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The problem of topological classification of point and line defects on the boundary surface 
between two phases is posed and solved; formulas are derived for the classification groups, which 
generalize the previously known relative homotopy groups, .rr, ( ~ , i ? ) ,  T, ( ~ , i ? ) .  The separation 
boundary between the A- and B-phases of superfluid 3He are discussed in detail; for two boundary 
conditions a complete classification of the defects was obtained, among them boojums on the 
surface of separation and an analog of the Dirac monopole. Interior defects in the boundary layer 
which separates 3He-B from the wall of the vessel are considered. The appearance of these defects 
is caused by the lowering of the symmetry of this layer. 

1. INTRODUCTION 

The separation boundary between the A- and B-phases 
of superfluid 3He, which is in many respects a unique exam- 
ple of a two-dimensional object in condensed-matter phys- 
ics, is currently the subject of intensive experimental and 
theoretical investigations.'-6 The large number of compo- 
nents of the order parameter ( 18 real numbers, forming a 
complex 3 X 3 matrix, as well as the high dimension of the 
phase degeneracy space (5  for the A-phase, 4 for the B- 
phase, for a maximal possible dimension of 7; see Ref. 7 )  
necessitates the use of an appropriate mathematical appara- 
tus for the classification of the singularities of the phases of 
3He. This apparatus is homotopy theory (Refs. 8, 9); the 
singularities are classified by indices which are topological 
invariants (see, for instance, Ref. 7). 

In the presence of a boundary separating the phases, in 
addition to purely bulk singularities, there occur surface sin- 
gularities of the following types: 1) isolated singular points 
and singular lines situated on the separation surface, includ- 
ing boojums (see, e.g., Ref. 10); defects in the bulk of one of 
the phases (singular lines and domain walls) having a termi- 
nation point or line, respectively on the separation surface; 
to this group belongs also an analog of the Dirac monopole 
(Refs. 11-13); 3) singular lines and domain walls which 
intersect the separation surface. 

Each of the bulk phases, which make contact along the 
separation surface, is characterized by its degeneracy space, 
the symmetries of which are, in general, completely differ- 
ent. For the A-B boundary they are RA = (S3 XSO(3) ) / Z ,  
and R, = U( 1 ) x S 0 ( 3 ) ,  respectively. The values of the or- 
der parameter on both sides of the boundary are not arbi- 
trary and are related by some mutual boundary conditions 
which are not necessarily unique. (Thus, a simultaneous ro- 
tation of spin and coordinate space around the normal to the 
separation surface does not change the order parameter of 
the B-phase and leaves the separation plane in place, but may 
change the order parameter of the A-phase. Consequently, 
for a given boundary condition, to one value of the order 
parameter of the B-phase on one side of the boundary there 
may correspond different values of the order parameter of 
the A-phase on the other side of the boundary (see Ref. 6). 
Moreover, in the boundary there also arises a distribution of 
the order parameter, belonging in general to the maximal 
space R,,, of order parameters, i.e., to the space M(3,C) of 

complex 3 X 3 matrices. Therefore one should expect that 
the classification of singularities of types 1 ), 2), 3) will be a 
nontrivial problem. In the present paper we propose a topo- 
logical method of classification of such defects. 

For this one needs, first, to write the boundary condi- 
tions in a mathematically convenient way. We consider a 
distribution A E, (x)  of the order parameter in space, de- 
pending only on one coordinate x and having definite 
asymptotic values for x -t + co , of which one, A 2 ( x ) ,  be- 
longs to the degeneracy space RA of the A-phase, and the 
other, A E:(x), belongs to the degeneracy space R, of the B- 
phase. Such distributions were obtained in Refs 1,2, as solu- 
tions of the Ginzburg-Landau equations. The actual region 
of inhomogeneity of the solution turns out to be narrow (of 
the order of several coherence lengths) and forms properly 
the A-B boundary. Acting on the selected solution with the 
elements of the symmetry group of the Hamiltonian one can 
obtain other distributions of the order parameter, corre- 
sponding to the same value of the boundary energy. The set 
of asymptotic values of the new solutions obtained from A 2 
and A :: by the action of this group describes the selected 
boundary condition. Factoring the symmetry group of the 
Hamiltonian with respect to the subgroup which preserves 
this solution we obtain the degeneracy space of the boundary 
3 for the given boundary condition. 

