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A low relief on the interface between two dielectrics is shown to be equivalent, in terms of 
electromagnetic wave reflection, to a homogeneous but anisotropic thin film between the 
dielectrics. "Low" here means that the heights in the relief are small in comparison with the 
wavelength. The permittivity tensor of a film ofthis sort is calculated by solving the electrostatic 
problem of the effective permittivity of a layer which contains irregularities and which is 
bracketed by two homogeneous half-spaces. For an elongated periodic 2 0  relief, one component 
of the effective permittivity tensor can be cz!culated immediately, while the others satisfy 
symmetry relations of a type found previously {A. M. Dykhne, Zh. Eksp. Teor. Fiz. 59, 110 
( 1970) [Sov. Phys. JETP 32,63 ( 1971 ) ] 1. All components of this tensor can be calculated 
analytically in the cases of "gently sloping" and "steep" irregularities, while they can be 
calculated numerically for a relief with plane faces and arbitrary slopes. The results found here 
can be used to extract information on the structure of a low relief from experiments on long- 
wavelength reflection of light. 

FORMULATION OFTHE PROBLEM; REDUCTION TO AN 
EQUIVALENT PROBLEM 

We examine the reflection of waves from an interface 
between two media in the case in which the length scales of 
the surface relief are considerably shorter than the wave- 
length of the incident radiation. Problems of this type can 
arise in a variety of situations. The characteristics of the re- 
flected light are sensitive to the surface relief even if the 
length scales of this relief are considerably shorter than the 
wavelength. 

Consider a periodic relief. The procedure of solving this 
problem is analogous to going over from microscopic to 
macroscopic Maxwell's equations in a medium. The details 
of the particular structure of the relief do not affect the char- 
acteristics of the reflected radiation, i.e., its amplitude, po- 
larization, and phase. The reflection is only influenced by a 
certain limited amount of information about the relief. Only 
this limited amount can be extracted through interpretation 
of the corresponding experiments. 

Spatially nonuniform fields which are directly associat- 
ed with the relief (in particular, which depend on the shape 
of the relief) vary over distances comparable to the length 
scales of the relief, its period and its height. Since these dis- 
tances are much shorter than the wavelength, the quasistatic 
approximation is sufficient for calculating the "micro- 
fields." In that approximation, however, the fields satisfy the 
Laplace equation, and their spatially varying part is known 
to fall off exponentially with distance from the interface. The 
minimum rate of this decay is comparable to the reciprocal 
dimensions of the relief. Only spatially uniform fields "sur- 
vive" outside a narrow surface layer. 

The wave zone begins at distances from the surface 
which are comparable to the wavelength, where the micro- 
fields have decayed and thus cannot participate in producing 
the scattered radiation fields. 

The presence of the relief and its shape affect the scat- 
tering only through these average fields, which are the link 
between the shape of the relief and its reflection characteris- 
tics. Some physical arguments which have been developed, 

which look fairly convincing," lead to the following math- 
ematical formulation of the problem of reflection from a 
rough interface. 

We introduce regions I, 11, and I11 (Fig. 1) in such a 
way that the thickness of layer 11, H, is much larger than the 
period I and height h of the irregularities but much smaller 
than the wavelength A of the incident radiation. We place no 
restriction on the relation between the period and height of 
the irregularities. It is thus sufficient to solve the static prob- 
lem in layer 11. When the fields are joined at (and near) the 
boundaries of layer 11, only spatial averages of the fields in- 
side this layer survive. 

The spatial averages satisfy the relation 

as has been known since Maxwell's time. The tensor i.'" here 
is a local tensor, in accordance with the approximation 
max(l,h)/A 4 1. The results reported below are derived in 
zeroth order in this parameter. 

To solve the external problem (in regions I and 111), we 
can thus replace layer I1 by an equivalent layer of a homoge- 
neous but generally anisotropic dielectric of thickness H. 
Clearly, the choice of H (1,h < H 4 A  ) should have no effect 
on physically observable results. The inequality h <H, used 
in justifying the introduction of an effective anisotropic lay- 
er, is actually not a necessary condition. The layer could be 
any layer which includes all the irregularities of the relief, of 
height h, for example, as shown in Fig. 1. 

