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A quasistatic stable state of a scalar field in a closed Friedmann universe with a periodic 
distribution of energy density along the radial coordinate is described. The classical solution is 
stable by virtue of the angular nature of the pseudo-Goldstone scalar field (the self-effect of this 
field is described by a cosinusoidal potential). As a result, there is a conserved topological number 
(the winding number). The solution found here is linked with a possible periodicity in the 
distribution ofgalaxies [T. J. Broadhurst et al., Nature 343,726 ( 1990) 1. Physically, it appears 
that this may not be a complete solution, applying over the entire closed universe. It may instead 
be only a linear metastable fragment of this entire solution, which decays because of smearing at 
the ends after a sufficiently long time. 

1. INTRODUCTION 

A recent study of the redshifts of distant galaxies has 
revealed a surprising periodic structure (with a period of 
128h - '  Mpc) in the distribution of these galaxies.' This 
structure was so unexpected that the first attempts to explain 
it invoked a hypothesis of a periodic time variation in the 
fundamental  constant^.',^ 

The existence of a large-scale cosmological structure in 
the distribution of matter, with a period on the order of 100 
Mpc, has been debated in the literature for several years 
now."7 Two theoretical ideas which have been advanced to 
explain possible large-scale irregularities have been brought 
into this debate. 

The first is the hypothesis of a late phase transition 
(Z 5 lo3, T 5  3000 K )  , which resulted in the formation of 
irregularities in the distribution of galaxies.526 Since by as- 
sumption the transition occurs at an epoch at which photons 
have already separated from matter, the appearance of irre- 
gularities in the distribution of matter does not contradict 
the severe limitation on the absence of irregularities in the 
microwave background radiation. 

The second idea is that a scalar field is responsible for 
the irregularities in the distribution of matter. At a certain 
temperature To below the temperature at which radiation 
and matter separate ( To < 3000 K )  , say To - 30 K (z - lo),  
this scalar field separates out into a condensate. The charac- 
teristic dimension of the structure at the time of the phase 
transition in this case is the Compton wavelength of the cor- 
responding particles, e.g., m - ' - 10 Mpc (m - 10 - 30 eV). 
During the expansion of the universe, this dimension then 
increases to - 100 Mpc. If the phase transition occurs at To, 
the height of the barrier in the Higgs potential, Vo, must 
evidently be - T:. On the other hand, we have Vo =:mZv2, 
where v is the vacuum expectation value. We thus find the 
estimate v z  1016 GeV for To =: 30 K and m =. 10 - 30 eV. This 
value corresponds to the Grand Unification scale. It is as- 
sumed that the irregularities in the distribution of matter 
arise from a gravitational coupling of matter with the scalar 
field. 

Opinion is divided on just how the irregularities of the 
scalar field arise. Wa~serman,~ who originally introduced 

the hypothesis ofa late phase transition, discusses the forma- 
tion and growth of bubbles of the new phase which arise 
from perturbative fluctuations. Hill et who described 
the dynamics of the phase transition in detail, discuss do- 
main walls between different vacuums of the scalar field. 
Finally, Press et ~ 1 . ~  discuss the large-scale structure form- 
ing as a result of the dynamics of wave packets made up of 
soft bosons, with a wavelength on the order of tens of mega- 
parsecs. None of these mechanisms predicts the regular peri- 
odic structure which is apparently observed experimentally. 

We will not examine here the dynamics of the process 
by which the irregularities develop. Our purpose is instead to 
show that it is possible in principle that there exists a quasi- 
steady scalar field of a pseudo-Goldstone type, periodic in 
the proper distance and having a stable energy distribution, 
which has not been described previously. 

We begin with a description of a model whose solution 
applies to the entire universe. In this model, a closed uni- 
verse is "wrapped up" by a scalar field with a number of 
periods which does not change in the course of the expan- 
sion. This model makes particularly clear the topological 
reason for the stability of the solution (this stability is also 
tested explicitly below), but it ignores the horizon problem 
and also the pronounced distortion of the solution by cosmo- 
logical expansion at large distances. We will be discussing 
the possible existence of "fragments" of the solution, stable 
with respect to field fluctuations in the range of the radial 
variable but unstable with respect to variations of the field at 
the ends of the interval under consideration. Such fragments 
might survive a fairly long time; they might give rise to a 
periodic structure in the distribution of galaxies and then 
decay. 

