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The properties of interface (Tamm) minibands in superlattices are investigated using a simple 
exactly-solvable one-dimensional model. Tamm minibands originate from states that are 
localized at the boundaries of different layers; they appear in pairs (when the spectra of the 
individual layers are nondegenerate) as a result of the interaction of Tamm levels belonging to 
adjacent interfaces. It is shown that a correct description of these minibands within the 
framework of the envelope approximation must incorporate into the boundary conditions the fact 
that the band-edge Bloch functions of the layers in contact are different. An exception is the case 
where inverted bands overlap, in which case the Tamm minibands are insensitive to the boundary 
conditions. 

One of the most interesting problems in the physics of 
semiconductor structures and superlattices is that of inter- 
face states, i.e., spatially localized states at the boundaries 
between layers. For an isolated interface these states, re- 
ferred to as Tamm states,' are located in energetically for- 
bidden regions of the contacting materials. In a superlattice 

, with sufficiently thin layers, Tamm states that are localized 
in adjacent interfaces must broaden into "Tamm mini- 
bands." Although these states were discussed in the litera- 
ture long ago (see, e.g., Refs. 2-4), their nature remains 
obscure. Only for the case of interfaces involving inverted 
bands (such as, e.g., structures based on HgTe-CdTe) are 
these interface states stable with respect to variations in the 
near surface potential.' Because the inverted-band interface 
is the only one whose investigation involves easy calcula- 
tions, even within the envelope approximation,3 it is also the 
only case that has been investigated with any degree of thor- 
oughness. 

In view of these assertions, it is useful to study the gene- 
sis of interface states and minibands for simple exactly-solv- 
able models. Such models have been proposed in the litera- 
ture. For example, Ref. 6 contains an investigation of 
interface states between two one-dimensional Kronig-Pen- 
ney lattices. A closely related problem-that of states bound 
to defects in a superlattice-was discussed in Ref. 7 as well, 
again based on the Kronig-Penney model. In recent times 
these states have been investigated experimentally for a 
model structure consisting of a barrier and a collection of 
quantum wellsn (see also Refs. 9 and 10). However, to this 
author's knowledge there has been no attempt to use these 
models to investigate interface states that are intrinsic to the 
superlattices. (The use of semiconductor structures to mod- 
el interface minibands, as in Ref. 8, requires that we deal 
with superlattices made of superlattices, i.e., in essence, with 
"super-superlattices." ) 

In Ref. 11 a simple exactly solvable superlattice model 
was described, made up of one-dimensional Kronig-Penney 
lattices with 6-function potentials, in which Tamm mini- 
bands can arise under certain conditions. For inverted bands 
(which are very easy to simulate in this model) these mini- 
bands appear independent of the overlap of the lattice for- 
bidden bands. This agrees precisely with the results of Refs. 
3 and 5. For overlapping noninverted bands, Tamm mini- 
bands appear when the band-edge Bloch functions differ suf- 

ficiently, and disappear with increasing offset energy 
between the corresponding bands. Thus, a necessary condi- 
tion for the appearance of Tamm interface states is that the 
Bloch functions at the band edges in the contacting layers be 
different. 

This article contains a more detailed exposition of the 
results obtained in Ref. 11, as well as a comparison of the 
exact solution with the solution obtained within the enve- 
lope-function approximation, which is the most commonly 
used method in the theory of superlattices. (A review of the 
envelope method can be found, e.g., in Ref. 12.) In this paper 
it is shown that the assertion often made in the literature 
(see, e.g., Ref. 4) that interface states cannot be obtained by 
means of the envelope approximation in the absence of band 
inversion does not correspond to reality. Tamm minibands 
can be described with good accuracy within the envelope 
approximation if the change in the Bloch functions at the 
band edges of the contacting layers is built into the boundary 
conditions. In the most commonly used boundary condi- 
t i o n ~ , ' ~  which are derived from the requirement of consema- 
tion of current in the effective mass approximation, discon- 
tinuities in the Bloch (envelope) functions are neglected. 
This results in loss of the Tamm minibands except for the 
single case of inverted bands.395 

1. SUPERLATTICE MODEL AND EXACT SOLUTION 

It is well known that the simplest model of a solid is the 
one-dimensional Kronig-Penney problem with a periodic 
potential V + p6({x)). (Here {x) is the fractional part ofx. 
In what follows we will use a system of units with f i  = m = 1 
and assume unit spacing between the S functions.) The spec- 
trum of allowed states E = E(k)  for such a lattice is deter- 
mined by the equation 

P cos k=cos + - sin 5 
E (1) 

(where f = [ 2 ( E  - V) ] ' I 2 )  and consists of alternating al- 
lowed and forbidden bands. If p > 0, the points f = m, 
n = 1,2, ... (i.e., E = V + dn2/2)  mark the lower boundar- 
ies of the forbidden bands (forp < 0 they are upper boundar- 
ies). In what follows we will refer to these forbidden bands as 
nrr gaps. 