Now we consider the distributions of the order param- 
eter in the interior and on the boundary, depending on all 
three coordinates. Each such distribution represents a map- 
ping which maps the volume of each of the phases into its 
own degeneracy space, and the boundary plane into the 
space 3. The matching conditions for these mappings con- 
sists in requiring that the values of the order parameter in the 
volume near a boundary point coincide with the asymptotic 
values of the distribution wlthin the boundary of the order 
parameter at the same point (the thickness of the boundary 
is considered negligible). Thus, the classification of singu- 
larities of the types 1 ), 2), 3 ) reduces to a problem of homo- 
topy classification of certain maps. These problems are 
posed and solved in Section 2. 

Section 3 considers in detail the problem of classifica- 
tion of defects on the A-B boundary for two specific bound- 
ary conditions; the physical meaning of the classification in- 
dices is explained, and it is shown how all singularities on the 
given boundary are obtained by adding "basis" singularities. 
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In Section 4 the singularities at the boundary of the B-phase 
and the wall of the vessel are considered. Since the B-phase 
does not wet the surface of the vessel, an intermediate phase 
should arise on the surface, in distinction from Ref. 14. The 
experimental data (Refs. 15-18) force us to assume that in 
addition to the maximally symmetric structure with a planar 
phase at the boundary, there can appear additional struc- 
tures with reduced symmetry, among them some which con- 
tain the A-phase at the boundary. Various solutions for the 
order parameter have been obtained in Refs. 19-23. In sec- 
tion 4 we study the singularities of such boundaries on the 
basis of the classification introduced in Ref. 23 of the pres- 
ently known numerical and analytic solutions. Section 5 
points out some problems which are beyond the scope of the 
present paper, but to which the present method is applicable. 

2. TOPOLOGICAL CLASSIFICATION OFTHE DEFECTS ON 
THE PHASE INTERFACE: GENERAL CASE 

We choose the geometry of the structure in the follow- 
ing manner: the phase interface coincides with thex = 0, the 
phase a occupies the half-space x < 0 and the phase b occu- 
pies the half-space x > 0. The phase degeneracy spaces will 
be denoted by R, and R,, respectively. (The notations are 
chosen so as to remind us of the basic example-the phase 
separation surface of the A- and B-phases of superfluid 3He, 
where the degeneracy spaces are denoted by R, and R,.) 
The existence of the boundary leads to a reduction of the 
symmetry group of the physical laws 

to some subgroup Gi. For example, in the case of a flat 
boundary separating different phases in the absence of an 
external field the subgroup is 

Here O(2) denotes the group containing the gauge trans- 
formations (which form a U(1) subgroup) and their com- 
positions with time reversal T; O(2) denotes the group con- 
taining rotations of coordinate space around the x axis (the 
subgroup S0(2)=)  and the symmetries of coordinate space 
with respect to planes containing the x axis; S0 (3 )S  is the 
rotation group of spin space. The group 0(31L contains all 
the rotations of coordinate space, as well as their composi- 
tions with the space reflection operator P; only its subgroup 
0 ( 2 ) =  leaves in place the boundary and the positions of the 
phases. 

The values of the order parameter at points close to the 
boundary and symmetric with respect to it are not arbitrary 
and are related by boundary conditions which can be taken 
into account in the following manner. We prescribe some 
asymptotic forms of the order parameter at infinity: 

After this one can determine the distribution of the order 
parameter A '(x) which has lowest energy, depends only on 
x, and satisfies the prescribed asymptotic behavior. In gen- 
eral, the order parameter A O takes values in the maximal 
space R,,, of order parameters. 

