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The influence of superconducting fluctuations on the Hall effect and thermomagnetic effects in a 
superconductor near its transition temperature is analyzed. The case of a quasi-2D electron 
spectrum is examined for comparison with experimental data on high T, superconductors. 
Incorporating superconducting fluctuations results in the appearance of anomalies on the 
temperature dependence of the Hall, Nernst, Ettinghausen, and Righi-Leduc coefficients near 
T, . These predictions agree with the results of recent experiments on high Tc superconductors. 

1. INTRODUCTION 

The multifaceted research on the high Tc superconduc- 
tors and the synthesis of high-quality samples have increased 
research interest in such subtle effects as galvanomagnetic 
and thermomagnetic effects. The Hall effect has been the 
subject of the most active research in recent years. It has 
been pointed out in several papers that the Hall conductivity 
behaves anomalously near the transition temperature. In 
particular, there is a peak in its temperature dependence at 
the transition from the normal phase to the superconducting 
phase. 

Just recently, on top of the general increase in interest in 
heat transfer in the high T, superconductors, along with the 
active research on the thermal emf and the thermal conduc- 
tivity several studies on the behavior of these coefficients in a 
magnetic field (i.e., on the Nernst, Ettinghausen, and Righi- 
Leduc effects) have appeared."' These studies have re- 
vealed clearly defined peaks on the temperature dependence 
of the Nernst and Ettinghausen coefficients at the threshold 
of the superconducting transition. The temperature depend- 
ence of the thermal conductivity in a magnetic field was also 
studied in Ref. 7. It was found that as Tc is approached from 
above the decrease in the Righi-Leduc coefficient gives way 
to an increase a few degrees away from T,. There are thus 
anomalies near the transition temperature in the behavior of 
the kinetic coefficients corresponding to all galvanomagnet- 
ic and thermomagnetic effects. These results suggest that 
superconducting fluctuations are strongly influencing the 
kinetic properties of the high T, superconductors. 

At the same time, the validity of the description of heat- 
transfer processes in systems of interacting particles has re- 
cently become the topic of a widespread debate. As a result, a 
systematic method has been formulated for calculating the 
kinetic coefficients associated with heat transfer from the 
Kubo-Greenwood This method was used in 
Ref. 9 to calculate the fluctuational corrections to the ther- 
mal emf and the thermal conductivity of a superconductor at 
the threshold of the transition to the superconducting state. 
It was thus found possible to explain the peak observed on 
the temperature dependence of these thermal emf. 

In the present paper we extend this approach to the 
calculation of the kinetic coefficients which describe the 
transport of heat and electric charge in a weak magnetic 
field. As a result, we examine the effect of superconducting 

fluctuations on the Hall effect and on various thermomagne- 
tic effects in a superconductor at temperatures slightly above 
the transition temperature. With an eye toward the use of 
this theory to explain the experimental results on layered 
high Tc single crystals, and in view of the short correlation 
length in these materials, we follow Refs. 9 and 10 in adopt- 
ing the model of a layered clean superconductor with a 
quasi-2D electron spectrum. As we will see below, supercon- 
ducting fluctuations are important in the galvanomagnetic 
and thermomagnetic effects over a fairly broad temperature 
range near T,. They may be responsible for the anomalies 
found experimentally on the temperature dependence of the 
corresponding kinetic coefficients. 

In Sec. 2 we formulate a linear-response method for 
calculating the kinetic coefficients describing transport in a 
weak magnetic field. Here we make use of a temperature 
Feynman-diagram technique. In Sec. 3 we take this ap- 
proach to calculate the kinetic coefficients of a normal 
layered metal. In Secs. 4-6 we discuss the influence of super- 
conducting fluctuations, and we calculate the fluctuational 
corrections to the Hall conductivity and to the Nernst, Et- 
tinghausen, and Righi-Leduc coefficients. The results are 
discussed in the Conclusion, where the success of these re- 
sults in explaining experimental data is also discussed. 

