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For the example of a spin nematic, a procedure for going over in a well defined manner to a Bose 
representation for quantum SU(3 ) Hamiltonians is developed using a formalism with an 
indefinite metric and pseudo-Hubbard operators. An important aspect of the theory is that the 
finiteness of the number of physical states is taken into account. This is achieved by the 
introduction and systematic use of a metric operator, for which a simple form in terms of Bose 
operators is proposed. It is shown that in this approach the quantum Bose analog of the 
Hamiltonian is a Hermitian operator. This circumstance has removed a number of fundamental 
contradictions that have arisen previously when a Bose analog for the Hamiltonian has been 
obtained by essentially regarding the Hubbard and pseudo-Hubbard operators as identical and 
ignoring the fact that the number of physical states is bounded. For the spin-nematic state of a 
magnet with S = 1, integral equations determining the basic characteristics of the system are 
obtained with allowance for anharmonic effects and are solved in analytic form. This has made it 
possible, in the framework of a nonlinear theory, to write expressions for the two branches of the 
quantum excitation spectrum in explicit form. The character of the renormalization of the 
spectral parameters that is associated with the presence of zero-point quantum oscillations in the 
system is studied. The renormalization of the critical field in the transition of the system from the 
spin-nematic state is calculated analytically. 

1. INTRODUCTION 
In the development of the quantum theory of magneti- 

cally ordered systems several ways of going over to a quasi- 
particle description have been f~rmulated. '-~ At the basis of 
these methods lie the so-called representations of spin opera- 
tors in terms of Bose operators creating and annihilating 
excitations at individual lattice sites. The best known repre- 
sentations are the Holstein-Primakop and Dyson-Ma- 
leev6f7 representations. Recently, new transformations have 
appeared, among which we mention the Goldhirsch trans- 
f o r m a t i ~ n , ~ . ~  the Baryakhtar-Krivoruchko-Yablonskii rep- 
re~entation,'~," which expresses the spin operators in terms 
of Bose and Fermi operators, and also the Belinicher-L'vov 
representation.12 The current state of theory devoted to con- 
structing Bose analogs of spin Hamiltonians and to taking 
systematic account of interaction in a magnon gas is reflect- 
ed in the review in Ref. 13. The Bose-description methods 
mentioned turn out to be adequate if the spin Hamiltonian 
contains no interactions of a tensor character or the energy 
of such interactions is relatively small. 

At the same time, there exist magnets14-l7 for which 
tensor interactions play a decisive role and the above 
schemes for constructing a Bose representation are conse- 
quently certainly inapplicable. Above all, this applies to sys- 
tems described by those Hamiltonians (henceforth, SU(3) 
Hamiltonians) for which a correct analysis requires the use 
of theSU(3) algebra. In this case, as is well known, the basis 
of the generators is increased from the three operators of the 
SU(2) algebra to eight. Physically, this is because a consis- 
tent description of the dynamics of such magnets requires 
that we take into account not only the dipole degrees of free- 
dom but also the degrees of freedom associated with the 
presence of a quadrupole moment. 

These features are manifested most sharply in those 
spin nematics (the terminology introduced in Ref. 16 is 
used) in which the spin-nematic state is induced by strong 
interaction of quadrupole moments. The ground state of a 
spin nematic possesses two distinctive features. First, as not- 
ed in Ref. 16, there is spontaneous breaking of the symmetry 
under spin-space rotations, while the invariance under time 
reversal is preserved. Second, the lowest single-ion level is 
the nonmagnetic state lo), whereas the two "magnetic" 
states I + 1) and I - 1) appear on an equal footing ( H  = 0) 
as the upper levels. This hierarchy of single-ion states leads 
to profound consequences in the construction of a Bose rep- 
resentation of the Hamiltonian of a spin nematic, since an 
adequate description of the system requires the introduction 
of two types of bosons.18 This constitutes the principal dif- 
ference between the Bose description of SU(3) Hamilto- 
nians and the Bose description of Hamiltonians with weak 
tensor interactions, for which it is possible to confine oneself 
to introducing just one boson field.13 From a physical point 
of view, the necessity of introducing two boson fields is dic- 
tated by the participation of both the dipole and the quadru- 
pole moment in the dynamics. 

It is appropriate to note two important aspects of the 
program for going over to a Bose description ofSU(3) Ham- 
iltonians. The first is the need to develop a bosonization pro- 
cedure that will preserve the correct commutation relations 
for the initial (spin and quadrupole) operators. This prob- 
lem is solved by constructing pseudo-Hubbard operators 
(see Ref. 19 and Sec. 3 of the present article) whose Lie 
algebra coincides with the Lie algebra of the true Hubbard 
operators. 