Let us construct a one-dimensional superlattice out of 
two different 6-function Kronig-Penney lattices (types A 
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and B), in which layers with Na and Nb Bfunctions of each 
type alternate. This superlattice is described by the Schro- 
dinger equation 

-'/,Y" (2) +V(x) Y (5) =EY (x) (2) 

with a potential (see Fig. 1 ) 

(for a single period D = Na + Nb of the superlattice); for 
simplicity the "interatomic" spacings in lattices A and B are 
taken to be the same. The parameter Vb allows us to shift the 
spectra of lattices A and B with respect to one another (in 
energy) and thereby to model different types of band over- 
lap, i.e., superlattices of different types. Furthermore, if 
papb < 0 holds, we can model contacts with inverted bands. 

Tamm states for isolated interfaces were studied recent- 
ly in Ref. 6 within the framework of a model analogous to 
this one. For the case of overlapping 2n7r gaps, the energy of 

A0 exp (-4, {x)) f Bo exp (iE, {XI), 0 < x < 1 I... . . . 

the Tamm state of an isolated interface can be found from 
the equation 

E4 E b  - shx4+- sh ~ b = p b - P a ,  
sin g ,  sin Eb 

where x = IIm k I is the imaginary quasimomentum (i.e., 
the solution to Eq. ( 1 ) within the gap). For example, for 
pb <pa < 0, a Tamm state appears near the lower edges of the 
277 gaps when these edges coincide, and disappears as the 
offset between bands increases. However, for papb < 0 the 
model describes an interface with inverted bands, and the 
Tamm state appears at the center of the overlapping 277 gaps. 
In a superlattice the interaction between states of adjacent 
interfaces leads to lifting of their degeneracy and splitting of 
the levels into two Tamm minibands. When the bare lattice 
spectra are nondegenerate, which is characteristic of the 1D 
situation, this splitting is a completely general topological 
property. In the 3 0  case the situation can be much more 
complicated. 

For the Schrodinger equation with the superlattice po- 
tential (3) the eigensolution corresponding to the energy E 
has the following form within the interval 0 <x < D: 

I AN,-I exp (-4, {XI) + BN,-I exp (iE, {x)), Na- 1 < x < Na 
Y (x) = 

AN, exp (-iEb {XI) + B N ,  exp (iEb {XI), Na < x < N,  + i ' 

. . . . .  
AD-I exp (-igb {x)) + BD-l exp (iEb {x)), D - l < x < D 

Here where the transfer matrix T,,, is a product of the m transition 
matrices to,, tab, t,, and tba between adjacent 6-functions: 

E A  For example, 

The matrices taa and tbb are obtained from (8)  by the re- 
placement b -. a and a -. b respectively, while the matrix tab is 
obtained by making the replacement a w b  in the la,, alone 
(this asymmetry is associated with the choice of identical S- 
functions for the interfaces). 

The solution on the entire x axis is obtained from the 
Bloch condition 

FIG. 1. Superlattice potential (&functions are shown as vertical arrows). Y (x+D) =elKD\Y (x), (9 )  
The region of energies where we expect the superlattice spectrum to be is 
located between the dot-dashed lines in the upper part of the figure. and the dispersion relation E = E(K)  for the superlattices is 
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FIG. 2. Spectrum of model superlattices for N, = N, = 15, pa = - 1, 
p, = - 3 (a) and for N, = Nb = 10, pa = - 1, p, = 1 (b); the slanted 
arrows are used to denote the values o f ~ a n d  K = Ofor which the functions 
shown in Fig. 3 were calculated. The horizontal arrows point to the posi- 
tion of the Tamm level of the isolated interface. 

given by an equation analogous to Eq. ( 1 ) : 

[Eq. ( 1 ) is obtained from Eq. ( 10) if we replace T, by taa or 
tb, in it]. 