For strict stability both the closure of the universe and 
the angular nature of the field of the Goldstone type under 
consideration are important. Specifically, we will be discuss- 
ing a model with a self-effect of the scalar field described by 
the potential 

The angular nature of the field @ is built into ( 1). It has also 
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been demonstrated that the corresponding solution for a 
i1Q4 interaction is not stable. 

The period in the radial distribution of the energy den- 
sity of the field @ is proportional to the Compton wavelength 
of the particle, m - '. The proportionality factor changes 
(specifically, it increases) in the course of the expansion. If 
we assume that its value is of order unity at the time of the 
phase transition, then we can set, for example, m - ' z 10 
Mpc, as discussed above. Expansion might have increased 
the distance between galactic shells to - 100 Mpc by the 
present time. In turn, one might attempt to identify the aver- 
age energy density of this classical solution with the dark 
matter. In order of magnitude, we can estimate the density p 
at the time of the phase transition to be pzm2v2z2 .  10- 29 

g/cm3 for m = eV and v = 1016 GeV. This value 
agrees with the critical density. 

Simply explaining the existence of a particle with a mass - eV requires invoking some specific mechanism. We 
will mention one possible scenario for the appearance of 
such a vanishingly small mass. For several years now we 
have been discussing the possible existence of a "massless 
axion": an arion, i.e., a Goldstone boson which is unrelated 
to the axial QCD anomaly.' Despite the word "massless," 
an arion might have a very small mass by virtue of a contri- 
bution from a weak anomaly through a triangle diagram 
with an emission of Wbosons. One might imagine that, as a 
result of instanton effects, the mass of an arion would turn 
out to be 

m2=Cmw '(x) ' erp (-8n2/gw2). 
gw" 

where the dimensionless coefficient C is definitely smaller 
than unity (it includes, in particular, the small coupling con- 
stant describing the coupling of the arion with quarks and 
leptons). Substituting numerical values of m, and g ,  into 
(2) ,  we find 

Although the resulting mass is probably slightly smaller 
than that required, it is in qualitative agreement with the 
vanishingly small value which we need. 

2. CLASSICAL STATE OF THE SCALAR FIELD 

We consider the self-interacting scalar field ( 1 ) in a 
closed universe with a metric 

ds2=dt2-a2 ( t )  [ ( d ~ )  
+ sin2 x ( (do) '+sin 0dq2) ] . 

As usual, the radial coordinate is r = a sin X, and the "prop- 
er distance" is d = ax. We seek steady-state solutions 
@ = Q(x) which depend on the one coordinatex. Actually, 
of course, we can speak only in terms of quasisteady solu- 
tions, since the scale factor a = a ( t )  depends on the time. 
For the time being we ignore the term with the second time 
derivative of the field Q, although we will see later on that 
this approximation is, strictly speaking, legitimate only for 
distances smaller than the cosmological horizon. The formal 
extension of the solution found below to the entire universe 
leads to a better understanding of the topological nature of 
its stability. In discussing the physical content of the model, 
on the other hand, we will for the most part restrict the dis- 

cussion to fragments of the solution no bigger than the dis- 
tance to the horizon. The equation for Q(x) is 

---- 
Q, 

I [ i n ( )  + s i n -  = 0, (4) 
a2 sin2 x d~ v 

where m is the mass of the particle. The parameter Vo in Eq. 
( 1 ) is related to m by Vo = - mZv2. 

Below we discuss the case ma) 1. It is natural to assume 
that the Compton wavelength m - ' is much smaller than a; 
in fact, it is necessary to make this assumption. Otherwise, 
irregularities with dimensions -m - ' in the distribution of 
the scalar field would disrupt the overall uniformity and iso- 
tropy which we need for the validity of a model with metric 
( 3  ) . The solutions described below, with a period of order 
unity in the variable p = max, correspond to a period of 
order m - ' in terms of the proper distance d = ax. 

