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The condition that the absolute values of the 2 0  dipole moments remain constant on arbitrary 
plane Bravais lattices, with an arbitrary anisotropic interaction, substantially restricts the types 
of periodic configurations of dipole moments which could occur in the ground state (uniform 
structures with a doubled or quadrupled lattice constant and polydomain periodic structures). 
This condition also plays an important role in the analysis of the stability of the ground states with 
respect to thermodynamic fluctuations. The energies and configurations of the dipoles in the 
ground state on arbitrary 2 0  Bravais lattices are calculated by separating the dipole-dipole 
interactions into intrachain and interchain parts. The frequencies of the orientation oscillations 
which are active in the IR absorption spectra are determined. Approximate expressions are 
derived for the temperatures of orientation phase transitions. These approximations become 
asymptotically exact in the limit of weak interactions between Ising chains of dipoles. 

1. INTRODUCTION 

An anisotropic interaction can lead to complex configu- 
rations of dipoles in the ground state. Calculations of these 
configurations are reported in Refs. 1-10 for plane lattices- 
square, triangular, rectangular, and rhombic. It was proved 
in Ref. 11 that orientational long-range order prevails in a 
system of dipoles on arbitrary 2 0  Bravais lattices, except 
square lattices (in which case a phase with short-range order 
occurs). That proof provides substantial motivation for cal- 
culations of the ground states. If thermodynamic fluctu- 
ations were able to disrupt the long-range order at some arbi- 
trarily low (but nonzero) temperature, such calculations 
would be of purely methodological interest. The primary 
results of the analysis below are a determination of the char- 
acteristics of the ground state of dipoles on an arbitrary 2 0  
Bravais lattice and the derivation of correct estimates of the 
temperatures of the phase transitions to these states. 

Our solution of this problem is based on three subprob- 
lems, which are examined in the following three sections of 
this paper. The first subproblem is analyzing the limitations 
imposed on the types of periodic configurations of dipoles 
with an arbitrary interaction in the ground state by the con- 
dition that the absolute values of the dipole moments remain 
constant. It turns out that these limitations are substantial, 
and they select a narrow class of configurations for further 
analysis. 

The second subproblem is constructing a convenient 
method for evaluating the dipole interactions. This method 
would make it possible to work with analytic expressions for 
an arbitrary 2 0  Bravais lattice with adequate accuracy. This 
method is based on Van der Hoff and Benson's ideal2 of a 
chain representation of the interactions. That method was 
used in Ref. 8 for the first analytic analysis of the ground 
states of dipoles on triangular and square lattices. That anal- 

interactions which made it possible, in Refs. 13 and 14, to 
introduce a generalized self-consistent-field approximation 
which leads to asymptotically exact results for a 2 0  Ising 
model in which the constants of the interactions between 
nearest neighbors along the axes of the square lattice are very 
different. In the present paper we generalize that approxima- 
tion to systems with a long-range dipole interaction. This 
approximation makes it possible to explain the low phase- 
transition temperatures indicated by the calculations in Ref. 
11. 

In the final section of this paper we discuss the results of 
this study. We also analyze the results of Refs. 10 and 15, 
where the existence of a long-range order in certain specific 
dipole systems and also in arbitrary dipole systems was ques- 
tioned. 

2. STRUCTURE OF THE GROUND STATES OF PERIODIC 
CONFIGURATIONS OF 2 0  UNIT VECTORS ON 2 0  BRAVAlS 
LATTICES 

We consider a system of 2 0  unit vectors 
e, = (COS Or, sin 0, ) on an arbitrary 2 0  Bravais lattice 
( r  = n, a, + n, a,, where a , ,  a, are the fundamental lattice 
vectors, and n , ,  n2 are integers). The interaction between 
these unit vectors is specified by an arbitrary tensor 
Va5(r) = Va5( - r )  = VSa(r): 

(a  repeated Greek index a,B = x,y means a summation). 
We go over to the Fourier representation in the wave vector 
k: 

Pa6(k) = Va'(r)oos(kr), Za (k) =N-' C e /  exp(-ikr). 
r r 

(2) 
ysis (without the help of numerical simulations) revealed In this representation, the Hamiltonian becomes 
the reason for the ferroelectric and layered antiferroelectric 
(or, as a result of degeneracy, microvortex) ground states on H = ~ N  1 ~ ~ ~ ~ ( k ) P ( k ) i ? ~ ( - k )  
these lattices. k 