Typical spectra and eigenfunctions (for K = 0 these are 
calculated using Eqs. ( 10) and (5)  for the case where the 271. 
gaps overlap) are shown in Fig. 2 and Fig. 3 respectively. 
The cases shown are for no band inversion (a) and with 
inversion (b) . The values of Vb are chosen so that the lower 
edges of the 27~ gaps of lattices A and B coincide exactly. 
Energies in Fig. 2 are measured from this particular value; 

the levels E,( ,) ,  and E , ( , ) ~  denoted in Fig. 2 by the dashed 
lines are the lower (upper) boundaries of the 27~ gaps for 
lattices A and B respectively. The horizontal arrows in these 
figures denote the positions of the Tamm levels calculated 
using Eq. (4) for the respective isolated interfaces. 

Let us first consider the case of an interface without 
band inversion [Fig. 2(a) and Fig. 3 (a) I. Four minibands 
lying in the energy region E ,  < E  < E,, are formed by states 
that are localized in the corresponding quantum wells (i.e., 
in layers of the more narrow band lattice A ). This is obvious 
from Fig. 3a, where we show the wave functions of the two 
lower minibands (curves 1 and 2). As for the two minibands 
near the coincident "valence" band edges (curves 3 and 4), 
they are Tamm states, and arise as a consequence of the in- 
teraction between Tamm states localized on adjacent inter- 
faces. 

We note the following interesting circumstance. Al- 
though the lower Tamm miniband in Fig. 2a (curve 4) lies 
entirely within an allowed region common to the bare spec- 
tra of both lattices, the wave functions are localized at the 
interfaces. Whereas the quantity x , ,  determines the extent 
to which the upper level is localized, for the lower level the 
localization is determined by interference and depends on 
Na,, . l )  We will continue our discussion of the properties of 
this miniband in the next section. 

For papb < 0 (Figs. 2b and 3b) the inverted bands join 
smoothly, and the Tamm state is found at the center of the 
overlapping gaps. This situation has been analyzed in detail 
in the For the superlattice the interaction of the 
interfaces leads to the formation of pairs of Tamm mini- 
bands (curves 2 and 3). 

2. ENVELOPE FUNCTION APPROXIMATION 

Because the superlattice model under discussion here 
admits an exact solution (a rare case), the use of this solu- 
tion to investigate the approximations that are commonly 
used in calculations of superlattice band spectra is very pro- 
ductive. Here we will discuss the simplest and most often 
used approximation, the method of envelope functions. For 
a detailed review of this method see Ref. 12. In the envelope 
approximation the wave function is sought in the form of 
products of rapidly-varying band-edge Bloch functions 

FIG. 3. Squared absolute values of the wave functions for the 
model superlattices with N, = Nb = 15, p, = - 1, 
,- - 3 ( a ) a n d N , = N b = 1 0 , p , =  - l , p b = l ( b ) .  P - 
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$c(u,a, $c(,,b and slowly-varying envelope functions FCC,, . 
Two difficulties arise in calculating the band spectra of real 
superlattices using this method. The first is associated with 
the fact that the band-edge Bloch functions of semiconduc- 
tors are often degenerate, requiring the use of multicompon- 
ent envelopes. In the 1D model under discussion here, this 
circumstance is nontrivial to model; therefore we limit our- 
selves to the two-band (Kane) approximation, which in 1D 
arises in a totally natural way. 

The second difficulty is connected with boundary con- 
ditions. It is ordinarily assumed that the band-edge Bloch 
functions for the contacting materials are the same, and that 
the boundary conditions for the envelopes are derived in the 
effective-mass approximation, i.e., using conditions of the 
current-conservation form (see Ref. 13 ) .2' Although this 
approach is almost certainly invalid (it can only be partially 
justified for cases in which the properties of the contacting 
materials are identical in symmetry and when the lattice pa- 
rameters of these materials are close), the results obtained 
using this method are usually (see, e.g., Ref. 12) in astonish- 
ingly good agreement both with experiment and with more 
refined theoretical calculations. 

In this section we will discuss the second problem with 
the method of envelopes, i.e., the boundary-condition prob- 
lem, using our 1D model. We will limit ourselves to the case 
papb > 0, since for papb < 0, i.e., for overlapping inverted 
bands, the solution is quite insensitive to the form of the 
boundary conditions, including the region of Tamm mini- 
bands. We will show that both the spectrum and the wave 
functions of the superlattice depend weakly on the form of 
the boundary conditions as long as we are not discussing 
interface (Tamm) minibands. Of course this is not surpris- 
ing, since the latter generally do not appear when the enve- 
lope method is used with boundary conditions derived with- 
in the effective mass approximation. In order to obtain 
Tamm minibands in the envelope approximation, it is neces- 
sary to include discontinuities of the band-edge Bloch func- 
tions in the boundary conditions; indeed, these bands can 
appear only when the Bloch functions are different. 