2. GALVANOMAGNETIC AND THERMOMAGNETIC EFFECTS 
IN WEAK FIELDS. FEYNMAN-DIAGRAM APPROACH 

Before we start our discussion of the effect of supercon- 
ducting fluctuations on the Hall effect and thermomagnetic 
effects in a superconductor near its transition temperature, 
and before we calculate the corresponding kinetic coeffi- 
cients, we would like to discuss the general approach to this 
problem within the framework of a temperature Feynman- 
diagram technique. Here we are following Refs. 11 and 12, 
where a similar approach was taken to study the Hall effect 
in a disordered 2 0  electron gas. 

In a weak electric field and a magnetic field, with a low 
temperature gradient (low enough that we can restrict the 
analysis to terms of first order in the variations), generalized 
transport equations for the current and the heat flux can be 
written13 

j=oE+oHIEH] +pVT+N [ V T ,  HI, 
(1) 

q=yE+B [EH] -xVT+L[ V T ,  HI, 
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where E, H, and VTare the electric field, the magnetic field, 
and the temperature gradient, respectively; a is the electrical 
conductivity, a, is the Hall conductivity, P is a thermoelec- 
tric coefficient, N is the Nernst coefficient, y = - PT, B is 
the Ettinghausen coefficient, x is the thermal conductivity, 
and L is the Righi-Leduc coefficient. 

Any of the kinetic coefficients in ( 1 ) can be expressed in 
terms of the correlation functions of two flux operators 
(electrical or thermal).l4,l5 In a Feynman-diagram repre- 
sentation, this approach reduces to calculating the loops of 
exact one-electron Green's functions with corresponding ex- 
ternal field vertices: electric, (e/m) (A,p), or thermal, 
(cp/m) ( Aqp) (iRA, = E, iaAq = VT, e, and m are the 
charge and mass of an electron, p is half the sum of the mo- 
menta corresponding to the Green's functions which form 
the loop, and gp is the electron energy reckoned from the 
Fermi level and corrected for various types of interac- 
tions9 ) . 

While the magnetic field can be assumed to be zero (i.e., 
corrections arise only in second order in the field) over a 
wide range in the calculations of a ,  8, y, and x ,  in the calcu- 
lation of the coefficients UH N, B, and L the electron Green's 
functions should incorporate the interaction of the electron 
with the magnetic field. In the case at hand, of a weak field 
(eHr/mc 4 1, where r is the relaxation time of the electron's 
momentum, and c is the velocity of light), it is sufficient to 
work in first-order perturbation theory (Fig. 1 ). The vertex 
describing the interaction of the electron with the magnetic 
,field is (e/2m) ( A,,p + p'), where i[kA, ] = H, and k is 
the wave vector of the magnetic field. 

In calculating the kinetic coefficients describing trans- 
port in a weak magnetic field, we should thus consider a loop 
of three free one-electron Green's functions (without a mag- 
netic field) with three vertices. Two of the vertices corre- 
spond to flux operators, while the third reflects the interac- 
tion of the electron with the static magnetic field applied to 
the system. 

3. CASE OF A LAYERED METAL IN THE NORMAL PHASE 

To illustrate the approach taken above, we consider the 
calculation of the coefficients which we need for a metal in 
its normal phase. Keeping in mind our goal below-to study 
fluctuation effects in a high T, superconductor-we discuss 
a model of a layered metal with a corrugated-cylinder Fermi 
surface.16 In this case the electron spectrum is 

where v,,p,, and E~ are the Fermi velocity, momentum, and 
energy in the plane of a layer, w is the overlap integral, which 
is a measure of the probability for jumping of electrons be- 
tween layers, a is the interlayer distance, and p = (p,, ,p, ) is 
the quasimomentum of the electron. 