The problem is actually one of calculating the effective 
permittivity tensor of film 11, of thickness H. This film, how- 
ever, contains three layers--a, 6,  and c-which are connect- 
ed electrically in parallel if (E) lies in the xy plane or in series 
if (E) is directed along the z axis (along the normal to the 
surface). It is thus sufficient to calculate the effective per- 
mittivity tensor of film 6 .  Films a and c can be incorporated 
in regions I and 111, respectively. The result does not depend 
explicitly on the thicknesses of these films. Relation ( 1) 
holds for any relief whose characteristic dimensions are 
short in comparison with the wavelength. 
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Relation ( 1 ) has no small parameter in the static ap- 
proximation, and finding &'" for the general case is a difficult 
problem. In this paper we consider periodic, elongated, 2 0  
reliefs. The problem can be solved analytically in the cases of 
"gently sloping" and "steep" irregularities; in the intermedi- 
ate region it can be solved numerically. For certain types of 
relief, described below, the components of the tensor &'"sat- 
isfy symmetry relations of the type found in Ref. 1. 

Some other published papers (e.g., Refs. 2-5), in which 
the dielectric characteristics of a layer with a roughness have 
been calculated, are not sufficiently systematic, in our opin- 
ion. 

TWO-DIMENSIONAL RELIEFS; SYMMETRY RELATION 

In calculating the components of the tensor &"", we use 
the condition of a quasistatic electromagnetic field. The vec- 
tors E and D satisfy the equations 

rot E=O, div D=O (2)  

in region I1 and are related by 

The permittivity E(X,Z) is written as follows: 

Here f(x)  is a periodic function, which characterizes the 
surface relief, and 

We assume that the field E is directed along they axis. 
From the equation curl E=O we then find 
dEy /ax = dE, /dz = 0. Taking an average of ( 3 ) over the 
area of one period, we find 

According to definition ( 1 ) we thus have 

where 

FIG. 1. 

Expression (5) is valid for an arbitrary function f(x) .  For 
the function f(x) shown in Fig. 1 we have 
E;; = (El + EZ )/2. 

The other components of the tensor &'" can be found 
only by solving the corresponding electrostatic problem. 
Nevertheless, we can assert that these other components sat- 
isfy a symmetry relation of the type in Ref. 1. We will go 
through arguments like those carried out in Ref. 1 for the 
conductivity of a two-phase 2 0  medium. We denote by e and 
d the projections of the field and the electric displacement 
onto the xz plane, so we have d = ~ ( x , z ) e .  

We introduce the new vectors e' and d': 

where n,, is the normal to the xz plane. Using (6) and (7),  we 
can find the relationship between d' and e': 

It is easy to show that if e and d satisfy Eqs. (2),  then e' and d' 
will also satisfy these equations. For example, 

rot e'= {n, div d-(n,V)d)/(eie,)'"=O. 

Averaging (6) and (7) over the period, we find relations 
among ( 4 ,  (d), (el), (dl): 

According to the definition ( 1 ) 

If the f ( x )  curve has a center of symmetry, the system of 
vectors e', d' and the original system of vectors differ from 
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each other only by a rotation through an angle IT in the xz 
plane, by virtue of (4)  and (8). The quantities 2.'" and &"" 
must therefore be the same. In this case, substituting (10) 
into (9) ,  we find the relationship which we have been seek- 
ing among the components of the effective permittivity ten- 
sor: 

eff eff - eff eff - eff eff 2 - 
(E,E, E,E, E , E ~ ) ~ +  &,el ( E ~ ~  -E,) - 0. (11) 

From this relationship we find 

& , eff eff - eff 2 - 
Em&, E,) -E,EZ (12) 

If the function f(x)  has not only a center of symmetry 
but also a symmetry plane, the off-diagonal components of 
the tensor eeff vanish: E:: = E$ = 0 .  The relationship ( 1 1 ) 
then becomes 

eff eff - 
E, E, - ~ 1 ~ 2 ,  (13) 

and it is sufficient to find one of the two unknowns E::, E;:. 

