bohr-Sommerfeld quantization conditions into the above- 
barrier region makes it possible to calculate both the position 
and the width of a quasistationary level. 

The equations (B10) can be generalized to the Rydberg 
states of an arbitrary a t ~ m . ' ~ . ~ ~  They have already been ap- 
plied to the calculation of the Stark resonances in the atoms 
H, Na, and Rb, and good agreement with the experimental 
photo-ionization spectra has been obtained. 

We turn to the question of the region of applicability of 
the Gamov formula. The period Tof the oscillations tends to 
infinity as E+ U,,, , and therefore the Gamov formula ceases 
to work near the top of the barrier. For the model (3.1 I) ,  
comparing Eqs. (3.15) and (3.20) we find this condition in 
the form a', [24 In ( I/&) ] - ', which excludes only a nar- 
row region of energies near the top of the barrier (compare 

TABLE 111. Stark resonance 10,1,0) in the hydrogen atom. 

Note. The values of %', F, E,, and r/2 are given in atomic units. The rows ( a )  and (5) give the 
results of the l/n approximation in Eqs. (BlO), with and without allowance for barrier penetra- 
tion, respectively; the rows (b) and (b) are the same for the l/nZ approximation; the rows ( c )  
give the results of the calculation by the PHA method; the rows (e) are results from Ref. 26. 
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- 

1,58 (-8) 
- 

1,61(-8) 
1,72 (-8) 

- 

4,956 (-5) 

4,949 (-5) 
5,297 
5,2972 

5,28(-3) 

5,443 (-3) 
5,4426 

2,98(-2) 
3,040 
3,039 

(a) 0,13505 

('a) 0,13540 
0.135270 

( 5 )  0,135275 
c) 0,135276 

6,01 (-2) 

5,87 (-2) 
6,01 (-2) 
5,982(-2) 

0,124 

0,121 
0,127 
0,1232 

0,276 
0,283 
0,2861 

0,547 
0,566 
0,5727 

1,026 
1,060 
1,U56 

0103 
(0>48) 

5,03(-3) 
(0'08) 

0,01 
(0316) 

0,02 
(0,321 

( a )  0,243 I(;) 0,239 
(c) 0,240 
(e) 0,2401 

(a) 0,2937 

a) 0,6600 
0,4 

e) 0,6676 

(a) 0,14184 

I ('a) 0,14275 
(b)0,14251 

(b) 0,142606 
(c)O,142619 
(e) 0,142619 

'(a) 0,166694 
' 

(b) 0,162654 

( 6 )  
(c) 0,166094 
(e)0,166C94 

('a) 0,2063 1 (c) 0,2067 (e) 0,2067 



FIG. 2. Reduced width y, [see (3.10) ] for ns levels in the 
potential (3.4). The points for which a = 1 are denoted by 0. 
The solid curves are from an exact calculation using (3.9), 
and the dashed curves are obtained from the Gamov formula 
(3.8); u =  (g/g, )'I4. 

with the curves in Fig. 2). (p~<Oforr,<r<r,) .Hereandbelow,f i=m=c= 1,mis 
We now consider the Stark effect that corresponds to the mass of the particle, E is the energy of the particle in units 

the multidimensional problem with f = 2 degrees of free- of mc2, and I is the orbital angular momentum (the Langer 
dom. Taking (2.6) into account, we find correction has been taken into account). 

Consider the case of a Coulomb field (( = Za - Z /137, 
'll 

4 w z  dl1 where Z is the charge of the nucleus). For 
c =  , ~ , , = 2  J-=4n3TZ, 

'Ji'Tz+~z'Ci 
(4.9) 

7," ps 

r ( n , n , m )  = ar exp (-2na), (4.10) 
n3 ( ~ i T z + ~ z ~ i )  

where, according to (2.5) and (2.6), 

and the k, ( q )  are defined in ( B  1 ) . 
The results of the calculation for the state 19,0,0) in the 

hydrogen atom are presented in Fig. 3. The solid curve is 
calculated by means of PHA and agrees well with the results 
of Kolo~ov;~' the dashed curve is calculated from Eqs. 
(4.10) and (4.11) withp = 0. It follows from the figure that 
the generalized Gamov formula (2.3) has a high accuracy if 
a>  1, and is qualitatively applicable down to a ~ 0 . 0 4 .  Analo- 
gous results have been obtained for the states with n = 15 
and 20. 