Under the condition ma) 1, Eq. (4) simplifies, reduc- 
ing to the planar case: 

d29 Q, --- + sin g=O, 9 = - 4- n. w U 

Equation (5)  holds over the entire range of the variable X, 
except in small neighborhoods of the poles, O<X < 6  and 
r >X > T - 6, 6- (ma) - ', in which sin x tends toward 
zero. In this region, however, we have either s i n x z x  or 
sin x z T - X, and Eq. (4) becomes the radial sine-Gordon 
equation: 

Equations (6a) and (6b) are obviously the same as (5)  un- 
der the conditionsps 1 andp1% 1. We first discuss a solution 
of Eq. (5 ), and then match it with the solution of the refined 
equations (6) .  Introducing the half-angle q, = $/2, we easi- 
ly find a first integral of Eq. (5)  : 

where the integration constant C is chosen to satisfy C> 1, 
O<k< 1. From (7) we immediately find 

P-P cp = amsinsn (f ) , 
where p and sn are the elliptic amplitude and elliptic sine, 
respectively. We have chosen the origin of coordinates in 
such a way that p = 0 at p = po . We now take account of the 
fact that the solution (8)  is not valid near the values x = 0 
and x = r. AS we mentioned above, we should use Eqs. (6) 
in this region. As can be seen from Eq. (6a), in the limitp -0 
we have $ = 2p-a + b /p. We can evidently restrict the 
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analysis to the nonsingular solution with b = 0, since the 
singular case corresponds to an infinite total energy. The 
solution which we need then depends on only one integration 
constant, so the matching of the solution (8)  with the small- 
p region should determine the relationship betweenp, and k. 
Fortunately, this relationship can be found without explicit- 
ly solving Eq. (6a). It can easily be seen from Eq. (6a) that a 
nonsingular solution which tends toward a constant value in 
the limitp -0 is an even function ofp (it can be expanded in 
a series in even powers ofp) . Since it must become (8)  in the 
limit p) 1, we have the condition 

We then find 

where K(k)  is the complete elliptic integral of the first kind. 
Under condition ( lo),  Eq. (9) is satisfied, since the elliptic 
sine changes sign over a displacement equal to the half-peri- 
od 2K. The refined version of solution (8) is thus 

Correspondingly, under the condition p' = (a - x)ma  ( 1 
we find from Eq. (6b) @ - A  + B /pl. Again, we have to re- 
strict the discussion to the solution with B = 0. The require- 
ment of even parity in p' then gives us, in place of (9) ,  

nma 
Sn[$? :+~-K(k ) ]=sn [$+- -  k k K(k)]. 

From this result we find the "quantization" condition on k: 

nma 
-= 
kN 

2NK(kN), 

where N is an integer. 
The solution ( 1 1 ) is periodic not for the field q, itself but 

only for sin p. However, this is the physical quantity, by 
virtue of the Goldstone nature of the field q,. For example, it 
is a simple matter to calculate the energy density E corre- 
sponding to solution ( 1 1 ) : 

Here E, is the energy density of the vacuum, which corre- 
sponds to Q, = 0 for our choice of the potential [see ( 1 ) 1 ,  
and which has the value E, = - m2v2. 

We see from ( 14) that the period in the distribution of 
the energy density in the coordinatep is 2K(k) k. This corre- 
sponds to a period 

in the proper distance. 
The period AX (and also Ad) increases as a function of 

the modulus of the elliptic sine k. In the limit k-t 1 we have 

K (k) -ln(4/k1), kt1=l-ka, 

i.e., K(k)  - oo as k-, 1. At k = 1, we are left with only one 
kink, instead of an oscillatory solution. This case corre- 
sponds to a situation in which the total energy of this classi- 
cal solution differs from the vacuum energy by a finite 
amount, and the solution itself is a soliton (a  domain wall) : 

cp=arcsinth (p-const) . (16) 

The average energy density ( 1 1 ) for the solution under 
consideration here can be found from ( 14) easily, by inte- 
grating over the period of the elliptic sine: 

Here E (k )  is the complete elliptic integral of the second 
kind. 