The second aspect of the problem under discussion has 
a more subtle nature and is connected with the presence, in 
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the Hilbert space in which the Bose analog of the Hamilto- 
nian acts, of an infinite set of nonphysical states. When ob- 
servable characteristics are calculated, these states, if their 
occupancy is nonzero, will make an additional contribution 
that does not exist in reality. Therefore, a correct procedure 
for obtaining a Bose analog of the Hamiltonian should also 
incorporate a way of cutting out the contributions from the 
nonphysical states. 

The latter circumstance has special significance for sys- 
tems in which so-called zero-point quantum oscillations 
(ZQO) are present. Since the exact wave function of the 
ground state of such systems is unknown, an approximate 
function is used as the bare vacuum. In these conditions, the 
Hamiltonian contains operator terms that lead to the cre- 
ation of several excitations on one site, which gives rise to 
nonzero occupancy of the nonphysical states. The essential 
point is that this occupancy for T-0 is determined not by 
thermal excitation (as is the case in systems without ZQO, 
when the exact ground-state wave function is used), but by 
the intensity of the ZQO. Therefore, the contribution of the 
nonphysical states for systems with ZQO is algebraically 
small (in our case, proportional to (6 /I) 2, where </I is the 
parameter determining the intensity of the ZQO), rather 
than exponentially, proportional to exp( - T J T )  . For an 
exchange-anisotropic ferromagnet with spin S = 3, these 
features were demonstrated in Ref. 20. The power-law char- 
acter of the contribution under discussion implies that in the 
development of a nonlinear theory the cutting out of the 
contribution from the nonphysical states becomes obliga- 
tory, since the first anharmonic corrections have the same 
algebraic smallness (see below). 

In view of what has been said, it appears appropriate to 
develop for the construction of an exact Bose analog of an 
SU(3) Hamiltonian a regular procedure that preserves the 
algebra of the original operators and takes the presence of 
nonphysical states into account. In the paper it is shown that 
the use of a formalism involving the introduction of an inde- 
finite metric and pseudo-Hubbard operators makes it possi- 
ble to solve this problem. A nonlinear theory of the excita- 
tion spectrum of spin nematics is constructed by means of 
the technique developed. Integral equations determining the 
characteristics of the spectrum are obtained and solved in 
analytic form. This has made it possible to find the renormal- 
ized collective-excitation spectrum of a spin nematic with 
S = 1 and biquadratic exchange with allowance for anhar- 
monic effects. The renormalization (due to the presence of 
zero-point quantum oscillations in the system) of the critical 
value of the magnetic field is determined. 

2. HAMlLTONlAN OF A SPIN NEMATIC IN THE HUBBARD- 
OPERATOR REPRESENTATION 

We demonstrate the development of a procedure for 
constructing a Bose representation for SU(3) Hamiltonians, 
for the example of the Hamiltonian of a spin nematic,I6 
which, for S = 1, is characterized by the presence of tensor 
interactions of both a single-ion and a two-ion nature in the 
system: 

In the absence of an external magnetic field, the spin-nema- 
tic state, in which the components of the tensor order param- 
eter (in the molecular-field approximation) take the values 

q20=(o,0>=-2,  qz?=(022>=o, o=(S'>=O, (2)  

is realized ifI6s2' 

(BzZ(<-3B,O-2(Io-Ko),  Io>Ko, 
(3) 

I BZ21 <-3Bz0, Zo<Ko. 

Bearing this in mind, we go over to the representation using 
Hubbard operators,22 the action of which on the single-ion 
states is specified by the rule 

In our specific case, the single-ion states are eigenstates of 
the operator S;; we use the following system of notation: 

where, for brevity, the lattice-site index has been omitted. 
The operators X3" satisfy the following commutation rela- 
tions: 

[ X f n m ,  X8p'] -=Bfg(6mpXfnq-6nqXfpm). ( 6 )  

In the mathematical literature the set of operators X3" is 
called a Weyl basis,23 and can be used to expand elements of 
the SU(3 ) algebra. The corresponding representation of the 
spin and quadrupole operators in terms of Hubbard opera- 
tors has the following appearance: 