5. THE RELATIVISTIC CASE 

We shall discuss the question of the possibility of gener- 
alizing the previous approach to the relativistic region. Here 
we shall confine ourselves to the case of scalar particles and 
consider the Klein-Gordon equation in an external electro- 
static field with spherical symmetry [ V(r) = eA '(r), 
A = 0).  The quantization condition retains the form ( 1.3), 
with 

rz 

1 
a = -  5 (-pl"'''"dr = - jdr( l -  [E-V (r)]  '+ (I+ilz)2r-2)1h 

" ., n 
I 

FIG. 3. Width of thelevel (9,0,0) in an electric field I ( n  = 10); 0) points 
corresponding to the parameter values a = 1.0, 0.8, 0.6, and 0.04; a) 
points corresponding to the results of Kolosov.*' The solid curve is the 
result of the calculation by the PHA method; the dashed curve is obtained 
from Eqs. (4.10) and (4.1 1) withp = 0. 
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$ > 5 6:' = I + 1/2, it is necessary to take the finite size of the 
nucleus into ac~ount.~'-~l We set 

V (r) = 
r = - r ~ ,  

N r / r N ,  O<r<r,, 

where rN is the radius of the nucleus, and the cutoff function 
f(x) is determined by the distribution of electric charge over 
the volume of the nucleus (x = r/rN, f( 1 ) = 1, f(0) < w ). 
For $>$,, and E < - 1 there is a barrier in the effective 
potential. So long as I E I < $ /rN holds the turning points rl,2 
lie outside the nucleus; their position does not depend on the 
model of the cutoff (see Appendix C),  and 

where 

For k-0, i.e., near the boundary E = - 1, the quantity 
exp( - 2n-a) determines the exponentially small penetra- 
tion of the Coulomb barrier for slow antiparticles. On the 
other hand, for deep ( I E 1 B 1 ) levels the parameter a is al- 
most independent of the energy, and therefore the correction 
for the barrier penetration in ( 1.3) reduces to a constant. 

The equation determining the complex energies of the 
states with Re E< - 1 in the Coulomb field takes the follow- 
ing form: 

a is defined in (5.3), r, is defined in (C.l) ,  the function 
H( u ) is defined in (C  lo) ,  and f is the logarithmic derivative 
of the wave function at the edge of the nucleus [see (C4) 1. 
The value off  depends on $, 1, and the form of the cutoff 
f(x),  but does not depend on the energy (for kr, 4 1 ). Thus, 
for f(x)  = 1 we have 

where A, ($) is a function closely related to the Bessel func- 
tions [see Eq. (C5) 1. For an arbitrary model of the cutoff we 
have g($ = 0) = I + 1, and { decreases with increase of 6. 

It  is not difficult to solve Eq. (5.4) numerically. How- 
ever, in the boson case, for E-, - mc2 strong vacuum polar- 
ization arises,32 leading to screening of the external potential 
V(r). For $ > $,, the one-particle Klein-Gordon equation 
ceases to be applicable, and the problem becomes an essen- 
tially many-particle problem. For this reason, this solution 
for spinless particles is only of methodological interest. 