Returning to the model investigated in the previous sec- 
tion, we will seek the wave functions of the superlattice in the 
form 

Fc ( x )  qCa ( x )  +Fv ( x )  qr. ( x ) ,  O<x<Na 
= { F (  qCb ( )  + ( )  (  Na<x<Na+N. ' 

If the 2~ gaps overlap for papb > 0 (as in Fig. 2a), it is neces- 
sary to use the same function for the Bloch functions of the 
bottom of the two upper bands (this is specific to the 
Kronig-Penney model with 8-functions) : 

*,=2" sin 2nx. (12) 

where the factor 21'2 ensures unit normalization per unit 
length. Therefore in the present case $Ca = +,, , and in fact 
no Tamm states appear near the upper bands. 

On the other hand, the functions $, , $,, are different in 
this case, and have the form 

II.. ( 2 )  =I .  cos [ (2n-A,) x+A,/2] (13) 

(in order to obtain $,, it is necessary to replace the label a by 

b). Here A, is the width of the 2n- gap (in units of 5, ), and I ,  
is a normalizing factor that ensures normalization of ( 13) in 
the same way as ( 12). 

To first order in k . p  perturbation theory the equations 
for the envelope functions PC,, corresponding to the energy E 

have the standard (Kane) form 

where 

is the Kane parameter. 
In order to obtain the wave function ( 1 1 ) and take into 

account the Bloch condition (9) it is necessary to correctly 
match the solution to Eq. ( 14) in layers of type A with the 
solution to the analogous equation (with replacement of la- 
bel a by label b )  in layers of type B. It is natural to use the 
condition of continuity of the wave function ( 1 1 ) and its 
derivative at the boundaries of layers A and B. We empha- 
size, however, that such boundary conditions3' are usually 
not used, because they require knowledge of the exact form 
of the Bloch functions of the band extrema. In contrast, the 
boundary conditions of Bastard in the present case (first 
order k - p  perturbation theory and the two-band approxima- 
tion) have the form13 

Note that because the Bloch functions $, and $,, are differ- 
ent, the exact boundary conditions introduce discontinuities 
in the envelope functions at the boundaries of the A and B 
lattices. 

In Fig. 4 we compare the results of exact calculations of 
the superlattice spectrum (with the same parameters as in 
Fig. 2a) with approximate calculations using both the exact 
boundary conditions and Bastard boundary conditions. It is 
clear that the Tamm minibands are reproduced quite well in 
the envelope approximation. Again, this is not astonishing, 
since it is near the band edges that the Kane approximation 
works best. 

If we use the Bastard boundary conditions, the solu- 
tions in the regions of localized and delocalized minibands 
are reproduced with good accuracy. However, as one might 
expect, the Tamm minibands disappear. The first miniband 
in the region of negative energies begins at E = 0. 

It is very interesting to investigate the approximate 
wave functions. In Fig. 5 we show the envelope functions 
(for the same values of the parameters as were used in Fig. 
2a) calculated using the exact boundary conditions (a )  and 
the Bastard boundary conditions (b).  Despite the presence 
of discontinuities in the envelope functions in the first case 
and the absence of discontinuities in the second, the shapes 
of these solutions practically coincide for the upper bands. 
Differences of a nontrivial sort occur in the region of ener- 
gies near the coincident valence bands of lattices A and B. 
For the case of Bastard boundary conditions, when E = 0 
and K = 0 (i.e., at the maximum of the uppermost negative- 
energy miniband) the envelopes have the obvious form 
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FIG. 4. The exact spectrum (short dashes), the spectrum calculated with- 
in the framework of the envelope approximation with exact boundary 
conditions (solid curves), and that calculated using Bastard boundary 
conditions (long dashes), for a superlattice with N, = N b  = 15, 
p,  = - 1 ,  pb = - 3. The precision of the exact-boundary-condition ap- 
proximation is very high for the special case of the Tamm miniband. Note 
carefully that the scale of energies in the region of the Tamm minibands 
has been expanded. 