Sf+=2'" ( X f ' 0 + X f 0 2 ) ,  S f - =  ( S f + ) + ,  

S  ' - X  i'-X,22, o 2 ; = X f i 2 + X f Z 1 )  f -  f 

Application of these relations makes it possible to write 
the Hamiltonian of a non-Heisenberg magnet in the atomic 
repre~entation,~~ which is convenient to use in developing a 
procedure for going over to a Bose description: 

where 

It can be seen from the structure of the Hamiltonian (8)  
that for Kf, = If, the exact ground-state function (it is as- 
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sumed that the conditions (3)  are fulfilled) can be written in 
the form of a product: 

The existence of an exact eigenfunction in multiplicative 
form is closely related to the symmetry properties of the 
Hamiltonian." Te demonstrate this thesis more simply, we 
assume first that H = 0 and B : = B = 0. We note that in 
this isotropic case the existence of the exact eigenfunction 
(9) was noted previously in Ref. 18. If Kfg = Ifg, then 
[XfO '$ ,Z] - = 0 (Ref. 25) and the symmetry group of 
the exchange Hamiltonian is the group SU(3). Then the 
states of the system are characterized not only by the value of 
the total dipole moment but also by the value of the total zz 
component of the quadrupole moment. In particular, there 
should exist a state Y such that 

However, the smallest of the possible values of the zz compo- 
nent of the quadrupole moment can occur only in the case 
when, on each lattice site, the ion is in the state (Yo ( f )  ), 
since O:fIYo(f 1) = ( - 2)1Y,(f 1) and O:fI*,,2 (f 1) 
= I Y ,,, ( f ) ). It follows from this that a function Y satisfy- 
ing Eq. ( 10) can have only the multiplicative structure (9). 
Furthermore, it is easy to see that the inclusion of single-site 
interactions in the form ( 1 ) does not change the structure of 
such an eigenfunction, since 0 $ 1  Yo ( f ) ) = 0. Here it 
should be borne in mind that in the presence of a rhombic 
component in the operator of the single-ion anisotropy ener- 
gy the other eigenfunctions of the Hamiltonian are not eigen- 
functions of the operator of the zz component of the quadru- 
pole moment. 

For Kfg = If, it is not difficult to obtain also exact ex- 
pressions for the two branches of the spectrum of elementary 
excitations: 

It can be seen that the spin-nematic state under considera- 
tion will become unstable as soon as the field H reaches the 
value 

For Kfg #Ifg, the function IIf lYo (f  )) is not the exact 
ground-state function, and ZQO are present in the system. 
In this case the solution of the problem of the excitation 
spectrum becomes substantially more complicated. How- 
ever, when the condition 

is fulfilled (henceforth we shall confine ourselves to the 
nearest-neighbor approximation) the intensity of the ZQO is 
insignificant and the solution of the problem can be obtained 
by perturbation theory. For this we go over to the Bose de- 
scription. We note first that the Hamiltonian (8)  can be 
written in the form 

which shows explicitly that we are dealing with a set of inter- 
acting three-level subsystems. In physics such systems are 
being studied intensively, and the formalism developed be- 
low is applicable in equal measure without restrictions on 
the specifics, since the precise nature of the single-site states 
I Yn ( f ) )  in the construction of the Bose representation is 
not important. 

3. PSEUDO-HUBBARD OPERATORS 

As in Refs. 18, 19, and 26, with each lattice site we 
associate two types of Bose operators, with standard com- 
mutation relations 

Next we introduce two sets of eigenstates of the operators 
a + a  and b + b (so long as all the discussions pertain to a 
fixed lattice site, the subscriptf; both on the operators and on 
the basis functions, need not be written; it is easy to restore it 
later) : 

where the indices n and m run from 0 to co . The functions pn 
andx, can be taken as basis vectors of Hilbert spaces tj, and 
tj,, respectively. Choosing the usual normalization of the 
basis vectors: 

in tj, and $, we define metrics such that 

(cp,,, cp,,,) = 6 , = 3 ,  ( ~ m ,  ~ m . )  = 6 m m .  (18) 

Then, in tj, and tj, with the metric ( 18), 

( a + ) ~ = a ,  (bi)+=b. (19) 

Let us construct the direct product of the Hilbert spaces 
$, and $,, i.e., introduce the Hilbert space tj,, = $, e $,. As 
the basis of Gab we choose the basis that is the direct product 
of the bases of the Hilbert spaces $, and 8,. Then the set of 
basis functions @,, of the space tj,, is written in the form 

It can be seen that a@,, = 0 and b@,, = 0. The scalar prod- 
uct in $,, is defined as the scalar product in the space that is 
the direct product of the subs pace^.^' Then, for the basis 
vectors, 