3. STABILITY OF THE CLASSICAL SOLUTION 

The classical solution which has been found is an extre- 
mum of the action. We can show that this solution realizes a 
local minimum of the energy in functional space. To do this, 
we begin with an explicit calculation of the second variation 
of the energy, and we show that it is positive. We then turn to 
the topological reasons for the stability of the solution ( 1 1 ) . 

It can be seen from ( 14) that the variation of the energy 
stored in the intervalx,, X, + Ax is proportional to the inte- 
gral 

In ( 18), we are left with the variations of Q, (x) which 
depend only on the variablex, since the dependence of SQ, on 
the variables 0 and p simply increases the value of S2E: The 
corresponding terms are proportional to (d(SQ,)/d$) and 
(d(S@)/dp)2. In addition, we are assuming 
SQ,(xo ) = SQ,(,yo + AX) = 0. We discuss this condition be- 
low. 

To study the sign of the quantity S2E, we need to solve 
the eigenvalue problem for the operator in Eq. ( 18). The 
pertinent differential equation is 

where the eigenvalues E,  are proportional to the eigenvalues 
A, of the operator - d '/a2dx2 + V "  (Q,) : 

in the angular variable x or to a period 
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Equation (19) is analyzed in detail in the Appendix. 
Here we write out the results derived there. The most impor- 
tant of these results is that all the eigenvalues satisfy E, >O. 
This makes the solution stable. 

Equation ( 19) is a Schrodinger equation with a period- 
ic potential. Accordingly, we replace the discrete variable n 
by a natural continuous variable which numbers the energy 
levels, the quasimomentump. We have to follow the changes 
in E = ~ ( p )  as the quasimomentum increases from 0 to W .  

The solution of this problem is based on two equations de- 
rived in the Appendix, which express the quasimomentump 
and the energy E in terms of the complex auxiliary parameter 
a: 

1 p = --- 
iK (k) [ a%(o ) -o%(a ) l ,  

(20) 

The notation used in (20) is standard in the theory of elliptic 
functions. The function 9' (a) is the elliptic Weierstrass 
function (of second order). Its periods are 2w and 20'. They 
are related to the periods 4K(k) and 2iK ' (k )  of the function 
sn u in Eq. ( 19) by the equations 

In turn, el and e, are the values of the same Weierstrass 
function at the points w and w': 

el=@ (o),  e3=@ (o ' ) .  (22) 

The ratio of the numbers el and e, is uniquely determined by 
the parameter k: 

The numbers el and e, can be multiplied by a common fac- 
tor, on which the physical quantities do not depend." The 
function f in (20) is the well-known Weierstrass f -function. 
Consequently, within this latitude associated with the multi- 
plication of el and e, by an arbitrary factor, all the functions 
on the right side of Eqs. (20) are determined uniquely. 

The two-band spectrum shown in Fig. 1 corresponds to 
Eqs. (20). In the lower allowed band we have O<E< 1 - k ', 
and the quasimomentum changes from zero top = .n/2K. In 
the band lying above the gap, 1 - k < E < 1, the quasimo- 
mentum is a complex quantity. The lower edge of the upper 
allowed band again corresponds to the valuep = .n/2K, and 
the entire upper allowed band corresponds to a variation of 
the quasimomentum from .n/2K to w . The details associated 
with the derivation of this spectrum are given in the Appen- 
dix. 

We thus see that all the eigenvalues satisfy &(p))O. 
Correspondingly, the second variation of the energy, S2E, is 
positive [Eq. ( 18) 1. The system is therefore locally stable. 
We turn now to the topological reason for this stability. 