F, = 1 and Fc = 0. This should also be true whether or not 
there are discontinuities in the valence band and Bloch 
boundary functions. 

For the exact boundary conditions, the higher Tamm 
minibands (i.e., those located in the region of the forbidden 
energies common to both lattices) are essentially made up of 
valence-band wave functions ( IF, I ) I Fc I ), while both F, 
and F, decay into the depths of the layers. The shape of the 
lower Tamm minibands, which for these values of the pa- 
rameters are located in a region of allowed energies common 
to both lattices, appears extremely nontrivial. Only one of 
the components (F ,  ) is localized at the interface. In addi- 
tion, there is an extremely significant change in the upper 
bands as well: they are localized not at the interface but with- 
in the layers. 

Although the spectrum of the Tamm minibands is very 
well described within the framework of the envelope approx- 
imation with exact boundary conditions (see Fig. 4), the 
description of the wave functions is considerably worse; in 
essence this is why the lower Tamm miniband behaves as it 
does when it lies in a region of allowed energies common to 
the bands of both lattices. This is abundantly evident from 
Fig. 6: the exact wave function is much more strongly local- 
ized than the approximate wave function. From this we may 
conclude that the Tamm miniband in the common region of 
allowed energies (of the bare spectra) arises as a result of a 
very precise balance of multiple scatterings of superlattice 
waves by the potential, which cannot be reproduced com- 
pletely within the framework of the envelope approxima- 
tion. 

In conclusion we note the well known fact that the 
Tamm states are very sensitive to the form of the near-sur- 
face potential. Within the context of the model investigated 
here, this fact is clear, e.g., from Eq. (4): if in contrast to the 
present case we havep, <p, < 0, the Tamm states shift from 
the overlapping 2 m  gaps to the (2n + 1)n- gaps; this also 
applies to the Tamm minibands in the superlattice. There- 
fore, one should not hope for a letter-perfect analogy 
between the present model and a real superlattice: the for- 
mer is no more than a one-dimensional exactly-solvable 

FIG. 5. Envelope functions calculated with the exact 
boundary conditions (a)  and the Bastard conditions 
(b)  for the same values of the parameters and E and Kas 
in Fig. 2a: O--IF,lZ, C I F , I Z .  

2 

FIG 5 Pnv~1ot)e functions calculated with the exact 
boundary conditions (a)  and the Bastard conditions 
(b)  for the same values of the parameters and E and Kas 
in Fig. 2a: O--IF,lZ, C I F , I Z .  
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model in which there are Tamm levels and minibands. How- 
ever, from our analysis of this model we may arrive at certain 
general conclusions. For example, if overlapping inverted 
bands are not involved, Tamm minibands can arise in super- 
lattices with very different band-edge Bloch functions in 
neighboring superlattice layers, even in situations where 
these extrema are almost degenerate in energy. In this case it 
is not at all necessary for the periods of the adjacent layers to 
be different (in the model under investigation here we have 
purposefully chosen lattices that differ in their potentials but 
not in their periods). The interface minibands can be located 
in both allowed- and forbidden-energy regions that are com- 
mon to both layers (for the bare spectra). The envelope ap- 
proximation with Bastard boundary conditions describes 
the superlattice spectrum quite well if we overlook the ab- 
sence of the Tamm minibands. In order to describe Tamm 
minibands within the envelope approximation, it is neces- 
sary (in the absence of band inversion) to include discontin- 
uities of the Bloch functions of the extrema of the overlap- 
ping bands in the boundary conditions. 

The author is grateful to N. A. Gippius for discussions 
and for pointing out the role of exact boundary conditions in 
the envelope approximation, and to L. V. Keldysh, V. V. 
Konopatskii, Yu. V. Kopaev, E. A. Mulyarov, and A. P. 
Silin for useful discussions and remarks. 

" As No,, increases the overlap of wave functions of adjacent interfaces 
decreases, and the splitting of the Tamm minibands and their widths 

FIG. 6. A comparison of the exact wave functions 
(to the left) and those calculated within the enve- 
lope approximation with exact boundary condi- 
tions (to the right) for the Tamm minibands (at 
points 3 and 4 in Fig. 2a). 

decrease as well. Eventually the lower Tamm miniband is located in the 
gap region and the degree of localization ceases to depend on N,,,. 

"For brevity we will refer to these boundary conditions as the Bastard 
conditions. 

" In what follows we will refer to them as the exact boundary conditions. 
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