PARTICULAR CASES 

a) Gently sloping irregularities: h (I. In this case we can 
use perturbation theory. As a zeroth approximation we use 
the potential in the absence of a corrugation of the interface; 
i.e., we use f(x) = const. Problems for calculating the fields 
associated with the relief are formulated in Appendix 11. The 
potentials p and V determined there can be written in the 
form 

Here 

The width of layer I1 is specified to be: 
H = 2 max ( f,, ,I f,, I ) . The xy plane is chosen in such a 
way that the condition 

I 

0 

holds. It can be shown that only the diagonal components of 
the tensor Pff are nonzero to first order in the parameter h /1: 

The expressions 

correspond to a smooth boundary if we consider an imagi- 
nary film of thickness H4A with a permittivity 

O<z<H/2 
-H/2<~<0'  

The presence of this film results in a change in only a 
common phase of the amplitude reflection coefficients, 
which are defined to within a phase factor. It is easy to see 
that the symmetry relation ( 13) holds for an arbitrary func- 
tion f(x)  to first order in the parameter h /I. 

In the case (Fig. 1 ) 

expressions ( 16) become 

where A, = (7/8)5(3), and c(3)  is the zeta function. With 
f(x)  = h sin(21~x/l) we find 

We can go over to gently sloping but otherwise random irre- 
gularities in (16) by making the substitution 

m 

Here W(k) is the Fourier transform of the correlation func- 
tion, and a is the standard deviation of the random function 
f(x).  The reflection coefficients found with the help of these 
expressions are the same as the results of Refs. 6 and 7 for 2 0  
irregularities. 

b) Steep irregularities: h 9 1. In analyzing steep irregu- 
larities, we draw on the analogy between the conductivity 
and the permittivity, which allows us to transform from cur- 
rent problems to electrostatic problems. 

We partition the irregularity region of height h into lay- 
ers of thickness d (Fig. 2) in such a way that the conditions 
I 4 d 4 h  hold. The inequality d 4 h  allows us to ignore the 
slope of the interface with respect to the z axis in evaluating 
the components of &'"of one of the layers, while the inequali- 
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ty I<d  allows us to treat the set of irregularities in a layer of 
thickness d as a plane-layer medium. In the x direction, the 
layers are connected in series, while in the z direction they 
are connected in parallel. As a result we find 

eff eff 
E ,  ( z )=<E- '  ( x ,  Z )  )d-', Exx ( z ) = < E  ( x ,  z )  ),. ( 19) 

We thus find the problem of a layer which is nonuniform in 
the z direction. When an average is taken over z, the layers of 
thickness dare connected in parallel in the x direction, while 
they are connected in series in the z direction. We finally find 

1 1 
( &Z ) - I=  J a Z { - J  [ & l e ( z - f ( x )  ) + & 2 0 ( f ( x ) - z )  I a x }  -: 

0 0 

As examples we consider triangular irregularities de- 
scribable by ( 17) and also trench irregularities2' 

In the first of these cases we have 

and ( 13) holds. In the second case we have 

In this case, (13) holds only for a = 1/2, i.e., only if the 
irregularities are symmetric. 

RELIEFS WITH PLANE FACES; RESULTS OF A NUMERICAL 
CALCULATION 

a) Symmetric irregularities. A detailed study has been 
made of the particular case of a toothed relief (Fig. 1 ), with a 
profile described by (17), as an example. By varying the 
height h at a given period, we can make the switch from 
gently sloping irregularities to steep ones. 

FIG. 3. 

Figure 3 shows the results of numerical calculations of 
the quantities EE~/E~,  and as functions of the param- 
eter 2h /I for three values of the ratio E ~ / E '  :3, 10, and 20. All 
the calculated results agree well with the asymptotic values 
found from ( 18) and (2 1 ) in the cases 2h /I 4 1 and 2h /I% 1. 
Relation ( 13) is satisfied to within 10 - 3. Problems for a 
numerical calculation of the components of the tensor Pff are 
formulated in Appendix 11. 