In the case of an anisotropic spectrum, the kinetic coef- 
ficients in ( 1 ) are generally tensors. In a layered metal, how- 

FIG. l .  Green's function of an electron with an interaction with 
- a weak magnetic field. 

ever, we are interested in only those components of the fluxes 
j and q which lie in the plane of a layer (the ab plane in Fig. 
2),  since the fluxes in the direction normal to the plane of the 
layer are suppressed by the small overlap integral. The corre- 
sponding kinetic coefficients are thus small quantities, with 
a relative order of magnitude 

We assume that the magnetic field is directed parallel to 
the c axis and that the electric field and the temperature 
gradient lie in the ab plane.') The motion of the electrons in 
the plane of the layers is then isotropic. By virtue of the 
arguments above, we can thus assume that the kinetic coeffi- 
cients in ( 1 ) are scalars. 

We begin with the Hall effect. According to ( 1 ), the 
Hall current is proportional to the quantity 

[EH]=Q [An (kA,)-k (AHA,) I .  (3  

We can simplify the calculations by adopting the gauge con- 
dition12 k-A, = 0. Consequently, we will be interested be- 
low in only those terms which are proportional to the first 
term in (3). 

The resulting diagrams are shown in Fig. 3. In calculat- 
ing the Hall current, we need to associate the expressions 
(e/m)p and (e/m) (A,p) and with the external vertices. 
The solid lines correspond to the Green's functions of a nor- 
mal metal with spectrum (2) : 

Since we are interested in terms of first order in k, we should 
expand the Green's functions which depend on this momen- 
tum. An expression for the Hall current which incorporates 
both of the diagrams in Fig. 3 is 

FIG. 2. Orientation of the coordinate axes with respect to the plane of a 
layer in a layered metal. 
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the kinetic coefficients of a normal metal. 
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where we have separated the integral over the angles of the 
vector p: 

As we have already mentioned, we are interested in only the 
first term. In the next approximation in gp in (5 ), we need to 
carry out an expansion of the quantities which depend on the 
electron energies (the state densityp and v2) near the Fermi 
surface in order to obtain a nonvanishing result. We find 

e3 a (pv2) 
jH = v2[,] ?F r2QAH (LA.), 

from which we then find 

In calculating the Nernst coefficient we should put the 
vertices (e/m ) p and ( t p  /m) (A, p) in the diagrams in Fig. 3. 
The heat-flux operator, along with the term describing the 
heat transfer by noninteracting electrons (S, v) ,  also con- 
tains corrections for the interaction of the electrons with 
impurity centers and with a magnetic field under these con- 
ditions. In principle, the Feynman diagrams corresponding 
to those corrections should also be taken into consideration. 
However, calculations show that the contributions from 
these diagrams to the coefficients N '"I and L '"' cancel out 
with the contributions which come from the diagrams in Fig. 
3 with the vertex gpv in the case in which gp reaches a value 
on the order of r  - ' in the pole integration. Consequently, 
only the same diagrams in Fig. 3 contribute to the Nernst 
and Righi-Leduc coefficients, since tp becomes the electron 
frequency E,  in the course of the integration. 

In calculating the Nernst coefficient, which is propor- 
tional to 

we are interested in only the first term, as before. The pres- 
ence of the additional energy lp at the vertex makes it unnec- 

essary to expandpu2 in the course of the integration over lp. 
As a result we find 

Since the vertices are of the form (fp/m)p and 
(Cp/m)(A,p), we find the following expression for the 
Righi-Leduc coefficient: 

Although expressions (8)-(10) were derived for the 
case of a quasi-2D electron spectrum, they can easily be gen- 
eralized to the case of metal with an isotropic spectrum. An 
additional factor of 2/3 appears in (8)-(10) in this case, 
reflecting the 3 0  nature of the angular integration. 

4. INCORPORATION OFSUPERCONDUCTING 
FLUCTUATIONS 

Before we proceed to the direct calculation of the effect 
of fluctuations on the kinetic coefficients of interest, we have 
a few important comments. First, there is the question of 
whether to choose the model of a clean superconductor 
( T r )  1 ) or that of a dirty superconductor ( Tr 1 ) . Since 
experiments on the high T, superconductors show that an 
intermediate case ( T r z  1) usually holds in real systems, it is 
our position that choosing one of the two limiting cases is a 
matter to be governed by convenience and simplicity in the 
calculations. Since the clean-case analysis simplifies the cal- 
culations substantially and reduces the number of diagrams 
to be taken into account, we assume below that the supercon- 
ductor is clean. 