From the obvious relations 

(a+a) (b+b)mnm= (b+b) ( a f a )  Qnrn=nmQnm (22) 

it follows that the function @,, describes a state with n bo- 
sons of type "a" and m bosons of type "b." The function @, 
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describes a state without particles. 
We set in correspondence to the function I Yo ) the func- 

tion @, (the vacuum state) of the space $,,, to the function 
IY,) the function @,, (the state with one boson of type 
"a"), and, finally, to the function I T 2  ) the function Q,, (the 
state with one boson of type "b " ) . In the Hilbert space Ij,, 
there are states @,, , @,,, @,, , @,, , ..., to which correspond 
no states from the physical space ij'3' generated by the basis 
of single-site states I Yn ) . Therefore, those states an, with 
n + m>2 are called nonphysical states. 

We introduce, by construction, operators xpq acting in 
flab : 

Hoi= ( I -a fa -b tb )a ,  H1O=a+, 

It is not difficult to convince oneself of the validity of the 
relations 

It can be seen that the Lie algebra constructed on the basis of 
the operatorsRnm, as in Ref. 19, coincides with the Lie alge- 
bra constructed on the basis of the operators X "". However, 
in contrast to Ref. 19, the operators 2"" introduced by the 
formulas (23 ) (the pseudo-Hubbard operators, henceforth) 
cannot be identified with the Hubbard operators Xnm. In 
addition, the definitions of the four pseudo-Hubbard opera- 
tors have been changed, since when the corresponding for- 
mulas from Ref. 19 are used it is not possible to introduce an 
indefinite metric, which plays an essential role in the con- 
struction of the Bose analog of the Hamiltonian. 

It is not difficult to understand that the fact that the 
commutation rules (6) and (24) coincide is entirely insuffi- 
cient for XPq to be identified with Rpq. In principle this can- 
not be done, if only because the Hubbard and pseudo-Hub- 
bard operators act in spaces of different dimensionalities: 
The dimensionality of the physical space Ij'3' is equal to 
three, while the Hilbert space $,, is infinite-dimensional. 

In addition, the Hubbard operators XW and XqP are 
mutually adjoint, while not all the pseudo-Hubbard opera- 
tors possess this property. We note also that the algebra of 
ordinary multiplication of the Hubbard operators differs 
from the corresponding algebra of the pseudo-Hubbard op- 
erators. 

Thus, strictly speaking, the Hubbard operators, and, 
consequently, the Hamiltonian (14) as well, cannot be ex- 
pressed in terms of any combinations of Bose operators. At 
the same time, it is possible to construct an operator that acts 
in the infinite-dimensional Hilbert space (and hence can be 
expressed in terms of Bose operators), such that its matrix 
elements on the class of physical states are equal to the corre- 
sponding matrix elements of the initial Hamiltonian, while 
its matrix elements between states at least one of which is 
nonphysical are equal to zero. The operator constructed in 
this manner is called a Bose analog. Therefore, when we 
speak of the construction of a Bose representation of the 
Hamiltonian ( 14) we shall have in mind the search for a way 
of constructing a Bose analog of the Hamiltonian. As will be 

seen from the following, a key role in the solution of this 
problem is played by pseudo-Hubbard operators in combi- 
nation with the indefinite-metric formalism. 

4. INTRODUCTION OF THE INDEFINITE METRIC AND THE 
BOSE ANALOG OFTHE HAMlLTONlAN 

Following ideas of Dyson6 (a  detailed account of the 
technique of using an indefinite metric is contained in Ref. 2, 
and our construction is based on this material), we intro- 
duce a new metric in the Hilbert space Ij,,, i.e., we redefine 
the scalar product of vectors. This scalar product, in con- 
trast to the old one defined by Eq. (2 1 ), will be denoted not 
by round brackets but by angular brackets. To the new met- 
ric we assign properties so that in it the operators Rpq and 
Rqp for q#p are mutually adjoint, while the operators 
are self-adjoint. In their strict mathematical formulation 
these requirements take the following form: 

To specify the way in which the new scalar product is 
calculated we introduce the metric operator F, defined by 
the relation 

In fact, the properties of the operator F determine the prop- 
erties of the new metric in $,,. From the requirement that 
the relations (25) be valid, and also from (26), we obtain 
two chains of equalities: 

It follows from (28) that the operator Fcommutes with the 
operators Xpp. Therefore, in the basis of the states @,, with 
the metric (2  1 ) the operator F is diagonal: 