Although the weights of the fractions E, and E, are al- 
ways identical for this type of relief, these curves show that 
as the ratio E~ /E, increases the dependence of E:: and E:: on 
the steepness of the relief becomes progressively stronger. 
With increasing steepness, the value of E:: increases, while 
that of E:; decreases. The relative change in these compo- 
nents in the transition from gently sloping teeth to steep 
teeth is on the order of ( E ~ / E '  ) In - ' ( E ~ / E '  ) for E:: and on 
the order of / E ~  ) In ( E ~ / E '  ) for E:: ( E ~  S 1 ) . 

This result can be understood qualitatively as follows. 
In the case of a steep relief, the regions with E~ and E~ are 
connected in parallel electrically if the field E is directed 
along the z axis, or in series if this field is instead along the x 
axis. As a result, under the condition E~ we have E, -el 
and&, - E ~  in the leading order. In the case of gently sloping 
irregularities, we instead have E, -E, and E, -E, . 

b)Asymmetric irregularities. If f (x)  has only a center of 
symmetry (no symmetry plane) the tensor Pff is nondia- 
gonal: E, = E, #O. Figure 4 shows an example of a corru- 
gated surface of this sort: 

Figure 5 shows plots of the components of the tensor P" 
versus the angle a for the values E ~ / E ,  = 10 and 16. Rela- 
tions ( 12) are satisfied to within the error of these calcula- 
tions. 

FIG. 2. 
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FIG. 5 .  

The appearance of a component EZ can be demonstrat- Rpp= Kpo -t 
ed in the example of steep symmetric irregularities (Fig. 2) 

2ikih {k;x oosz rp+k,'(e..-l) sinz rp 
(~k i+kz) '  

inclined in such a way that the bisector of the vertex angle 1 
makes an angle yo ( 1 with the normal to the surface. For -ezk.' ( I  - -)sinz E Z Z  Bo}. 

triangular irregularities ( 17), Eqs. (21 ) determine the com- 2ik,kozh 
ponents of the tensor 2Effin the coordinate system 6 , ~  of the R d S  =RO--- a {X sinz rpf (e,,-l)cos2 cp) ,  

irregularity. When we go over to the coordinate system x, z, (k,f k2Iz 

we find that the effective permittivity tensor.becomes 2ikok,h sin rp 
Rps,sp = ( ~ k , + k , )  (k,+k2) { ~ k , ( x - ~ , , + l ) o o s  q 

pff =[T,gPf!.p-i, 
Ezz 

+&ko-sin80}. E Z Z  (23) 

where 

is a rotation matrix for a rotation through an angle yo. Under 
the condition yo ( 1 we find 

E , ~ E ~ E + o  (yoe), 

E ~ ~ ~ E ~ ~ + o  (yo2), 

( E E E - E ~ ~ )  Y &  

REFLECTION FROM AN ANISOTROPIC FILM; SUMMARY OF 
RESULTS 

Let us consider the reflection of a monochromatic plane 
electromagnetic wave from a system consisting of a semi- 
infinite homogeneous medium on which there is a plane- 
parallel anisotropic layer of thickness h ( A .  The permittivity 
of the medium is E. The permittivity tensor of the film is 
specified to be 

Here ko = 2a//Z, 19~ is the angle of incidence of the wave, q, is 
the angle between the plane of incidence of the wave and the 
xz plane, x = E, - 1 - E?~/E,, ,  kl = ko cos a0 ,  
k, = ko (E - sin2 ifo ) and R and R are the reflection 
coefficients in the absence of the layer. 

Pchelyakov et aL9 used reflection ellipsometry at 
T=: 750 "C to study a Si( 1 11 ) surface cleaved at an angle of 
8". They observed a reversible transition from an ordered 
system of steps with a height equal to twice the interplanar 
distance, on the one hand, to an ordered system of steps with 
a height equal to one interplanar distance, on the other. The 
terrace size in the first case was - 8 lattice constants, while it 
was -4 in the second. The jump in the ellipsometric param- 
eter found experimentally was SA - 30'. The permittivity of 
Si under the experimental conditions was of order 16. 