In calculating the energy variation S2E, we did not vary 
the function at the ends of the integration interval. We set 

[this approach made it possible to discard the term outside 
the integral in the course of the integration by parts in Eq. 
( 18) 1. These variations might have made the solution unsta- 
ble. Actually, this solution found for the linear region of the 
range of the variable X, xo <x<xo + Ax, is not stable if the 
ends are not fixed. Taken by itself, this solution starts to 
become smooth at its ends and ultimately spreads out. This 
behavior can be seen particularly clearly when we look at the 
particular case of a field variation corresponding to a change 
in the parameter k: 

The energy density in ( 14) changes explicitly in the course 
of such variations ( d ~ / d k  #O), and it decreases with in- 
creasing k (with increasing period). At first glance, this fact 
would seem to be totally inconsistent with the assertion that 
our solution corresponds to an extremum of the energy. The 
resolution of this paradox is that the discarded "surface" 
term 

which arises as a result of the variation of the ends turns out 
to be proportional to the "volume" in this case. In other 
words, it is proportional to the length of the interval, because 
we have d p  /dk-u at large u. As a result, for the energy 
density ~ ( k )  the quantity Se(k)/Sk turns out to be finite, as 
would follow from the explicit expression ( 14). 

We thus see that the field variations at the ends of the 
range of integration, S@(X, ) and 6@(x0 + AX), are dan- 
gerous. Actually, however, we are dealing with a cyclic vari- 
a b l e ~ ,  so there are no "ends" for a closed universe. We can 
assume thatx varies over the interval O<X < 2.n (in this case, 
of course, the range of p must be shrunk: O<p < T ) .  The 
valuesx = 0 andx  = 2.n then correspond to the same phys- 
ical point. Over the entire range ofx, the field p,  which is of 
an angular nature, must undergo a whole number of rota- 
tions: 

For the solution in ( 1 1 ), which has a period 

4 K ( k ) k  AX=-, 
ma 

Gap 
/ 

p = &  @ = W + U : E = ~ -  k :  ~ = c l l U  FIG. 1 
ZK' 

= 
p=O, cx=w, E = U ,  p = d n u  
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along the variable X, the number N is found from the equa- 
tion 

Equation (24) determines a discrete set of eigenvalues 
k = k,, which is the same as the set (13) found from the 
condition that the solution not be singular at the poles. At 
the values k = k,, the Goldstone field p performs a map- 
ping n, (S, ) = 2,. The quantity Nis obviously the winding 
number, which makes our solution stable. 

The rigorous stability of this model solution thus results 
from both the topology of the metric of the closed universe 
and the Goldstone nature of the field @. In particular, it is 
obvious that there is no such stability for the interaction 
La4, for which the field is not of an angular nature. This 
point is demonstrated clearly in the Appendix through an 
analysis of the spectrum of the corresponding differential 
equation. 

For the solution which we have found, with the asymp- 
totic behavior (1 1 ), the poles-i.e., the points p = 0 and 
p = nma-are special physical points: the "poles of the uni- 
verse." Specifically, in a frame of reference with origin at the 
point p = 0 (or p = nma), the solution is spherically sym- 
metric, while in other frames of reference, e.g., one moving 
with the earth, this is not the case. A simple geometric model 
corresponding to this situation would be the surface of a 
sphere on which lines of latitude are inscribed. The spherical 
surface corresponds to the closed universe, and the lines of 
latitude correspond to (for example) lines of a maximum 
energy density. For a marked globe of this sort, the poles 
would obviously have an objective meaning. 

We can write explicit expressions for the distribution of 
the energy density in two frames of reference. In the frame 
with origin at the polep = 0 we have, from Eq. ( 14), 

("," e-eo=2mzV'[E..$ - 2 snZ - arcsin - K (k) , 
a 11 

where r = a sin x is the radial coordinate. In a frame of ref- 
erence moving with the earth, on the other hand, the density 
distribution is found through a shift of r by an amount - r,, 
where r, is the coordinate of the pole for observation on the 
earth: 

Substitution of the magnitude of the right-hand side of this 
expression into Eq. (25) gives us the distribution of the ener- 
gy density for an observer on the earth. For the immediate 
neighborhood ( r  g r,, a ) ,  we find the simple formula 

Here 8 is the angle between the ray along which the observa- 
tion is made and the direction to the pole of the universe. The 
observation of an angular variation of the density oscillation 

period would be direct proof of the existence of a special 
point (or at least a special direction) in the universe. 