A second question concerns the choice of a model for 
the electron spectrum. As we mentioned earlier, we are as- 
suming a quasi-2D spectrum. This assumption is justified by 
the circumstance that most of the high T, superconductors 
which are presently under study have a layered structure. 
Furthermore, we will automatically obtain the results for the 
2 0  and 3 0  regimes in the behavior of the fluctuations (in the 
limiting cases of strong and weak coupling between layers). 

As was shown above, in order to deal with the effect of 
superconducting fluctuations on the Hall effect and thermo- 
magnetic effects, we need to add a vertex representing the 
interaction of the electrons with the magnetic field to the 
standard diagrams describing the fluctuational corrections 
to the electrical and thermal conductivities and the thermal 
emf.9317 The number of diagrams which arise as a result of 
this procedure turns out to be rather large. This point be- 
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FIG. 4. Vertex representing the interaction of an elec- 
tron with a magnetic field. The use of this vertex leads 
to the major contribution to the kinetic coefficients. 

comes particularly obvious in a calculation of the kinetic 
coefficients associated with heat transfer, since it is neces- 
sary to take account of the corrections to the heat-flux opera- 
tor for the magnetic field and the interelectron intera~tion.~ 
However, the situation simplifies greatly because the contri- 
bution which is the most singular in terms of the degree of 
proximity to T, comes from only those diagrams which arise 
when a vertex with a magnetic field is introduced in the Asla- 
mazov-Larkin diagram, and then only that from the version 
of these diagrams in which the magnetic field "goes into" the 
fluctuation propagator. This propagator is given by the fol- 
lowing expression near T,, in the clean case, and with spec- 
trum (2): 

We turn now to a direct calculation of the kinetic coeffi- 
cients in which we are interested. 

5. HALL EFFECT 

The diagrams which make the major contribution to the 
Hall current (the contribution which is most singular in the 
degree of proximity to T, ) is shown in Fig. 5. The contribu- 
tion of the first of these diagrams is 

1 T - T ,  n o k  3 w2 
9;" I - ' ,  c l ~ , = ~ z  J ( d p )  G ( P ,  e n )  G (p* en+%) G (q -p ,  o , -a l )v .  L ( q ,  oh) =- - + - + - qqIl2+6q -sin2 - 

p [ T c  8Tc 2 U" 81 

where 

[ [ ( x )  is the zeta function]. 
The simplest way to see what this vertex looks like is to 

write the fluctuation propagator as a set of electron loops, 
into one of which the magnetic field goes (in two possible 
ways) (Fig. 4). 

The vertex of interest here can then be expressed in 
terms of blocks of Green's functions which have been calcu- 
lated repeatedly: 

cz J ( d p )  [G ( p ,  e n )  G ( p + k ,  e n )  G  (q-P ,  w k - ~ . )  ( A H P )  
en 

+ G ( p ,  a,) G  (q-p+k,  ok-en)G (q-p ,  

where 

Near the transition temperature we can ignore the depend- 
ence of blocks B,  and B2 on the fermion and boson frequen- 
cies, and we can treat these blocks as constants. To obtain 
the first order in k in the calculation of B, as a result, we 
should expand the Green's function G(q - p, w, - E, ), 
while in the calculation of B2 we should expand G(p + k, 
E, + a,). We immediately note that in order to derive a 
nonvanishing result for the total Hall current (i.e., with the 
second diagram in Fig. 5 also being taken into account), we 
should expand the quantity pv2 near the Fermi surface in 
( 15)-( 16). After some straightforward calculations we find 

Substituting ( 17) into ( 14), and integrating over the angles 
of the vector q, 

FIG. 5. Diagrams which dominate the fluctuational correc- 
tions to the kinetic coefficients. 