This separation of strong intrachain interactions and 1 
weak interchain interactions is responsible for the formula- =-NZ Pi(k) le(k)ki(k) /'; 

2 k, 

(3)  
tion of the third subproblem-that of evaluating the phase- 
transition temperatures. It is this suggestion regarding the where (k )  and 5;. (k )  are real eigenvalues and vectors of 
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the tensor "Va8(k) : 

VaO (k)  EjB (k) =Vj (k) gja (k) , 
Eja (k)Ejra (-k) =tijjr, j = l ,  2. (4) 

Without any loss of generality we can assume 

( k )  V )  min PI@) =V,(kl)=V,, 1=1,2. . . . , L i5 )  

It is easy to see that the vector 

corresponds to the minimum value of the Hamiltonian (3),  

and satisfies the condition 

which underlies the spherical model.16 Nevertheless, if the 
vector (6) is to satisfy the stronger condition of the unique- 
ness of le, I at each lattice site, it is necessary to impose the 
following equality: 

B (k)~(-k')exp[i(k-kf )r] -0. 
kf k' 

(9) 

Identical minimum values "V, (k)  could be achieved for 
realistic interactions only at several points of the first Bril- 
louin zone, k = k,, which transform into each other under 
the lattice-symmetry operations. If there are only two such 
points for the 2 0  lattices under consideration here, i.e., if 
there are only k = f k, #h/2 (i.e., I = 1,2), where 
h = h ,  b, + h2b2 is an arbitrary reciprocal-lattice vector 
(a, b, = 2776,, where h ,  and h,  are integers), Eq. (9)  be- 
comes 

With k, = h/4 we find from (10) the condition 
Re G2( f h/4) = 0, which can easily be satisfied through the 
substitution 

g(*h/4) =2-'" exp ( =kin/4)ci (h/4), 

where f , (h/4) is the single real eigenvector of "Va8(h/4) in 
Eq. (4)  [this representation was used in Refs. 3,4, and 1 1 for 
complex vectors 6( + h/2) 1. In the case k, # h/2, h/4, con- 
dition ( 10) leads to E2( f k, ) = 8: ( f k, ) = 0 because of 
the arbitrary values of the exponential functions at each lat- 
tice site r. For 2 0  vectors, this condition holds only if 
f 7 ( &  k, ) = i:?; ( f k, ). Since the components of the ten- 
sor Va8(k1 ) are real, however, the vectors $, ( + k, ) can 
always be chosen to be real, and the condition 
f ;  ( f k, ) = ig?; ( f k, ) is incompatible with (4)  except in 
the special case in which the tensor "Va8(k) is isotropic at the 
point k = + k, ["Va8( f k, ) = "V, ] .') In this manner, 
it is shown that for realistic anisotropic interactions there 
cannot exist structures which correspond to only two har- 
monics, k = f k,,  with k, #h/2, h/4 and to the lowest en- 
ergy of the system, (7).  The structure of the ground state in 
this case will include some additional harmonics, which 

raise the total energy of the system [since the additional 
harmonics would in general correspond to "V, (k)  > 1. 
The ground-state structure will have a periodic polydomain 
structure with sharp changes in the orientations of e, at the 
boundaries of domains. 

The appearance of minima of (k)  at the points 
k#  h/2 ("accidental minima") is characteristic of systems 
with different and competing interactions (as in Ref. 17, for 
example, with a competition between exchange and dipole 
interactions). Direct calculations on the ground states of 
various dipole lattices have ~ h o w n ' - ' ~ ~ ' ~ - ~ ~  that the struc- 
tures of these states do indeed correspond to values k = h/2 
for which the necessary condition of an extremum of "V, (k)  
holds [for k = h/2 we find d"Vap(k)/d k = 0 from(2) 1. AC- 

cordingly, structures with k #  h/2 will be ignored in the fol- 
lowing sections of this paper, which are concerned exclusive- 
ly with dipole-dipole interactions. At this point we would 
like to note that as the temperature rises the harmonics with 
k, # h/2, h/4, which are forbidden in the ground state, may 
arise as an intermediate phase, since the strong condition of 
the uniqueness of Je, I in the ground state is replaced by the 
inequality I (e, ) 1 < 1 for thermodynamic averages. A phe- 
nomenological theory of phase transitions to an incommen- 
surate phase was examined in Refs. 17,21, and 22. The ther- 
modynamic stability of an incommensurate phase (and, in 
our case, of a phase with k, # h/2, + h/4) at specifically 
intermediate temperatures stems (on the one hand) from 
the inequality vl (k, ) < "V, (h/2) and (on the other) from 
the combinatorial increase in the coefficient of the fourth 
power of the order parameter in the Landau expansion for 
the phase with k, ,  with respect to the phase with k = h/2. 