4. IS A REAL COSMOLOGICAL SCENARIO POSSIBLE? 

It appears that the classical state of a Goldstone field @ 
described in the preceding sections of this paper might be 
capable in principle of giving rise to large-scale cosmological 
structure. However, two circumstances seem to rule out a 
direct extension of the solution ( 11 ) to the entire universe 
for a real cosmology. 

In the first place, a simple estimate of the second deriva- 
tive of the field @ with respect to the time [more precisely, 
a - 3a :(a3@) 1, which we discarded from Eq. (4),  leads to 
the following for the case of the solution ( 11 ): 

(in this estimate we assumed x z 1, i.e., p 9 1 ). 
We see that 6' 2@/at can be discarded in the field equa- 

tion only for distances 

i.e., distances smaller than the cosmological horizon. 
Second, it is generally not clear how we are to reconcile 

a late phase transition to a highly ordered state throughout 
the universe, as described above, with causality. 

However, there is still the possibility that a fragment of 
this solution will form in some region of the range of the 
variable X-in a region whose linear dimension d = a x  is 
smaller than or on the order of the distance to the horizon. 
As we learned in the preceding section of this paper, such a 
solution would be unstable at the ends of the interval, but it 
might have a fairly long lifetime. In particular, it is obvious 
that this solution would at any rate be no smaller than d /c, 
where d is the length of the region under consideration. Ac- 
tually, the lifetime could be even longer, because the "burn- 
ing" of the periodic region of the field starts from the ends 
and propagates at a velocity z c .  The ends themselves, how- 
ever, move away from the observer by virtue of the cosmolo- 
gical expansion. The velocity at which they do so is compara- 
ble to c if the region has a length comparable to the 
dimensions of the horizon. It is for this reason that we cannot 
ignore the quantity a2@/at in the field equation at such 
large distances. It thus seems natural that for fragments with 
dimensions on the order of the cosmological horizon the ex- 
pansion would increase the lifetime with respect to a decay 
coming from the ends. A quantitative description of the be- 
havior of the field would of course require solving the equa- 
tion in which the term a 2@/dt is retained. 

The question now is whether, over the lifetime of the 
fragment, the gravitational coupling of the field @ with mat- 
ter would lead to the formation of a periodicity in the distri- 
bution of galaxies. This possibility would appear to be ruled 
out if the irregularities caused in the distribution of the total 
energy density by the presence of the field were sufficiently 
large: Sp/p- 1 (i.e., if the energy density stored in the field 
were not small in comparison with the total energy density ). 
An estimate in the Introduction to this paper showed that 
this case is quite possible. After periodicity was established 
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in the distribution of galaxies, the classical field itself might 
dissipate. 

I wish to thank Z. G. Berezhiani, V. K. Dubrovich, 0. 
V. Kancheli, and N. G. Ural'tsev for useful discussions. The 
decision to write this paper arose from a conversation with J. 
Bjorken, to whom I also extend my sincere gratitude. 

APPENDIX 

In this Appendix we analyze the differential equation 
( 19). Although some of the material below can be found in 
the corresponding mathematical literature (e.g., Ref. 9),  we 
will point out some details for readers who are not intimately 
familiar with the theory of elliptic functions. 

Equation ( 19) is a Lam6 equation in so-called Jacob 
form. In general, this equation is 

d2$ --+ [h -m (m+l)k2 sn2 u]$=O, 
duZ 

(A1 

where m is an integer. We are therefore dealing with the 
particular case m = 1. 

The theory of periodic solutions of the Lam6 equation is 
well developed.' Let us assume that a solution is periodic 
with an interval 2pK, wherep is an integer, and K = K(k)  is 
the complete elliptic integral (4K is the period of the func- 
tion sn u) .  Within one period, the solution can havepq zeros, 
where q is some other integer (or q = 0).  Finally, this solu- 
tion can be an even or odd function of the variable u - K. We 
denote by Ec4, (u )  solutions which are even with respect to 
u - K and which have pq zeros over one period, and we de- 
note by Es4, ( u )  the corresponding odd solutions. These are 
the so-called Lam6 polynomials. It follows from the theory 
that there are in general 2m + 1 Lam6 polynomials, so that- 
for the case m = 1 we have three such polynomials: 

$,=EC,~ (u)  =d n u, F.=O, 
$ l=E~I ' (u)=cn u, ~,=1-k2, (A21 

$ z = E ~ I i ( ~ )  =sn u, ~ , = 1 .  