Let H be the symmetry group of the solution A O, i.e., 
that subgroup of Gi consisting of elements g€Gi such that 

gA '(x) = A '(x) for all x. In addition to H we consider the 
symmetry group Has of the asymptotic solutions, i.e., the 
subgroup of all g€Gi such that gA Oa = A Oa and gA Ob = A Ob. 
(The notationgA means the action of the group element g on 
the order parameter A.) Obviously, H i s  a subgroup of Has. 
The degeneracy space of the states of the boundary is 

In general, the homogeneous space Y need not be a group; 
nevertheless the action of any element g€G,/H on any point 
A O(X)ER,,, is well-defined. Such an element ge.9 is a coset 
gH, with &Gi. Since by the definition of H for each element 
h a  we have hA O (x)  = A O (x ) ,  the mapping h, : $7 - R,,, , 
h, (g = gH) = gA '(x) is well defined (does not depend on 
the choice of the representativeg in the coset gH). In partic- 
ular, there are the mappings 

which we will need in the sequel. 
Thus, any element g€Y maps the initial solution A '(x) 

into some other distribution of the order parameter gA '(x) 
having, obviously, the same energy. The distribution of the 
order parameter at the boundary is described by a contin- 
uous map Fo :R 2+ 3 .  Here the plane R is labeled by the 
coordinates (y,z) in the boundary plane and the value of 
Fo (y,z) determines the element g ~ 9  which has to act on 
A '(x) in order to yield the distribution of the order param- 
eter over the thickness of the boundary at the given point 
(y,z) . The topological classification of the point singularities 
of the boundary reduces to the homotopy classification of 
the mappings Fo of the punctured plane R into $7. Since a 
punctured plane contracts into the circle S ' we reach the 
standard conclusion that if the fundamental group a, ( $7 ) is 
commutative the point singularities of the plane are classi- 
fied by its elements, and the merging of point singularities 
corresponds to multiplication in a, ( $7 ). In all our examples 
the fundamental group will be abelian, and we therefore re- 
strict our attention to that case. Further, line singularities of 
the boundary, i.e., boundaries of "islands" (see Ref. lo) ,  are 
obviously classified by the set a. ( $7 ) of the connectivity 
components of the degeneracy space $7. 

We are interested in the distributions of the order pa- 
rameter throughout the volume surrounding a singularity 
on the boundary. We must figure out which singularities are 
isolated, which come from the interior inside one of the 
phases, which are endpoints of singular lines, or intersec- 
tions of singular lines with the boundary. For this one has to 
find the topological classification of the distributions of or- 
der parameters in the four situations listed below. In all cases 
one searches for distributions of the order parameter within 
the interiors of the phases and on the boundary, with certain 
points of the volume and boundary removed. 

Case I. One point removed from the boundary (isolated 
singularity). 

Case 2a. A line in the bulk (interior) of the a-phase is 
removed, with an endpoint on the boundary (endpoint of a 
singular line in the a-phase). 

Case 26 differs from 2a in that the singular line comes 
from the b-phase. 
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FIG. 1. The case of an isolated singularity. The volumes of the a- and b- 
phases can be contracted to hemispheres and the boundary to the equator 
of a two-sphere; each hemisphere and the equator are mapped into their 
own degeneracy spaces. The requirement of continuity of the order ps- 
rameter implies the commutativity of the ensuing diagram of maps. 

Case 3. A line which traverses the boundary is removed 
(singular line traversing the boundary). 

Case 1 leads to problem 1 in the homotopy classification 
of triples of mappings, 

satisfying the matching conditions 

Here S A, S :, S 2, are respectively the equator and the upper 
and lower hemispheres of S2 ,  the two-sphere (Fig. 1 ). The 
mappings ha, h, have been defined above. The notation hoF 
denotes the composition of the maps f and F. 