With this said, we restrict the analysis to ground-state 
structures with k = h/2. By virtue of the identity 
f (k  + h) = f(k)  [ f (k)  is an arbitrary function], we need 
carry out the summation over only four wave vectors- 
k = 0, b, /2, b2/2, (b, + b, )/2-in order to determine the 
ground state in Hamiltonian (3).  The minimization of H 
with respect to the eight variables embodied in the four real 
vectors B(k), should be carried out under the auxiliary con- 
dition (8)  and under three conditions which follow from 
(9): 

( k  takes on the four specified values). We are thus left with 
four independent variables, which correspond to the orienta- 
tion angles 0, of the unit vectors e, in the four sublattices 
considered in the 2 0  analogZ of the Luttinger-Tisza meth- 
od.I8,l9 It is thus not surprising that minimization7 of a 
Hamiltonian by this method with respect to sixteen sublat- 
tices has yielded the same iesult as is found through a mini- 
mization with respect to four sublattices. 

For realistic interactions (in particular, dipole-dipole 
interactions), the four values of "V, (k )  with the specified 
k = h/2 cannot be identical. Only two cases are possible, in 
which one of these values is the minimum, or (for lattices 
with symmetry axes of higher than twofold symmetry) the 
two values are equal, "V, (b, /2) = (b2/2). In the first of 
these cases, only the one vector 6(k, ) is nonzero, while in a 
second case, two vectors are nonzero: B(b, /2) and 6(b2 /2). 
By virtue of condition ( 11 ), these two vectors must be or- 
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thogonal. These arguments show that the Luttinger-Tisza 
method is overburdened with independent minimization 
variables: - Analysis of the values of the Fourier components 
V, ( k )  immediately makes it possible to eliminate no less 
than half of the variables and to derive the result vastly more 
rapidly (compare this situation with, for example, the deri- 
vation of the ground state of a square lattice of dipoles by the 
Luttinger-Tisza method in Ref. 2 and by Fourier analysis in 
Refs. 3, 4, and 8).  The ground state is degenerate both be- 
cause the minimum values of 7, (k )  at two points on the 
boundary of the first Brillouin zone, k = b, /2 and k = b, /2, 
are equal and also because of the equality "V, ( k )  = ( k )  at 
one point, k = h/2. A natural consequence of the degener- 
acy of the ground state is the presence of a Goldstone mode 
in the spectrum of orientation os~i l la t ions .~~  

3. GROUND STATES OF 2 0  DIPOLE BRAVAIS LATTICES 

We turn now to calculations on the ground states of 2 0  
systems with a specific dipole-dipole interaction: 

( p  is the dipole moment). This interaction generalizes the 
results of Refs. 1-10 to arbitrary 2 0  Bravais lattices. For this 
purpose we need to select the smallest of the four eigenvalues - 
V, (k) ,  with k = 0, b,/2, b,/2, (b, + b, )/2, and weneed to 
determine the orientation of the corresponding eigenvector 
(Sec. 2).  

This selection process can be simplified substantially by 
noting that anisotropic dipole forces tend to orient the di- 
poles in the direction parallel to the line connecting the di- 
poles. The ground-state energy is dominated by the interac- 
tion between parallel dipole moments of the chain with the 
smallest distances between sites. We thus choose the lattice 
constants of the 2 0  Bravais lattice in the following way: 

Uniform configurations of the orientations of the dipoles 
should thus be realized within chains parallel to a, (the x 
axis in Fig. 1 ), while uniform configurations in neighboring 
chains may alternate (along the y axis). These structures 
correspond to wave vectors k = 0 and k = b, /2, and it is for 
these wave vectors that we need to calculate the values of - 
V, (k) .  The analysis of the values of V, ( k )  at two other 

FIG. 1. Two-dimensional Bravais lattice with fundamental vectors a, ,  a, 
and reciprocal-lattice vectors b, , b,. The solid and dashed arrows at the 
angles 8, and 8, specify the ferroelectric and antiferroelectric configura- 
tions of dipoles in the ground state. 

points, k = b2/2 and (b, + b, )/2, carried out below, con- 
firms the validity of this choice of the structures to be ana- 
lyzed. 