To find the diagonal elements F,,, we make use of the 
chain of equalities (27). It can be seen that 

Settingp = 0 and q = 1,2, and making use of the expressions 
(23) for the pseudo-Hubbard operators, we find from (30) a 
system of equations that is satisfied by the diagonal matrix 
elements of the metric operator: 

Solving (31) we find F, = F,, = Fol = 1, while for all n 
and m such that n f m>2 we have Fnm = 0. Since the states 
@,, Qlo ,  and @,, correspond to physical states of the sys- 
tem, it can be seen that the metric operator Fcoincides with 
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the projection operator from the Hilbert space Gab on to the 
subspace of physical states. 

It follows from (26) and the above properties of the 
metric operator that the new scalar product of a vector cor- 
responding to a nonphysical state with itself is equal to zero, 
and therefore the new metric is indefinite. 

We go over to a one-index system of notation, setting 

Then it is not difficult to convince oneself that the equalities 

are valid. The formula (32) is fundamental in the construc- 
tion of an exact Bose analog of the Hamiltonian. It can be 
seen that to "get out" of the indefinite metric and work with 
the ordinary scalar product it is necessary to have an explicit 
form of the operator F. Taking into account that in the basis 
of states @, of the Hilbert space Gab with the metric (21 ) the 
operator F has diagonal form, we can write 

where 

For the expansion coefficients A ,  it is not difficult to obtain 
the following system of equations: 

solving which, we find 

Returning to the analysis of the full Hamiltonian ( 14), 
we restore the lattice-site index$ After this we construct the 
physical space of dimensionality 3N, by taking the direct 
product of the original three-dimensional physical spaces. In 
this space the SU(3) Hamiltonian (14) acts. In an analo- 
gous way, from the space Gab (f) we construct the Hilbert 
space in which the Bose analog of the SU(3) Hamiltonian 
under consideration will act. Then, using the relations (32), 
one can show rigorously that the rule for obtaining the Bose 
analog of the Hamiltonian has the form 

where the operator F" is the direct product of the metric 
operators for the crystal-lattice sites. 

Thus, the prescription for writing the exact Bose analog 
of the quantum Hamiltonian ( 14) is as follows: In the Ham- 
iltonian ( 14) the Hubbard operators are replaced by pseudo- 
Hubbard operators, for which the expressions (23) are used. 
The important point is that it is necessary to multiply the 
operator obtained in this way by F @. As will be shown be- 
low, for systems with ZQO the contribution from the metric 
operator becomes important even for T = 0. Running ahead, 
we note that taking F " into account leads to restoration of 

the self-adjointness of the Hamiltonian operator in the Bose 
representation. 

5. HAMlLTONlAN OF A SPIN NEMATIC IN THE BOSE 
REPRESENTATION 

Applying the formulas (35) and (23) for the Hamilto- 
nian (8),  we obtain (henceforth, for simplification, we set 
B :  = 0 )  

where 

It is not difficult to convince oneself that R;,, and Pi6, are 
non-Hermitian operators. Therefore, if we neglect the effect 
of F ", i.e., set F " = 1, the entire Bose analog RB will also 
be non-Hermitian. This circumstance leads to a number of 
problems, some of which have been discussed in Ref. 20. In 
reality, however, allowance for F " automatically ensures 
that X B  is Hermitian. Representing ZB in a form normal 
in the Bose operators, we obtain 

Here, R,,, = Xi,, , whereas R,,, differs substantially 
from X;,, and is given by the expression 

where we have introduced the following notation: 

in which A (  1-2) is the Kronecker symbol. The Hermiticity 
of the operator R,,, is ensured by the following obvious 
property of the bare scattering amplitudes involving four 
bosons: 

J?,(12; 34)=ra(43; 211, a=a, b, ab. (41 

The operator term R,,, in (38) can be written in the 
form 
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where 

The operator Lb is obtained from La by the replacements 
E, + E ~ ,  eb +E , ,  a,, + b,, , bP +ap, etc. For G, the following 
form is valid: 

Thus, taking F " into account leads not only to restora- 
tion of the Hermiticity but also to the presence in ZB of 
operator terms describing interaction processes involving 
eight, ten, etc., quasiparticles. Since these terms do not con- 
tain any additional small parameters, in each specific case it 
is necessary to keep track of their influence on the results of 
the theory. The fate of Z,,, , Z ,,,, , ... is most simply re- 
solved when the density of bare quasiparticles is small. Then 
processes involving an ever larger number of quasiparticles 
lead to contributions proportional to ever higher powers of 
the small parameters that control the quasiparticle density 
(T/T, determines the thermal excitation of quasiparticles, 
and c/I is the quantity determining the intensity of the 
ZQO). For T = 0, when there is no thermal excitation, the 
number of bare quasiparticles is determined entirely by the 
intensity ofthe ZQO. For small 6 /I the quasiparticle density 
is small and the terms R,,, give a contribution proportional 
to (c/1) 3. Therefore, in developing a theory exact to second 

order in /lone can neglect the terms R,,, , Z, ,,, , ... in the 
Hamiltonian. 