Although the equation describing the local relationship 
between D and E for irregularities with sizes comparable to 
the lattice constant is, strictly speaking, not valid, the substi- 
tution of the calculated components of the tensor 2."" into 
(23) (Fig. 5, E~ = 16) does lead to an effect of the correct 
sign and to a jump 8A - 10.5' in the ellipsometric parameter. 
In this calculation, it was noted that the components of the 
tensor Pff are conserved in the course of a change of this sort 
in the irregularities. Since the azimuthal angle of q, was not 
fixed in Ref. 9, our own calculation corresponds to the case 
q, = 0. 

CONCLUSION 

A method has been developed for calculating the com- 
The incident and reflected waves propagate in vacuum. The ponents of the effective permittivity tensor Pff of a homoge- 
reflection coefficients of this system are neous but anisotropic thin film which is equivalent (in terms 
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of reflection properties) to a rough surface with characteris- 
tic dimensions small in comparison with A. 

To calculate the tensor C"" it is sufficient to solve the 
Laplace equation for any relief, of arbitrary complexity, 
through the use of the known conditions at the interface 
between the media and through the use of the periodicity of 
the unknown fields. 

The components of Pff have been calculated analytical- 
ly for the case of gently sloping and steep irregularities. In 
the gently sloping case, a transition to random irregularities 
was made, and a comparison was made with other studies in 
the literature. 

To follow the changes in the components of the tensor 
Pff in the transition from gently sloping to steep irregulari- 
ties, we considered the example of a toothed relief. A nu- 
merical calculation yielded results in agreement with the 
asymptotic values and demonstrated that the geometry of 
the irregularities is important. 

For symmetric reliefs, an exact relation between the 
components of the tensor 2.'" has been derived. 

A numerical calculation has been carried out for the 
components of Pff for asymmetric irregularities of the step 
type, for comparison with an experiment by reflection ellip- 
sometry. An agreement was found in order of magnitude and 
in terms of the sign of the effect. 

In all the cases considered, the diagonal components of 
the tensor E~ satisfy the known inequalities 

The error level of these calculations is, in order of mag- 
nitude, max(h,l)//Z 4 1. All the results on the tensor C"" are 
given in the zeroth order in this parameter. 

APPENDIX I 

The wave equation in a medium with a dielectric con- 
stant described by (4)  which has an interface z = f(x)  is 

AE-grad div E + k o 2 ~  ( z )  E=-kO2[e  ( I ,  z )  - E  ( z )  ] E ,  

(1.1) 

where ko = w/c,  and eo (z) = E, c(z) + E~ O( - z). Using 
the well-known Green's function G of the operator on the 
left, we go over to an integral equation: 

X E (x',  y', z ' )dV'+@ ( x ,  y ,  z ) .  (1.2) 

The integration here is over the volume between the surface 
z = f (x ) and the xy plane; 

is the solution of homogeneous Eq. (1.2). 
Introducing the new function 

using the k representation of the Green's function G, and 
using the relation 

we finally find, after an integration over y, 

E' ( x ,  z )  = - k ' ( E 2 - E i )  { j j G ( k o S ,  kov, z ,  z g ) E f ( x r , z ' ) d S 1  
I 

A 

x E' ( X I ,  z f ) e x p  (ik.xr ) d ~ '  }+ @ ( z ) ,  

nPO. (1.3) 

The A here means that the integration is carried out over the 
area of one irregularity in the xz plane. 

Since I(A (or k, bk,  ), we see that the field EL in the 
far zone, z>A, is determined only by the term with n = 0 
which has been singled out in Eq. (4).  The terms with n $0 
determine the fields which are directly related to the relief 
and which fall off exponentially with distance from the 
boundary. For z)zf - h, we have 

sinceq, = [k: - k &  - (k,, +k,)2]1'2-ilk,I. Wefinal- 
ly find 

h 

The Green's function G in this expression has been taken 
through the integral sign at the point z' = 0, since we have 

i: (koS,  kov, z, z ' )  - exp[ iko ,  ( z*z ' ) ]  -exp ( ik , , z )  [ l S o  (hlh)]  , 
koz= (ko2-ko,l-ko:)'h. 