Van der Hoff and Benson's method', for evaluating lat- 
tice sums in the chain representation was developed further 
in Refs. 23 and 24 for calculations of dipole sums and Lor- 
entz factors of orthorhombic 3 0  lattices. The advantage of 
that method is that it singles out the intrachain interactions, 
which are expressed in terms of a zeta function g ( p ) ,  and the 
interchain interactions are written as rapidly converging 
sums of modified Bessel functions K, (z). Explicit expres- 
sions for the interchain interactions for a uniform structure 
and for a periodic structure (with arbitrary k )  of orienta- 
tions of dipoles are given in Refs. 8 and 25, respectively. 
Making use of those results, we can immediately write the 
Fourier components of the dimensionless dipole interaction 
tensor baB(vb,  /2) ( v  = 0, l)  for an arbitrary 2 0  Bravais 
lattice: 

. ,  

Dy(vbt/2)  =-32n2 z (-1) nvhzK, (2nnhy.) sin (2nnhxo) 

-% 
z- (-1)"16nZy0 exp (-2nyo)sin (2nxo). ( 16) 

Here we have written xo = a, cos a, yo = a, sin a (Fig. 1 ). 
By virtue of inequalities ( 13) we have 

The approximate equalities in ( 14)-( 16) are asymptotically 
exact in the limit 2ryO $1. For the smallest value, yo = 

(x, = 1/2, a, = a,  = 1, a = 60"-a triangular lattice), the 
approximate equalities in (14) and (15) lead to 
b ""(0) =: - 5.544, b ~ ~ ( 0 )  =: - 5.498. An exact calcula- 
tion, on the other hand, yields b X x ( 0 )  = b ~ ~ ( 0 )  
= - 5.5 17. Consequently, the relative error of the approxi- 
mate equalities is less than 0.5%, so these equalities can be 
used in the calculations below. 

The eigenvalues of the tensor b ""(vb, /2) and the ori- 
entation angles 8, of the unit vectors l ,  (vb, /2) with respect 
to the x axis [see (4)  and (5) ] ,  which we are seeking, are 
given by 

For brevity we have omitted the arguments of the functions 
vb, 22. 

We first note that at xo = 0 and 1/2 we have 
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FIG. 2. Characteristics of the ground state of 2 0  Bravais lattices with 
xo = 0,1/2 versus the interzhain distance yo. a: Twice the dimensional 
energy of the ground state, D,  (the region with v'3/2<y0 < 1 corresponds 
to only rhombic lattices with xo = 1/2). b: Squared frequencies of orien- 
tation oscillations which are active in the ir absorption spectra (the solid 
and dashed lines correspond to rhombic and rectangular lattices). c: Tem- 
perature of the phase transition in a generalized approximation of an in- 
terchain self-consistent field (the dashed line is an interpolation between 
the points yo = d / 2  and 1 ) . 

The case x, = 0 (yo > 1 ) corresponds to a class of rectangu- 
lar lattices with b 2 > 0, b, (b, /2) < b, (O), for which there 
is an antiferroelectric ground state with dipole orientations 
parallel to thex axis, alternating in neighboring chains. For a 
square lattice (yo = 1 ) we have b, (b, /2) = b, (b, /2), and 
this structure is one of a set of possible microvortex struc- 
tures of a degenerate ground state.24 The case x, = 1/2 
(yo > G/2)  corresponds to a class of rhombic lattices with a 
rhombic angle (the angle between the equal sides, a,) 
y=180"-2a<60", for which we have b$nht<0, 
b1 (0) < b, (b, /2), and there is a ferroelectric ground state 
with dipoles orientated along the x axis. For a triangular 
lattice (yo = G/2)  we have b, (0) = b2 (0) and a degener- 
ate ferroelectric ground state with arbitrary dipole orienta- 
t i o n ~ . ~ ' ~  Figure 2a shows the (doubled) dimensionless ener- 
gy of the ground states, be, - 2 :",'I, versus the interchain 
distance yo for these classes of lattices. As yo increases, we 
find b, +be,. 