a 
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we can calculate the contribution from the second diagram 
in Fig. 5 in a corresponding way: 

Reducing the sum over wk in (19) to a contour integral, 
carrying out an analytic continuation in the standard man- 
ner,I7 and integrating over frequency, we find, to first order 
in Q = iQ,, 

where the parameter 

is a measure of the extent to which the situation is quasi-two- 
dimensional. This parameter determines the effective di- 
mensionality of the flu~tuations.'~ Finally, integrating over 
momentum within one period of the corrugated cylinder in 
(20), and using (8),  we find the correction to the Hall con- 
ductivity which we need: 

where 

T-T T-Tc T-Tc -R F ( " c , j ; ) = ( 2 - . 2 +  G)[-(-+ bz) ]  
To T c  T6 Tc 

Tc ' 
T-T,  

2(&) , * a 2 < - - .  
Tc (22) 

The two limiting cases which have been distinguished in 
(22) describe the 3 0  and 2 0  regimes, respectively, of the 
behavior of the fluctuations. At T - Tc -SO2Tc, the size of a 
fluctuational Cooper pair in the direction transverse with 
respect to the layers becomes comparable to the distance 
between layers, and the temperature dependence changes 
from three-dimensional to two-dimensional. Because of our 
use of the vertex in Fig. 4, the fluctuational correction to the 
Hall conductivity is more singular in the degree of proximity 
to Tc than is the correction to the conductivity in the absence 
of a magnetic field. l7  

6. THERMOMAGNETIC EFFECTS 

We begin with the Nernst effect. The fluctuational cor- 
rection to the Nernst current is described by the same dia- 
grams in Fig. 5, with corresponding external vertices. Here 
we have 

where 

The block B, was calculated in Ref. 9; the result is 

(w,  is the Debye frequency). In calculating the correction 
to the Nernst coefficient, we do not need to expand p2 in 
order to obtain a null result, so we are interested in only the 
first term in (25 ). Evaluating the contribution of the second 
diagram in Fig. 5 in a corresponding way, we find 

As a result, the relative fluctuational correction to the 
Nernst coefficient is [here we are using (9) 1 

Since the Ettinghausen coefficient is proportional to the 
Nernst coefficient (B  = NT) according to the Onsager rela- 
tions for the kinetic coefficients, we have 

B ( f 0  N(f1) 
--- =1--- 

B'"' N'"' ' 
(28) 

We turn now to the Righi-Leduc effect. Noting that 
both external vertices correspond to the heat-flux operator, 
we find that the contribution of the first diagram in Fig. 5 to 
the heat flux is 

q ( a )  = 2eM - TZ J (dp )  (AHq) (A,k)qB,BiL(q,  wk+Qv) 
w *  

where 

For the block B, we find 

B,=H3. 

To find a null result we need to consider the second term in 
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(25), obtained as a result of the expansion. The total heat 
flux is 

-L (q. o,+Q,) L2 (q. I (31) 

As a result we find 

The temperature dependence of the fluctuational cor- 
rections to the coefficients N, B, and L is the same as that of 
the correction to the Hall conductivity. 

7. CONCLUSION 

As we mentioned back in the Introduction, experiments 
on the high Tc superconductors reveal an anomalous behav- 
ior of the Hall conductivity and also of the Nernst, Etting- 
hausen, and Righi-Leduc coefficients in the fluctuation re- 
gion. The basic results of this study [expressions (2  1 ), (27), 
(28), and (32) ] are the relative fluctuational corrections to 
the electron components of these coefficients. It can be seen 
from these expressions that as Tc is approached from above 
one should observe an increase in the coefficients u,, N, B, 
and L because of the fluctuational corrections found here. 
Since the results were derived in first-order perturbation the- 
ory in the superconducting fluctuations, the power-law 
growth in the immediate vicinity of T, is limited by the con- 
tributions of the following orders. In addition, one should 
bear in mind the nonuniformity of the sample, which leads to 
a smearing of the transition temperature and also of the fluc- 
tuation effects. It is thus clear that the increase in the coeffi- 
cients which results from the fluctuational corrections found 
here comes to a halt in the immediate vicinity of the transi- 
tion point. In the cases of the Hall, Nernst, and Ettinghausen 
coefficients, where the electron component appears to be 
predominant, we would expect to find a peak near Tc. For 
the Righi-Leduc coefficient, as for the thermal conductivity 
in the absence of the magnetic field, the electron component 
is superposed on a large component of different origin (ap- 
parently of phonon origin), which leads to a peak at T z 6 0  
K. In this case the effect of the fluctuations is not as obvious: 
It is seen as the beginning of an increase in the coefficient a 
few degrees above T, . 