A different situation obtains for fermions. Owing to the 
Pauli principle, unrestricted increase of the vacuum polar- 
ization when a level intersects the boundary E = - mc2 of 
the lower continuum is imp~ssible,~' and allowance for the 
vacuum polarization leads only to relatively small correc- 
tions to the numerical values of Z,, and other physical quan- 
tities (see, e.g., Refs. 33 and 34). In this case the one-particle 

approach remains applicable even for Z >  Z,,, by virtue of 
which the derivation of an equation analogous to (5.4) is of 
undoubted interest: Such an equation would simplify con- 
siderably the calculation of the positions and widths of posi- 
tron resonances corresponding to states that have dropped 
into the lower continuum. In their basic features (with expo- 
nential accuracy) the formulas of the semiclassical approxi- 
mation for the Klein-Gordon and Dirac equations do not 
differ from each other, although in an accurate calculation of 
the pre-exponential factor certain technical difficulties arise 
(in the case of fermions); see Ref. 35. We hope to return to 
this question in the future. 

The authors are grateful to V. M Vainberg and B. M. 
Karnakov for useful discussions, and also to A. B. Shchebly- 
kin for help in the numerical calculations. 

APPENDIX A 

Consider the solution of Eq. (3.6) under the condition 
s = wl/'R ) 1, which ensures that the semiclassical approxi- 
mation is applicable. In this case the total number of ns levels 
in the potential (3.4) is large: 

[this follows from (3.7) with E = 01. Henceforth we assume 
that lel(1, where&= -E/VO=2a/s2 (VO= 1/2w2R2). 

1 ) In the sub-barrier region (En < 0, a( 1 ) Eq. (3.6), 
with the expansion (2.1) taken into account, takes the form 

i 
e [In e- (14-2 In 2) ] f - e-ana=-2v, 

sZ 

where Y = In - nol/no, and terms of order 1/&s2 have been 
discarded (therefore, the condition for applicability of (A2) 
is s - ~ ( E (  1, i.e., shallow levels, but not too close to the 
threshold E = Urn ). Solving (A2) by iterations, we find 

whence (n <no) 

The expression for I?, agrees with Eq. (2.2), but the period 
of oscillations of a particle in the classically allowed region 
O<r<r ,  = R ( l  - E'") is equal to 

As can be seen from (A4), the width of the levels here is 
exponentially small, with 
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2) The region of energies near threshold: EzO, la I 4 1. 
Taking into account the expansion 

cp (a)  ='l,i In 2-a In a- (a+ip) a+O (aZ) ,  (A71 

where a = C - 1 + 2 In 2, p= ~ / 2 ,  and C = 0.577 is the 
Euler constant, it is not difficult to see that the terms a a In a 
in (3.6) cancel altogether, and for En and T, we arrive at 
Eqs. (2.15). For the ratio 7, we obtain 

which, for En = 0, gives (2.16). For En -w > 0 neighboring 
resonances begin to overlap. 

3) Finally, we consider the sub-barrier region: 
En >O, lal%l, andp(a)  = -2n-ia+0(a- ');  seeRef. 19. 
From this we have 

E [In & - ( I +  2 In 2+2ni)] =2v, 

and for correct analytic continuation it is necessary to make 
the replacement In E-ln( - E )  + in-. Finally, we arrive at 
the equation 

the solution of which (with logarithmic accuracy) is 

&,I=-2v[A+ln A+ . . .] -I ,  

where A is defined in (A4). In this region of energies, 

Since IE,I-~v/A = 2 1 a l ~ - ~  and lal%l, we have v%A/s2, 
or n - n. )A/2n-. Thus, every resonance is still rather nar- 
row, but neighboring resonances already overlap. 

Let us make a few concluding remarks. 
a )  The formulas (A3) and (A10) for E; are analogous 

to each other, but the corresponding expressions for 8:: differ 
fundamentally: In the sub-barrier region [see (A3) 1 the 
widths are exponentially small, but in (A10) the width is 
only logarithmically smaller ( - 1/A) than the energy of the 
level. 

b) Consider the threshold behavior of the reduced 
widths (3.10) for n- CO. Taking into account that 
s2/2n-(n - 1/4) = (g/g, ) 'I2 and that the term exp( - 2n-a) 
in (A2) "dies out", we obtain 

' I z &  [ln E-  ( i t 2  In 2 ) ]  = (g,/g)'"--I. (A1 1) 

For g > g, the solution is real and corresponds to a bound 
state. In the above-barrier region (g < g, ), making in (A1 1 ) 
the replacement In E+ ln( - E) - in- we find 

where x = (g, - g)/g( I x J  4 1 ). Thus, the limit curve y, = , 
has a weak singularity on the threshold. 