The other solutions cannot be represented by finite polyno- 
mials of sn, cn, and dn. 

The existence of a solution $o with a zero energy is 
obvious from general considerations. This solution is a 
Goldstone degree of freedom, which corresponds to the pos- 
sibility of a general translation of the classical field. It is 
proportional to the derivative of the classical field with re- 
spect to the coordinate u: 

q lo= -= - (  d.p arcsinsn u) =dn u. 
du du 

Physically, Eq. (19) may be thought of as a Schro- 
dinger equation with a periodic potential, with a period of 
2K in the variable u. The first of solutions (A2), &, has the 
same period of 2K, while the other two solutions, $, and $, , 
change sign when u is shifted by the "lattice constant" 2K. 
The meaning here is that these solutions correspond to the 
value 

of the quasimomentum. 
We will see below that $, corresponds to the upper edge 

of the lower allowed band, and $, to the lower edge of the 

upper allowed band (Fig. 1 ). 
For a comprehensive analysis of the spectrum, we need 

to find the Bloch functions for Eq. ( 19) for arbitrary values 
of the quasimomentum. For this purpose it is convenient to 
rewrite Eq. ( 19) in so-called Weierstrass form. 

The elliptic sine in Eq. ( 19) can be expressed in terms of 
the Weierstrass function 9 (Ref. 9 )  : 

(el-e3) ''> 
sn (u, k )  = - y= (e,-e3)-"u. 

[@(~)--e,l '"  
(A51 

The function 9 ( y )  is a second-order elliptic function with 
periods of 2w and 20'. Here we have the parameters 

where w, = w, w, = w', w, = - w - w'. Since 
P i ( w a  ) = 0, the function [ 9 (y) - e, ] ' I2 has no branch 
point at y = w, . The ratios of the numbers e, are determined 
by the modulus k of the elliptic sine: 

Here 

and the common factor in e, is not determined. However, 
physical quantities do not depend on it [the right side of 
(A5) is invariant under the substitution e, -+ilea 1. 

If we want the function 9 to appear in the numerator, 
rather than the denominator, of the resulting differential 
equation, we should introduce yet another shift of the vari- 
able, by an amount equal to the second half-period of the 
elliptic sine, iK ' [K ' = K( k "), k " = 1 - k 2 ] .  We assume 

u= (e,-e,) '"z+iK' 

Then 

where 

According to (A8), we can rewrite Eq. ( 19) as 

Equation (A9) is a Lam6 equation in Weierstrass form.' 
The general solution of this equation is" 

Here < and a are the Weierstrass functions 

and (as we will see below) the parameter a specifies unam- 
biguously the value of the quasimomentum. It is related to 
the "energy" H by 
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To verify that (A10) is a solution of (A9), it is sufficient to 
substitute (A10) into (A9) and to use the known identities 
for Weierstrass functions: 

The function a ( z )  is an entire function, which has zeros at 
the points 2mw + 2nw1, where m and n are integers which 
are not simultaneously zero. Consequently, $ as a function 
of u has poles at 

These poles never reach the real axis; i.e., for real values of u, 
the field $ is a finite quantity. 

To find the quasimomentum corresponding to a certain 
value of the parameter a ,  it is sufficient to find the factor 
which the function $(z )  in (A10) acquires under a shift 
z-z + 2w, which corresponds to a shift u - u + 2K. Using 
known properties of the Weierstrass  function^,^ we easily 
find 

By virtue of the definition of the quasimomentump, the ex- 
ponential factor in (A13) corresponds to a factor of 
exp (2iKp). We thus have 

1 
P (a).= - [ a t ( o )  -of  ( a )  I .  ZK (A141 

On the other hand, from Eq. (A1 l ) ,  along with (A9) and 
(A6), we find the following expression for the energy ~ ( p )  
(the discrete parameter n is being replaced by the contin- 
uous parameter p )  : 