In the general case O<x, < 1/2, the dependence of 5, 
and O onx, is as shown in Fig. 3, a and b, for various values of 
yo. We see that at x, 2 0.22-0.25 there are ferroelectric 
ground states with positive values of OF, the orientation an- 
gles of the dipoles with respect to the x axis (Fig. 1 ). In the 
interval V3/2 <yo < 1 there are solutions which correspond, 
with x, = ( 1 - yi  )'I2, to rhombic lattices with unit sides 
(a, ) and rhombic angles 60" < a  < 90" (the cutoff points of 
curves 2 and 3 in Fig. 3, a and b),  for which a ferroelectric 
state with dipoles oriented along the large diagonals of the 
rhombuses, a, + a, (8, = a/2), is realized at 60" < a  5 80", 
while at 80" 5 a < 90" there is an antiferroelectric state with 

FIG. 3. Characteristics of the ground state of 2 0  Bravais lattices versus 
the displacements of the sites, x,, in neighboring chain5 I-yo = \/3/2; 
2 4 . 9 ;  3 4 . 9 5 ;  4-1; 5-1.1. a: The energy parameter D, . b: The angles 
0, and Q,, specifying the orientations of the dipoles. c: The frequency 
parameter IoZ(0) /  V (the solid and dashed lines correspond to ferroelec- 
tric and antiferroelectric ground states). 

8, -, - 2". The results found for rhombic lattices in the 
chain representation, ( 14)-( 16), agree with the results of 
numerical calculations by the Luttinger-Tisza method in 
Ref. 6 (see also Ref. 25). Rough estimates of the values of the 
lattice constants corresponding to a transition from a ferro- 
electric ground state to an antiferroelectric ground state can 
be found from the condition b = 0. This condition yields 
x, = 1/4, which in turn leads to a value 
a = arctan [ (x; - 1 ) "'1 = arctan mz76". 

The values of 0, for arbitrary Bravais lattices with 
2 1/2 2 y 0 1 ,  1 - y o  <x,<1/2, vary froma/2 too ,  

and the angles 8, are negative and small in magnitude. For 
yo > 1, the dipoles in the ground state are oriented at small 
angles from the x axis, and the energy of the ground state is 
dominated by the intrachain interactions (Fig. 2a). 

4. FREQUENCIES OF ORIENTATION OSCILLATIONS; 
ESTIMATES OF THE PHASE-TRANSITION TEMPERATURES 

It was proved in Ref. 11 that orientational long-range 
order exists on arbitrary 2 0  Bravais lattices (except for a 
square lattice). Consequently, the ground states calculated 
in the preceding section of this paper specify the structure of 
an orientational-order phase in a certain region of low tem- 
peratures. There are accordingly the problems of determin- 
ing experimentally observable characteristics of the orienta- 
tional-order phase and of estimating the temperatures of the 
phase transitions. 

The simplest and most convenient way to analyze orien- 
tational order is to record the spectrum of IRabsorption by 
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the orientation oscillations which accompany changes in the 
vector dipole moments in directions perpendicular to their 
orientations in the ground state.25 We denote by p, the angle 
between the unit vector e, and the orientation 6, ( r )  in the 
ground state. We have the expansion 

e,=& (r)  cos cpr+g2 ( r )  sin q,, (19) 

where the unit vector 6, ( r )  is perpendicular to <, ( r )  and is 
determined by the orientation of t2 (k, ) (Ref. 1 1 ). In the 
limit of extremely low temperatures, the angular oscillations 
of dipoles with a moment of inertia I can be assumed har- 
monic. As a result we find the following Hamiltonian for the 
 excitation^:^' 

The corresponding dispersion relation for orientation oscil- 
lations is determined by the quantity J ( k  + h/2) [Eq. (38) 
from Ref. 111 and can be written in the form 

o v k )  =,I-' [ V a p  ( k )  Eza ( h / 2 )  tza ( h / 2 )  - T i  (h/2) ] 

=I-' [ r i ( k ) s i n 2  6 k + v 2 ( k ) c o s 2  6t-iT1], (21 

where h/2 is the wave vector of the orientation structure of 
the ground state, and 9, is the angle between tz (k)  and 
2 2  (h12). 