Since in (A 1 1 ) there is no term co exp ( - 2n-a) asso- 
ciated with barrier penetration, it may be concluded that the 
usual Bohr-Sommerfeld quantization condition, analytical- 
ly continued into the above-barrier region, determines not 
only the position but also the width of levels with large n. 
This fact was discovered previously36 during construction of 
a l/n expansion for quasistationary states. 

C )  Finally, we note that the formulas of this appendix, 
although they have been obtained for the model (3.4), are in 
fact applicable to an arbitrary potential U(x), since in the 
region of energies close to U,,, ( J E ~  4 1) the potential can be 
approximated by a parabola. 

APPENDIX B 

Here we outline the derivation of the equations deter- 
mining the Stark shifts and widths of the levels of the hydro- 
gen atom in the case n) 1. 

The semiclassical quantization conditions, with 
allowance for corrections of order fi2 and fi4, have been ob- 
tained by Bekenstein and Krieger.1° Confining ourselves to 
corrections of order fi2 in these conditions, and going over to 
the scaled variables 

&=2n2E, F=n48,  p=m/n, X = ~ - ~ E ,  y = r Z  rl 

(6 and 7 are parabolic coordinates), we have 

(q = x ,  y for i = 1,2),  and 

where the integration contour encloses the turning points yo 
andy,. Forp-0, 

( E  < 0). The quantization condition in the variable x is ob- 
tained from (B2) by the replacements n2-n,, /?,-PI, and 
F+ -F.  

For rn = 0, all the integrals in (B2) can be calculated 
analytically. Going over to the new integration variable t: 

k ( t )  = [ ( I - t )  (1-5t)ltl'", 

where 

we obtain 
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Here k ' = dk /dt, and the integration contour encloses the 
branch points t = 0 and t = 1. The integral (B4) is easily 
calculated if we use an integral representation for the hyper- 
geometric function and the quadratic Kummer transform 
[see formulas 2.12(4) and 2.1(26) in Ref. 371. Taking into 
accounttheidentity k"k - 3 = 3 [ ( k 2 ) " / 2 k 3  + (k  - ' ) " I  
and discarding the total derivative in the contour integral, 
we have 

We note that Eqs. (B 10) in the l/n approximation were 
given in Ref. 38, and in the l/n2 approximation were given in 
Ref. 19, and were used in calculations of the Stark levels and 
also in the derivation of scaling relations for near-threshold 
resonances. However, their derivation has not been pub- 
lished before. 

APPENDIX C 

For E = - ( k  + 1 ) < - 1 there is a sub-barrier re- 
gion r, < r < r2, where r, and r2 are the turning points: 

r,=l;(l-pZ) [(l+k2)"+ (l+p2k2)'h]-1, (C1) 
r2=fk-' [(1+k2)"+ (l+p2k2)'h]. 

For k - 0, 

and the turning point r, goes away to infinity. In the opposite 
In the calculation of these integrals we use the same devices, limiting case the width of the barrier decreases: 
and also the relation 

ri.z=b(lrp)lk, I kl >I .  

the validity of which is easily seen by comparing coefficients 
of equal powers of z. Finally, we obtain 

If the magnetic quantum number is nonzero (but 
m (n),  in (B2) we can expand in the small parameter p; 
here it is sufficient to consider only $k2dy. Introducing the 
joining point J such that ,u2 (J( 1, expanding k2(y) for 
J < y < y, in powers of,u2, and, in the region yo < y <J, using 
the smallness of y, we find 

(the arbitrary point J drops out of the final answer). Intro- 
ducing the notation 

z,= (-1) '16PP~-~= (-1)'4P&E-2, i=l ,  2, (B9) 

we obtain the quantization conditions 
F 

pl(-~)-'f (2,)- -(-~)-"~[g(z,)-m~h(z~) 1 =v,, 
8n2 

(B10) 

However, the turning points r , ,  lie outside the nucleus so 
long as J E ) < ( l - p ) c / r ,  (we assume that 
r,gfi/mc = 1). 