We wish to stress that within [max(h,l) ]/A expression (1.4) 
is valid for irregularities of an arbitrary type, provided that 
their characteristic dimensions are small in comparison with 
the incident wavelength. 

A roughness of any type can be described in two equiva- 
lent physical models: as elevations on a half-space or as de- 
pressions in a half-space. Expression (I.4), written for the 
elevation model, can also be written for the depression mod- 
el. In this case, Ei determines the fields between the irregu- 
larities. In the discussion below we use a combination of 
these expressions. This approach corresponds to taking an 
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average over the layer (or over the period, in the case of 
regular irregularities). 

The generalization of (1.4) to the case of 3 0  periodic 
irregularities is obvious: The integral over the area of the 
irregularity should be replaced by an integral over the vol- 
ume of the irregularity, divided by the period in they direc- 
tion. 

APPENDIX II 

In the 2 0  case under consideration here, the relation- 
ship between (D) and (E) is 

To calculate the components of the tensor Pff, we need to 
solve two electrostatic problems. This system should be 
placed in a uniform electric field, directed along the z axis in 
one case and along the x axis in the second. 

1. In the first case, we solve the problem of finding the 
electrostatic potential p such that E = - grad p. In each of 
regions I and I1 (with E ,  and E~ ), the potential p satisfies the 
Laplace equation 

the periodicity conditions 

and boundary conditions on the line z = f(x) ,  

where N is the normal to the interface. In addition, we have 
p(x, + w ) = U, ,  p(x, - w ) = U,. I t  can be shown that 
the x component of the average field vanishes by virtue of 
conditions (11.3) and (11.4): 

The integration is carried out over the area of a rectangle of 
height h and length 1. From Eqs. (11.1 ) we then find 

For symmetric irregularities, since the function f(x)  
and the potential p(x,z) are even, we have (D, ) = 0 in addi- 
tion tocondition (11.5). It thus follows that we have E: = 0. 

2. In the second case we find the vector potential 
A = \Y(x,z) e,, (Ref. 10) such that 

The function Y also satisfies the Laplace equation ( 11.2) and 

the periodicity conditions (11.3). The boundary conditions 
on the line z = f(x)  are 

In addition, we have 

Y (x, + 0 0 )  = v,, Y (x, - OD) = v2. 

By virtue of the periodicity conditions and the equality of the 
potentials on the line z = f(x), we can write 

and from Eqs. (11.1 ) we find 

where EZ and EZ are given by (11.6). If the irregularities are 
symmetric, the equality (E , )  = 0 holds along with condi- 
tion (11.8). We then have E: = 0 and 

In the case of symmetric irregularities, the periodicity 
conditions in (11.3) can be replaced by 

and we can examine the x interval O(x(1/2. 
Equations (11.6) and (11.9) can be used for 2 0  reliefs 

which are periodic and otherwise arbitrary; it is not neces- 
sary that relations ( 12) hold. 

"Formal calculations which confirm these arguments are given in Ap- 
pendix I for readers who prefer a formal derivation to a physical level of 
rigor. 

'' In a recent papers (submitted for publication half a year after the pres- 
ent paper), Aspnes takes up a corresponding problem: calculating the 
change in the reflection coefficient associated with the presence of a low 
relief at an interface between two media for the case of a normally inci- 
dent wave. The first-order effect is proportional to the surface integral 
of the local potential. That approach is successful in solving the problem 
only for a relief of a certain shape, for which the local potential can be 
determined from auxiliary considerations. The reflection coefficients 
calculated in the present paper, for two types of relief-steep trench 
irregularities and gently sloping sinusoidal irregularities-are com- 
pletely the same as the results of Ref. 8. 
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