The frequencies of orientation oscillations of dipoles on 
2 0  Bravais lattices which are observable in the IR absorp- 
tion spectra correspond to the condition ka, & 1 and are giv- 
en by 

for ferroelectric ground states or by 

for antiferroelectric ground states. Figures 2b and 3c show 
the squared frequencies in (22) and (23) versus the lattice 
constants of 2 0  Bravais lattices. At a fixed value of yo, the 
oscillation frequencies in the antiferroelectric phase are low- 
er than those in the ferroelectric phase, because of a change 
in the sign of Z) 2 in ( 14). For rectangular and rhombic 
lattices with the same value of yo, for example, the difference 
between the values of IwZ(0)/V in these phases is 
2[1 + (2ry0) - I ]  1321 according to (15). 

Only in the case of a triangular lattice of dipoles does 
the value of w2(0) vanish. The corresponding long-wave- 
length asymptotic expression for a Goldstone mode is 

[a, is the angle between the vector k and the vector t2 (0) 1, 
while the low-frequency asymptotic behavior of the frequen- 
cy distribution is 

The mean square fluctuations in the angles, 

are therefore finite, and the ferroelectric ground state of the 
dipoles on a triangular lattice is stable, in agreement with the 
results of Ref. 1 1 but in contradiction of the results of Ref. 10 
(this point is discussed in Sec. 5). The low-temperature 
asymptotic behavior of the specific heat of orientation oscil- 
lations of dipoles on a triangular lattice is given by 

c (T) -0,6176 (I/A2V)v4T"/1. (27) 

A square lattice of dipoles also has a Goldstone mode of 
orientation oscillations, but in this case w2(k) vanishes not 
at k = 0 [w2(0) = 0.586V/I ] but at the boundary of the 
first Brillouin zone. Here we have g(w) c w and c ( T )  a TZ, 
and the integral in (26) diverges logarithmically at its lower 
limit, indicating the existence of only a short-range order, as 
in a (Berezinskii-)Kosterlitz-Thouless phase." For all oth- 
er lattices we have g(w ) = 0 at w < w (O), the mean square 
fluctuations of the angles in (26) are finite, and the low- 
temperature asymptotic specific heat is exponentially small. 
For yo ) 1, the quantity Iw2(0)/V approaches the constant 
value 6f (3) ,  which corresponds to orientation oscillations 
of dipoles in an isolated chain (these oscillations were stud- 
ied in Refs. 26 and 27 in the nearest-neighbor approxima- 
tion). 

Real dipole systems may have additional n-well local 
potentials, which form torsional vibrations with a frequency 
w, in the absence of dipole forces.25 When these local poten- 
tials are taken into account, a sum of potential energies of the 
torsional vibrations, + I w i p  5, appears in the Hamiltonian 
(20), and Eqs. (21)-(23) acquire an increment of w:. 

We turn now to estimates of the phase-transition tem- 
peratures Tc. Rough estimates IT, - I vl 1/2 are found from 
the self-consistent field approximation,3s4 but the calcula- 
tions of lower limits on Fc carried out in Ref. 11 describe 
vastly lower values. The low phase-transition temperatures 
in dipole systems can be explained by the small values of the 
interchain interactions, since the strong intrachain interac- 
tion cannot lead to long-range order in an isolated chain. 
These considerations show that the most competent descrip- 
tion of phase transitions in these systems can be found with 
the help of a generalized approximation of the interchain 
self-consistent field, in which the exact solution of the one- 
dimensional problem would be used, and the weak inter- 
chain interactions would be treated as a perturbation. This 
approximation for quasi-1D systems (which are not dipole 
systems) was introduced in Ref. 13 and was justified with 
the help of the Feynman inequality in Ref. 14. Unfortunate- 
ly, no exact solution is known for a 1D system of 2 0  dipoles. 
We thus consider a 2 0  Ising model with dipole-dipole inter- 
actions on an arbitrary Bravais lattice with dipole orienta- 
tions parallel to the x axis (Fig. l ), e: = a, (p) = + l (p is 
the index of the site in the chain, and n is the number of the 
chain ) : 

1032 Sov. Phys. JETP 72 (6), June 1991 V. M. Rozenbaum 1032 



A model of this sort is useful for describing phase transitions 
in real 2 0  systems with two-well local potentials. In the pres- 
ent approach, this model would correspond to an exactly 
solvable 1D Ising model, 

with variable parameters J and h. Following Ref. 14, we 
write the Feynman inequality: 