F o r E =  - 1 

(X = rN/r141), and in (5.4) we have u = 0, a = CO, and 
p ( a )  = 0. The quantization condition takes the form 

where 

g= [b2- (1+1/2)2] ' A  

and the constant y' is determined from the condition for 
joining at the edge ofthe nucleus. Denoting by f the logarith- 
mic derivative of the inner (r- r, - 0) wave function, we 
have 

F For example, for f(x)  = 1 (the simplest cutoff model, corre- 
Bz(-~)-'~f (zz)+= (-~)-"[g(z~)-m~h(z,)] =vZ, sponding to charge concentrated on the surface of the nu- 

O I L  

Bi+Pz=l, vi= (ni+'lz)/n 
cleus) f is given by Eq. (5.5), in which 

A, (z) =r (v+I) (z/2)-"JV (z), 
(pi are the separation constants). These equations have been (C5) 

solved numerically.19 Here it is possible either to discard the A,(z)=A,(-z) =I-z2/4(v+l) + . . . , 2-0. 

terms a P/8n2 (the l/n approximation) or to solve this sys- 
tem in complete form (the l/n2 approximation). From this follows the rapidly convergent expansion 
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where 

and c, - f 2k fo rk -+  co , where f ,  is the first positive zero of 
the Bessel function J , ,  ,,, (6) : fo = a, 5, = 4.493, ..., 
f, = 1 + 1.8561 + 0( 1 ) for 1) 1. Thus, the coefficients c, 
decrease rapidly with increase of k (especially for large I), 
owing to which, for the calculation of the logarithmic deriv- 
ative {up to f - 1, it is convenient to use the series (C6). 

In the general case [an arbitrary form of the cutoff 
f (x) ]  these coefficients can be calculated using formulas 
given in Ref. 39. For example, for f(x)  = (3 - x2)/2 
(which corresponds to a uniform distribution of charge over 
the volume of the nucleus) we have 

The solution of Eq. (C3) makes it possible to calculate 
for each model of the cutoff the value Z = Z,, at which the nl 
level drops down to the boundary E = - 1 (the so-called 
critical charge of the n u c l e ~ s ~ ~ - ~ ~  ) . 

For E > - 1 we obtain 

where 

2 (1-ln 2)+'/,,u+ . . . , u+O, 
1-tab-'/,t In t+O (t), u=l-t+ l .  (C10) 

Here, the contribution y' to the quantization condition from 
the region inside the nucleus has the same magnitude (C4) 
as in the case E = - 1. 

' )  The other "decay channels" either are closed (ai  = m and (a, ) = 0) or 
in them exp( - 2?rai) <exp( - 27ra,). Systems satisfying special sym- 
metry properties may constitute an exception. 

2, The same is also true (for physically reasonable potentials) in the case 
of the discrete spectrum (see, e.g., Ref. 22). 

" See also Refs. 19 and 21 and the references indicated therein. 
4'  A correction for barrier penetration is introduced only in the second of 

Eqs. (B10). This is because the electron tunneling occurs along the 
coordinate 7, while the effective potential U, (6) is a blocking potential. 

" This follows from the fact that solution of system (B 10) remains valid at 
F< F. (or 0 <z, < 1 ). The z, = 1 value corresponds to the classic 
threshold of F ionization. Numerically F. = 0.2895 and 0.3155 for 
states 19,0,0) and 119,0,0). 
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