6. EXCITATION SPECTRUM OF THE SPIN-NEMATIC STATE 
OF AN ANISOTROPIC MAGNET WITH BIQUADRATIC 
EXCHANGE 

To find the spectrum of the elementary excitations we 
apply to the Hamiltonian (38) a unitary transformation 

where the unitary operator U is determined by the expres- 
sion 

It is not difficult to establish the transformation laws for the 
Bose operators: 

a",= UaPU+=uPap+uPb-p+, - 
bP--UbpU+=uPbP+vPa-,+, (47) 

up= ch q,, up= sh q p .  

Thus, the transformation (45) corresponds to the well 
known Bogolyubov u-v transformation; this aspect has been 
noted previously, e.g., in Ref. 26. 

It is obvious that the Hamiltonian RB does not have 
normal-ordering form. If we implement the procedure of re- 
ducing the operator terms of RB to normal form, then the 
quadratic operator acquires corrections from R,,, and 
from R,,, (Refs. 13,29-3 1 ) . Analogous renormalizations 
also arise in terms containing products of a larger number of 
operators. As a result, the Hamiltonian RB can be written 
in the form 

&%?B=E~+ %(2)+%(4)+. . . r (48) 

where the quadratic form is given by the expression 

Here, 
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The expression forzb, can be obtained from (50) by replac- 
ing the index a by the index b, and vice versa. In writing (50) 
and (5 1 ) we have taken into account all the terms arising 
from A?,,, , and also some of the terms arising from A?,,, . 
Here we have discarded terms that certainly are of higher 
order than (fo/Io ) 2. 

From the condition that p,,, be diagonal, we obtain 
an integral equation for the parameter of the transformation: 

AP sh 2 ~ p - B p  ch 2rpp=07 (52) 

where 

AP= ( G a p +  &p) 12. (53 

When (52) is fulfilled the quadratic form of the trans- 
formed Hamiltonian becomes diagonal: 

and the two branches of the spectrum of the elementary exci- 
tations are determined by the expressions 

np= (A: -B ,~ )  lh, Y=( elip-eoD) 12. (55) 

Let us analyze the distinctive features of the energy 
spectrum in the case when, in addition to the inequality 
[lo I 410, which ensures a relatively low intensity of the 
ZQO, the inequality 

D<Io (56) 

is fulfilled. In this case the solution of the integral equations 
can be obtained in the form of an expansion in powers of 
D /Io and co /Io. 

Performing the calculations to second order in the 
above-mentioned small parameters, we find that the expres- 
sion for A, can be written in the form 

while for B, the following formula is valid: 

In these relations we have used the following notation: 

where W denotes the numerical value of the Watson inte- 
gral.13 It follows from (57) and (58) that, to the accuracy 
that we are considering, R, is given by the expression 

where A denotes the gap in the elementary-excitation spec- 
trum for H = 0: 

It can be seen that for H = 0 and D = 0 the excitation spec- 
trum in the phase under consideration has, in accordance 
with the Goldstone theorem, an activationless character. 
The quantity 

that appears in (61) is the critical value of the anisotropy 
constant, such that for D < D, the phase under consideration 
becomes unstable. We note that D, = 2g0 holds in the har- 
monic approximation, when the ZQO are not taken into ac- 
count. The appearance of the second term in the square 
brackets in Eq. (62) is due to anharmonic corrections. It can 
be seen that the renormalization due to the ZQO leads to a 
decrease (go >O) of the threshold value of the single-ion 
anisotropy constant, this decrease being larger the more 
strongly developed are the ZQO. For f o  < 0 the phase under 
investigation is stable for all D>O. 