We have calculated the fluctuational corrections only 
for temperatures above the transition temperature, but it is 
clear that as T, is crossed these corrections will vanish alge- 
braically with decreasing temperature. Estimates from (2 1 ), 
(27), (28), and (32) show that at temperatures 10-12 K 
above Tc the fluctuational correction to the Nernst and Et- 
tinghausen coefficients is already comparable to the main 
contribution [ (9) ,  from electron-impurity scattering] in the 
case of the high Tc superconductors. The relative fluctua- 
tional corrections to the Hall and Righi-Leduc coefficients 
reach 25-30% at these temperatures. 

Our results show that the fluctuational corrections to 
the kinetic coefficients describing transport in a weak mag- 
netic field are more singular in the degree of proximity to Tc 
than are the corrections to the thermal and electrical con- 
ductivities and the thermal emf calculated previously for the 
case without a magnetic The reason is that dia- 
grams analogous to the Aslamazov-Larkin diagram arise 
when there is a magnetic field. In these diagrams, one of the 
fluctuational propagators is cut in two by a vertex describing 
the interaction of the electrons with the magnetic field. This 
"extra" propagator gives rise to an additional power of 
T - Tc in the denominator of the expressions for the correc- 
tions to the kinetic coefficients. It thus leads to a substantial 
increase in the relative corrections in comparison with the 
corrections to the corresponding coefficients in the absence 
of a magnetic field. This conclusion is in agreement with the 
experimental data reported by Gridin et UZ.,~ who measured 
the temperature dependence of the difference between the 
thermal emf values measured in the presence and absence of 
a magnetic field. Gridin et u I . ~  found that imposing a mag- 
netic field results in a pronounced increase in the thermal 
emf near Tc . 

The fluctuational correction to the Hall conductivity 
was calculated previously, by Fukuyama et a1.,18 for the case 
of a dirty superconductor and an isotropic electron spec- 
trum. As a result, Fukuyama et a1.I8 found the same tem- 
perature dependence for the fluctuational correction as in 
the limiting cases in (2 1 ). However, we believe that a coeffi- 
cient in that functional dependence was calculated incor- 
rectly. The reason is that the small factor - T / E ~  required 
for obtaining a nonvanishing result for the Hall conductivity 
was extracted from the fluctuation propagator alone in Ref. 
18. Our own calculations show that such terms cancel out, so 
the corrections required arise only from an expansion of p2 
in blocks of Green's function. Ullah and Dorsey l9  calculated 
the fluctuational correction to the Ettinghausen coefficient 
for magnetic fields close to Hc2, in contrast with our calcula- 
tions for weak fields. The method which they19 used to in- 
corporate the interaction of fluctuations in the Hartree ap- 
proximation makes it possible to derive an expression for the 
fluctuational corrections in the immediate vicinity of T,, 
where we can no longer restrict the analysis to a first-order 
perturbation theory in the superconducting fluctuations. 

We are deeply grateful to A. V. Ustinov for calling our 
attention to the need for an analysis of this question. 

I '  This assumption does not limit the generality of the analysis if, for arbi- 
trary orientations of E, H, and VT, we consider only the projection of 
the magnetic field onto the c axis and only the projections of the electric 
field and the temperature gradient onto the ab plane. 
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