I-a 
+ ~ m  arcth (- m )  

l+a ' 

where the intrachain interaction BCh and interchain interac- 
t ion5 are given in ( 14), while the polarizability m and the 
correlation parameter a of the 1D Ising model are given by 

m=<a,(p) ),=sh (h /T) /A,  A=[shZ (h /T)  +exp (-4J/T)I1", 

Here Li, (a) is a polylogarithm of order n: 
m 

Li, ( a )  = z P-nap. Li,(l)=t(n) 

Minimizing the right side of inequality (30) with respect to 
the parameters m and a (this approach is equivalent to mini- 
mizing with respect to Jand h),  we find the following system 
of equations: 

l+a2+2a(l+mz)/(1-m2) 8V 
Tln - -- Liz(a).  

(1-a)Z a (33) 

In addition to the trivial solution m = 0, Eqs. (32), (33) 
have solutions with m #O in a certain temperature region 
( T  # O )  with 5 2#0 .  At the point of the phase transition 
(m -O), the temperature Tc and the parameter a are given 
by 

4V Liz ( a )  
T,=- 

1+a 
= -- v { ~ [ c  (3) - ~ i .  ( a )  

a n  ( I + ) ( l - a )  I-a 

In the limit b 2 -0 we have a + 1, T, -0. In the case ofweak 
interchain interactions ( 15 2/Ec, 1 ( 1 ), the approximate 
solution of Eqs. (34) for Tc becomes 

Expression (35) differs from the known relations of the 
generalized self-consistent-field approximation for short- 

range potentials'3214 (in our notation, Tc =: IB,, I 
/ ln(5,,/5 2 1 ) by a factor {(2) -- 1.645, which reflects the 
long-range intrachain interactions, which raise the value of 
T, but which are incapable of leading to a phase transition 
with Tc #O in the absence of interchain interactions. 

In the model of short-range dipole potentials consid- 
ered in Refs. 3 and 28, the exact solutions of the 2 0  Ising 
model have the same asymptotic behavior in the case 

1 b 2/5,, I 4 1 as in the approximation under consideration 
here. For the four symmetric orientations of the dipoles in 
the plane of the lattice, the exact values of Tc are smaller by a 
factor of 2 than for the two orientations of the Ising model. A 
corresponding decrease in the values of Tc by a factor of 2 
when the 1D orientation space is replaced by 2 0  also follows 
from the equations of the ordinary self-consistent-field ap- 
proximation. Accordingly, values of T, smaller by a factor 
of 2 than in Ref. 35 can be used as estimates of the transition 
temperatures in dipole systems with 2 0  degenerate orienta- 
tions of dipoles, whose ground states correspond to orienta- 
tions along the axes of the lattices (Bravais lattices with 
x = 0 and 1/2). Figure 2c shows Fc = Tc/2 as a function of 
the interchain distance yo. For triangular and square lattices 
we have ~ / V Z  1.501 and 1.059, respectively, while the or- 
dinary - self-consistent-field approximation yielded values of 
Tc/V= - 5 , / 2 ~ 2 . 7 5 9  and 2.550 in Refs. 3 and 4 for the 
same lattices. Interestingly, the exact value for IT, for a 
square lattice of short-range dipoles with four orientations 
( R / v  = 1.641; Ref. 28) is higher than the estimate found 
for long-range dipoles from (35), since the interaction with 
the nearest dipoles of the neighboring chains is much strong- 
er than that with all the dipoles of the neighboring chains 
( 1 5 2 1 1 2 2  <Ic, 1,. 

For 2 0  Bravais lattices with yo > 3, expression (35 ) can 
be approximated by the following simple expression, when 
we use ( 14) : 

The temperatures of orientation phase transitions in quasi- 
1D dipole systems thus fall off in inverse proportion to the 
distance between chains. 

