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Equations for the order parameter of spin density waves (SDW) induced by a magnetic field in 
(TMTSF) , X superconductors are derived. The solutions of these equations for T = 0 
correspond to the coexistence of several plane spin density waves. 

The main feature of the phase diagram of the family of 
(TMTSF) ,X-compounds (X = ClO,, PF,, etc. ) is a cas- 
cade of transitions in a magnetic field to states with spin 
density waves (SDW),1.2 in which an analog of the two- 
dimensional quantum Hall effect is observed.394 

The conventional explanation of the induction of SDW 
by a magnetic field is based on the effect of "one-dimensiona- 
lization" of the electron spectrum suggested for the first time 
in Ref. 5. In this effect the electron motion in a field H paral- 
lel to the z-axis along the open portions of the Fermi surface 
of a quasi-two-dimensional electron spectrum 

& ( P ) = ~ ~ F ( P ~ ~ P P )  (pv, p z ) ,  

that this description contradicts the real symmetry of the 
lattice, i.e., the existence of one electron per unit cell. Below 
we study the case T = 0 which is of interest for experimental 
applications and suggest a means of finding the Hall conduc- 
tivity a,, when the order parameter is a periodic function of 
position and is expanded in a series of the plane waves (3). 

We work, as usual, the quantum limit w, 9 T,A, where 
A is the amplitude of the SDW order parameter 

@ (r) =A (x) exp (2 ippx+ iny /b+ inz / c )  +c.c. ( 5  

In this case the Green's functions in the self-consistent equa- 
tions for the order parameter in the magnetic field,5 

t (p , ,  p,)  -2tb cos ( p u b )  + 2tb1 cos (2p ,b )  + 2 t ,  cos ( p , c ) ,  G** ( i o , ,  p,, p,; x, x') = * - sign o, 
(1) 

iu, 
tbBtb', t e ,  

X 

corresponds, in real space, to a periodic bounded motion 
across the chains 

2ctb e H v  b  
!/=YO +- sin (+ T). 

eHuP 

(Herep, and u, are the "Fermi" momentum and velocity, 
respectively, t,, t i ,  and t, are overlap integrals of the elec- 
tron wave functions across the chains; a, b, and c are the 
crystal lattice constants.) In this situation the electron mo- 
tion is infinite only in the direction of the chains, and the 
latter acquire some properties of a one-dimensional electron 
gas. Such a gas, as is well known, is unstable with respect to 
the "Peierls pairing." In the case concerned this gives rise to 
instability in the spin channel and SDW formation. 

The resulting spin density waves, due to the periodic 
electron motion (2), are characterized by the quantum val- 
ues of the longitudinal wave vectorc8 

can be averaged over the rapid electronic  oscillation^,^ and 
the resulting perturbation series can be reduced to the fol- 
lowing expression for the free energy (see Fig. 1 ) : 

Q= ( 2 P P + 2 n ~ c l ~ F ,  nib, n l c ) ,  (3) where fi is the "cutoff energy," g, is the constant of electron 

where o, is the cyclotron frequency of the electron motion interactions connected with Umklapp processes, g is the usu- 
al electron-electron interaction constant, and R = 8t L/w,. 

on the Fermi surface ( 1 ) . 
The electron spectrum of such states with SDW was The most interesting term in (6) is the third one. It 

found in Ref. 9 and consists of wide Landau bands separated gives the lowering of the electron energy due to the gap in the 

by narrow gaps (with the largest gap at the Fermi level). The spectrum. It is not trivial that in this case the energy depends 

problem of the "Hall conductivity" of such a dielectric spec- 
trum can be solved by means of the Streda formula,1° and for - - + A" + 
the phase (3)  with the quantum number n we have1' - - - - - - - 

3 93 

2ne2 
oxv = - 

h .  (4) 
- A" + A - A f - - - 

The main drawback of these and other treatments is, to - - - - .  

our mind, the description of SDW by a single value of n in the JJ 93 J 

for the wav; ( 3 1. In Ref. l it has shown FIG. I. Examples of first- and third-order diagrams in the self-consistent 
in the Landau approximation for the free energy expansion equation for A(x) (the lines with arrows denote Green's functions). 
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FIG. 2. Equivalence of the wave vectors (2pF + k,,n) and 
( - 2p, + ko n ) ,  ko = 2w,/vF, the sum of which is equal to the reciprocal 
lattice vector lql = 27r/a (27r/a = 4p,) in the case of two-fold commen- 
surability. 

on the transverse momentump and, in principal, can vanish 
at some momentum p = po . In general, this dependence is a 
sharp function of S,, which may qualitatively explain the 
small experimental value of the activation gap. 

The solution corresponding to the minimum of the 
expression (6) is sought in the small-coupling-constant ap- 
proximation. For a given value of the magnetic field we 
choose those harmonics in the series (3), for which the effec- 
tive value of the coupling constant is maximum. As seen 
from a simple construction in the extended Brillouin zone 
(see Fig. 2), in the case of one electron per unit cell the wave 
vectors with n = no and n = - no in (3) are equivalent. 
This makes it necessary to consider a two-wave approxima- 
tion for the solutions of the functional (6): 

Though the initial free energy is invariant with respect to the 
substitution Sn -6 - ., when we minimize it, as often hap- 
pens, a spontaneous symmetry-breaking occurs, and the so- 
lution is given by an asymmetrical linear combination 

(Here Jn ( A )  is the Bessel function of order n. ) Note that the 
constant g, enters in the combination g,/$J; ( A ) ,  so a 
small Umklapp constant is sufficient to change drastically 
the properties of the system. 

Thus, in the weak-coupling approximation, the whole 
range of existence of SDW can be divided into intervals 
where there are different vector order parameters (7). 

However, the question of the coexistence of these vector 

order parameters near a phase boundary arises. The answer 
to this question can be obtained analytically: the vector sub- 
phases coexist in narrow intervals near their boundary. The 
expression for the range of coexistence of the harmonics (7) 
with n = 0 and n = * 1 has the form 

g In ( t f / t 0 ' )  < gln (t1/to') 4 
<-- +- 

J , v a )  joZ ( a )  2 1 

where 

tO1=Q exp ( - 1 /2g ) ,  g=g3. 

Thus, the whole range of existence of SDW in the weak- 
coupling approximation is divided into intervals where there 
are plane waves either with two different values of the quan- 
tum number n from ( 3 ), or with four. This conclusion differs 
radically from the results of earlier treatments5-' and is con- 
firmed, in the opinion of the authors of Ref. 13, by the results 
of their experiments. 

The calculations of the Hall conductivity" [see (4) ] 
cannot be directly extended to the present case, and the ex- 
perimental quantization of a,, is to be considered as a conse- 
quence of the more general Thouless-Halperin the~rem. '~ . '~  

Note in conclusion that the minimum of the free energy 
(6) has been found here only approximately. The exact solu- 
tion corresponds to a periodic arbitrary function A ( x ) ,  
which can be expanded in plane waves (3), and can be found 
numerically. We believe that in this way we can also explain 
the existence of the fine structure of subphases in the com- 
pound (TMTSF) , ClO,. 

The author is grateful to L. P. Gor'kov and V. M. Yako- 
venko for helpful discussions. 
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