Let us assume that a runs along the boundary of the 
first quarter of the fundamental parallelogram of periods 
[(1/4)FPP] (Fig. 2).  As a varies from 0 tow, the quantity 
p (a) remains purely imaginary, since f ( a )  is a real function 
on the real axis. For a = w, the quasimomentum vanishes: 
p = 0. We see from (A15) that in this case we h a v e ~ ( 0 )  = 0 
[ .!? (0) = e ,  1. The point p = 0, E = 0 corresponds to the 
lower edge of the first allowed band in Fig. 1. Using the 
relations between Weierstrass functions and the relations be- 
tween the latter and elliptic Jacobi functions, we can easily 
show that the corresponding wave function is proportional 
to $,(u) = dn(u, k), which is the same as (A2). 

We now assume that a varies along the imaginary axis, 
from the point a = w to a = w + w'. It is easy to verify that 
on this interval the quantity p ( a )  is real, with the value 

1 
p(a)=- [Imag(m)-0 Img(a) l .  

K 
(A161 

Expression (A16) follows from (A14) if we note that, by 
virtue of the symmetry properties of the function c ( a ) ,  

FIG. 2. 

0' 

' 

its real part remains constant as a varies from w to w + w'. 
We easily find from (A161 that the value of the quasimo- 
mentum changes from p(w) = 0 to p(w + w') = r/2K on 
this interval. The latter conclusion follows from the symme- 
try properties of under a shift of its argument by an amount 
20': 

Hence 

j p = r /2K + imaginary part 

In addition, from the Legendre relation we have 

P-R/ZX - 

p is real 

P-=- - 

With regard to the value of the energy, we note that we have 
E ( W )  = 0 and 

p = X / ~ n  

O*p*Ir/Zx 

p is real 

p=o - 

I t  is easy to show that the wave function corresponding to 
the upper edge of the first allowed band is $ = cn u. 

As we continue to move along a, from a = w + w' to 
a = w', the value of the real part o f p ( a )  remains constant: 

p is purely imaginary 

However, p ( a )  has an imaginary part. This interval corre- 
sponds to the gap 

At a = w', the upper allowed band begins. At this point the 
quasimomentum again becomes real (and equal to ?r/2K), 
and the wave function is $ = sn u. 

Finally, as we move from the point a = w' to a = 0, the 
energy increases from unity to infinity, while the quasimo- 
mentum changes from r/2K to infinity (remaining real). 
Consequently, as we have already asserted, all the eigenval- 
ues ~ ( p )  are nonnegative. 

The situation is different in the /2a4 theory, in which, by 
virtue of the topological arguments presented above, we 
would not expect all the eigenvalues to be positive. Let us 
assume 

so that the sign of the mass corresponds to spontaneous sym- 
metry breaking (@ - - @). Instead of the sine-Gordon 
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equation in this case we have the equation 

The general solution of this equation can be written in the 
form 

The differential equation for excitations, equivalent to ( 13 ), 
is 

d21p" - + (e,+l-kZ-6k2 sn2 u)$,=O. 
du' (A201 

The zeroth mode, which corresponds to the eigenvalue 
E = 0, is 

It is obvious at the outset that this solution could not 
correspond to the smallest eigenvalue, since it has a zero on 
the periodicity interval of the potential; i.e., it is a function of 
Esi ( u )  (see the discussion above). By virtue of the Sturm 
oscillation theorem,'' there must exist a solution with a 
smaller (i.e., negative) eigenvalue. This solution is written 
out explicitly in Ref. 1 1 : 

The corresponding eigenvalue is 

The /2Q4 theory thus has no stable classical solution 
equivalent to that which we have been discussing in the pres- 
ent paper. 

" If e, -Ae,, then w, w'-A - "'w, A - I/' w ' , and Eqs. (20) remain the 
same in form if we redefine a parameter: a- A - '/'a. 
Note added in proof; 30 May 1991. Unfortunately, recent work has 
shown that Cin (2),  (2') is zero for arion models. 
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