5. DISCUSSION 

A point of fundamental importance in describing the 
ground states of 2 0  dipole systems, in proving the existence 
of a long-range order, and in reaching an understanding of 
the reasons for the appearance of intermediate phases (inter- 
mediate along the temperature scale) with a wave vector 
k#h/2 is the condition that the absolute values of the 2 0  
dipole moments remain constant. Ferromagnetic ordering 
of 2 0  systems with dipole-dipole and exchange interactions 
was examined in the spherical-model approximation in Ref. 
10. The basic simplifying assumption of the spherical model 
is the replacement of the condition le, I = 1 by the weaker 
condition (8).  If the identity (9)  is ignored, the contribu- 
tions of the eigenvalues v, (k )  and v2 (k )  become indepen- 
dent in (for example) the dispersion relation for orientation 
oscillations [cf. the correct expression, (2 1 ) 1. It  is as if there 
were two oscillation branches, with frequency distributions 
g, (w) a w andgz (w) a w3, for a triangular lattice of dipoles. 
Oscillation branches of this sort do indeed occur in the sys- 
tem of electrons of a Wigner crystal above the surface of 
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liquid helium,' since displacements of the electrons from 
their equilibrium positions are independent along thex and y 
axes and not of fixed length. The logarithmic divergence of 
the mean square displacements for the branch with g, ( 0 )  

[which arises in integrals of the form (26)]  indicates that 
there is no long-range order.29 A corresponding divergence 
of course arises in the spherical model also, as a result of the 
violation of the condition le, I = 1. In Ref. 10, this led to the 
incorrect conclusion that there is no long-range order in 2 0  
dipole systems with a continuously degenerate ferromagne- 
tic ground state. 

Again in Ref. 15 we find the assertion that there is no 
long-range order in 2 0  or 3 0  systems. In that paper, the 
partition function of functionals of Gaussian electric fields 
was examined. That partition function is equivalent to the 
partition function from a Hamiltonian which incorporates 
only the long-wavelength asymptotic behavior of the dipole- 
interaction tensor, proportional to k, ka/k 2. Consequently, 
the 2N-fold degeneracy found for the ground state in Ref. 15 
appears to implicitly reflect the indefiniteness in a ferroelec- 
tric ground state which stems from the dependence of the 
depolarizing electric field on the shape of the sample. In fact, 
as we have also shown here, the ground state in dipole sys- 
tems may correspond to a wave vector k at the boundary of 
the first Brillouin zone, so it would be incorrect to consider 
only the long-wavelength asymptotic behavior. Further- 
more, for 2 0  systems the long-wavelength asymptotic be- 
havior vaB(k) cc k, kB/k differs from that of the 3 0  analog 
in Ref. 15, there is no depolarizing field, and one cannot 
speak in terms of 2N-fold degeneracy of ground states of a 
ferroelectric type. Consequently, despite the elegance of the 
field-functional formalism for dipole systems, we cannot 
avoid the discrete nature of the lattice. For this reason, the 
results of Ref. 15, which were actually derived in the contin- 
uum approximation, contradict the conclusions of the pres- 
ent paper and those of Ref. 11. 

In research on the properties of dipole systems, a chain 
representation of the interactions has proved to be the most 
successful. In the first place, it reflects the tendency for the 
dipole moments to become ordered along the axes of the 
chains (the cases xo = 0 and 1/2 with fi/2(y0 5 1 and arbi- 
trary xo at yo > 1 on Bravais lattices) with a small ratio of the 
interchain interaction to the intrachain interaction. Second, 
that representation makes it possible to work very accurately 
with analytic expressions which sum the interactions with 
all the dipoles of the lattice. Third, it is a justification for 
using the generalized approximation of an interchain self- 
consistent field to describe orientational phase transitions. 

The results of this paper generalize the research on the 
ground states of individual lattices1-lo to arbitrary 2 0  Bra- 

vais lattices. They prove the stability of the ground states 
which have been found with respect to thermodynamic fluc- 
tuations in the sense that the mean square angular displace- 
ments of the orientational excitations are bounded. They 
provide information on the frequencies of orientational os- 
cillations which are active in the IR absorption spectra and 
on the phase-transition temperatures. In particular, it has 
been established here that the temperatures of orientation 
phase transitions in quasi-1D dipole systems fall off in in- 
verse proportion to the distance between chains. 

This special case is realized on a triangular lattice with a strong antifer- 
romagnetic interaction and a weak dipole-dipole interaction.17 The 
("120"") ground state in this system corresponds to wave vectors of the 
vertices of the hexagonal boundary of the first Brillouin zone, at which 
the tensors V?O(k, ) of both interactions are isotropic. 
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