The quantity w, appearing in (60) can be written in the 
form 

For C(D,co ) the following representation is valid: 

where 

In this expression, 

G= [ (D-go)2-AZ] 'h=IgO1 [ I - 3 ( W - 1 )  ( D / I O ) ]  I", (66) 

and K(m) and E(m)  are complete elliptic integrals of the 
first and second kind, respectively.32 The modulus of these 
elliptic integrals is given by the formula 
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In the limiting case A 4 D - 6, the function @(D,g0 ) has a 
simpler form: 

where S = A / ( D  - 6, ). It can be seen that in the region of 
small values of the gap in the excitation spectrum nonanaly- 
ticity in 6 arises. In another limiting case I, % D )  16, I we 
obtain 

From the expression ( 6 0 )  for the spectrum it can be 
seen that, when anharmonic effects are taken into account, 
in addition to the renormalizations of the gap A and of the 
coefficients multiplying the dispersion terms a new term 
arises. It possesses two distinctive features. First, in the re- 
gion of small values of the quasimomentum, if A = 0 ,  the 
contribution of this term is proportional to lpI3. Second, as p 
changes there is a change of sign of the term under discus- 
sion, corresponding to the change of sign of I, .  The latter can 
be explained if we take two facts into account. The first is 
that this term appears because we have taken into account 
the kinematic interaction and the finiteness of the number of 
physical states. The second fact is the result, obtained earlier 
in Ref. 33, that in Hubbard systems with strong correlation 
the kinematic interaction that arises leads to a scattering 
amplitude with opposite signs in the regions of small and 
large values of the quasimomentum. 

For A = 0 andpa 4 1 the excitation spectrum is linear in 
the quasimomentum. If D = 0 holds, this situation is real- 
ized for KO > I,. In this case the square of the velocity of 
propagation of an elementary excitation is given by the 
expression 

To estimate the influence of anharmonic corrections on this 
quantity, we remark that 

where ui is the square of the velocity in the harmonic ap- 
proximation. If we set Ilo/Io I = f ,  we find that the relative 
contribution of the anharmonic effects amounts to about 
30%. 

In the region KO <Io, when lo > 0, the quadrupolar or- 
dering under consideration is stable only for D > D,. At the 
point D = D, we obtain 

Despite the considerable quantitative renormalizations 
of the parameters under consideration, the inclusion of an- 
harmonic effects does not lead to the appearance of parts of 
the spectrum with negative dispersion, as did occur with in- 
crease of the ZQO in an exchange-anisotropic ferromag- 
net." This weakening of the role of the ZQO is connected 
with the fact that, in the given case, as KO increases the in- 
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crease of the parameter 16, 1 = KO - lo determining the in- 
tensity of the ZQO is accompanied by a simultaneous in- 
crease of the exchange quadrupole field, which is 
proportional to KO and which suppresses the ZQO. There- 
fore, an increase in KO does not cause the relative intensity of 
the ZQO to reach a level such that beyond it the excitation 
spectrum undergoes qualitative changes. 

If, however, KO < I o  holds, an increase in 6, is accompa- 
nied by a decrease of the exchange quadrupole field, and this 
naturally facilitates growth of the ZQO. In the given case, 
however, we have D)D,.  But since D, increases as a func- 
tion of go, we are dealing in fact with a system in which there 
is an "external" field of a quadrupolar nature, stabilizing the 
quadrupolar phase and suppressing the ZQO. Here it is nec- 
essary to take this external quadrupolar field to increase as a 
function of go. Therefore, for positive values of 6, as well, 
the intensity of the ZQO does not reach the threshold level. 

To corroborate these arguments we give the results of a 
calculation of the quadrupole parameter of order q:. Using 
the representation 

we use the above-described scheme to construct the Bose 
analog of the operator 

Then 

Here we have not written out terms containing products of 
six or more operators, since, to the accuracy that we are 
considering, there is no contribution from them. We note 
that, without allowance for the metric operator, the value of 
q: would be determined entirely by the first two terms. In 
fact, however, when we go over to the Bose method of de- 
scription and of performing the calculations, extra terms 
arise that are due to the necessity to cut out the contributions 
from the nonphysical states. 

After the necessary calculations we find that 

where @(D,{ ,  ) is defined by Eq. ( 6 5 ) .  It follows from ( 7 5 )  
that even for ( , /I0 = - 3 and D = 0 we have qi = - 1.7, 
i.e., the change of the order parameter in comparison with its 
value in the zeroth approximation in r , is insignificant. 
This also implies that in the given case the ZQO are relative- 
ly weakly developed. 

In a finite magnetic field, in accordance with the expres- 
sion ( 5 5 ) ,  splitting of the two branches of the spectrum oc- 
curs. In the limiting case under consideration ( 1 { , 1 ,  D 4 I, ) 
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FIG. 1 .  Displacement of the characteristic curves with growth of the zero- 
point quantum oscillations. 

it is also necessary to impose a restriction on the magnitude 
of the field H. It is obvious that it is also subject to the in- 
equality HgI , ,  and, to the accuracy under consideration, 
y = H. The relation between the limiting value of H and D 
follows from the condition that the excitation spectrum be 
positive-definite. Therefore, 

Thus, in an external magnetic field the phase under consid- 
eration can exist only for D > 0 and H<Hc.  

In the figure the solid curves show how the critical value 
Hc of the magnetic field depends on the magnitude of the 
anisotropy for different values of &,/I, . The dashed curves 
correspond to the same dependences, but obtained in the 
harmonic approximation. The curve 1 corresponds to the 
exactly solvable case when 6, = 0 and there are no anhar- 
monic corrections. The curves 2 and 3 correspond to the 
values &, = 0.21, and go = 0.41,. It can be seen that 
allowance for anharmonic corrections leads to significant 
quantitative changes of the positions of the characteristic 
curves (in comparison with the corresponding results of the 
theory in the harmonic approximation) as soon as the ZQO 
become sufficiently developed. 

We discuss a few fundamental points that have arisen as 
a result of the introduction of the indefinite-metric formal- 
ism into the bosonization procedure. In the present paper the 
method of construction of an exact Bose analog of the Ham- 
iltonian of interacting three-level subsystems describable by 
the SU(3) algebra has been demonstrated for the specific 
example of a spin nematic. Naturally, the formalism that we 
have developed for introducing the indefinite metric is also 
equally applicable for any other systems describable by an 
effective spin Hamiltonian with S = 1 and containing tensor 
interactions. 

A general feature of a correct transition to a Bose meth- 
od of description is that operator terms containing products 
of an arbitrary number of Bose operators arise in the analog 
Hamiltonian TB . An important aspect of the method devel- 
oped here is that allowance for the metric operator leads to 
restoration of the Hermiticity of the Bose analog of the Ham- 
iltonian. These two factors mean that the results of this ap- 
proach and the results of the theory when the pseudo-Hub- 
bard operators were identified with the Hubbard operators 

differ considerably. For example, the extra terms in the oper- 
ators A?,,, and Z,,, leads to new contributions from an- 
harmonic effects, not to speak of the fact that the non-Her- 
miticity of the Bose analog of the Hamiltonian (a  property 
that arose when the above-mentioned identification was 
made) would induce fundamentally insuperable contradic- 
tions in the nonlinear theory. 

One further distinctive feature, associated with the de- 
termination of average values in the use of the Bose method 
of description, should be noted. In the paper, for the example 
of the calculation of q:, it is shown that to obtain in the Bose 
representation the form of an operator whose average gives a 
calculable characteristic it is not sufficient to make a simple 
replacement of the Hubbard operators XPq by pseudo-Hub- 
bard operators Rpq with subsequent use of their relation to 
the Bose operators via the formulas (23). The correct ap- 
proach requires that, in this case too, the metric operator be 
taken into account. Here, in the operator Bose analog, new 
terms, leading to additional contributions, are formed. 
Therefore, the expression for an average is given, generally 
speaking, by another formula, containing terms that cancel 
the contributions from the nonphysical states. 

Summarizing the above account, we note that a correct 
procedure for going over to the Bose method of description 
of systems with ZQO requires that the contributions from 
the nonphysical states be accurately removed even for 
T = 0, as soon as the interaction of the quasiparticles is tak- 
en into account in the theory. The formalism developed here 
for using an indefinite metric, together with the proposed 
structure of the metric operator, solves this problem for a 
wide class of physical systems describable by SU(3)  Hamil- 
tonians. In view of this, it appears promising to use the tech- 
nique discussed to investigate quasi-two-dimensional mag- 
nets, since in such systems the ZQO are rather strongly 
developed. In particular, it is of special interest (in connec- 
tion with the problem of the ground state of a high-tempera- 
ture superconductor) to study the effect of the interaction of 
bare quasiparticles on the physical characteristics of a quasi- 
two-dimensional antiferromagnet with S = + (Refs. 34, 
35). 

The authors express their deep gratitude to A. F. An- 
dreev and M. I. Kaganov for the interest they have shown in 
the work, for a discussion of the results, and for useful com- 
ments that we took into account in writing this article. 
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