The junction conditions which follow from the require- 
ment that the order parameter should be continuous are tan- 
tamount to the commutative diagram 

The difference in the way the problem is posed in cases 
2a and 2b consists in the absence of the mappings Fa and F,, 
respectively. Indeed, the volume from which a line is re- 
moved can be contracted to the circle SA situated on the 
boundary, and therefore the homotopy class of the distribu- 
tion of order parameter in that volume is determined by the 
element a, ( 9 ) corresponding to the given point singular- 
ity. Replacing the hemisphere S t  by the disk Db homeomor- 
phic to it, and considering the circle S A as its boundary dD,, 
we can formulate problem 2a for case 2a in the following 

manner: find the homotopy classification of the pairs of 
mappings Fo , F, : 

F,  : dDb+9, 

Fb : Db+Rbr 

such that h, OF, = Fb 1 JDb. The formulation of case 2b is simi- 
lar. As regards case 3, the fact that the volumes of both 
phases can be contracted to the circle S A implies immediate- 
ly that singular lines which intersect the separation bound- 
ary are classified by the homotopy group a, (3 ). Knowing 
the answer for cases 1 and 2a,b one can determine which of 
these lines are indeed topologically trivial. 

Let us reformulate problem 1. Namely, the pair of map- 
pings Fa,  F, can be considered as a single map F = Fa x F,, 

which maps the point q in the two-dimensional disk D 
bounded by the circle S A to the pair (Fa (q, )Fb (q, ) ) in the 
Cartesian product Ra X R,, where qa is the preimage of the 
point q under orthogonal projection of the upper hemisphere 
S ;5 onto the equatorial plane, and q, is the preimage of q for a 
similar projection of the lower hemisphere Sb (see Fig. 2).  
We introduce the mapping 

which acts according to the formula h (g) = (ha (g),h, (g )  ). 
Now problem 1 can be reformulated as follows: find the ho- 
motopy classification of the pair of maps 

with the matching condition hoFo =F 1 JD, which is absolute- 
ly analogous to the way the problem is posed in case 2. 

We now solve these problems, considering first the case 
H = Has, and then we indicate the modifications necessary 
when this does not hold. In the case H = Ha, the mappingg: 
9 +Ra XR, will be an embedding. This means that each 
element g ~ 3  shifts only one of the asymptotic values A Oa, 
A Ob, which obviously occurs since we have factored the total 
group of possible symmetries by the stabilizer H = Ha, of 
the asymptotic values. Therefore 9 can be identified with its 
image h ( 9 ) C R, X R,, and the set of pairs of mappings 
( 10.1 ), ( 10.2) we are after turns out to be the relative homo- 
t0PY group 

n 2  (RaXRb,  9 )  

according to its definition (see Refs. 8, 9). If the action of 
a, ( 9 ) on .rr, (R, X Rb ) is trivial, the merging of singular 
points is described by multiplication in a, (R, x R,, 9 ). 

By means of the exact sequence of the pair 

n z  (Q)+nz ( P )  +nz ( P ,  Q )  +ni ( Q )  - + J I ~  (P) (11) 

the relative homotopy group a, (P,Q) can be decomposed 
into two components II, and II, : 
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which define r2 (R, X R, ) up to an adjoint action, i.e., II, is 
isomorphic to some subgroup in ?r, (P,Q) and II, is isomor- 
phic to the factor group of ?.r, (P,Q) with respect to that 
subgroup. The intuitive meaning of the components II, and 
II, is the following: the component II, describes those loops 
in Q which can be "spanned by films" in P, and the compo- 
nent II, gives the difference between the different spannings 
for a fixed homotopy class of a loop in II, (see Refs. 7, 14). 

We introduce the homomorphisms of homotopy groups 
induced by the mappings h, ha, h, : 

For the group 

the components II, and II, are 

We now come to problem 2. We introduce the images 
R, and z, under the maps ha and h, : 

FIG. 2. The construction of the map F = F, X F,. Each point q of the two- 
dimensional disk D with boundary aD = SA is mapped onto a pair of 
points g a d :  and q , d :  which is then mapped into the point 
(Fa ( q ,  ),Fb (4'6) )€R,  XRb. 

nz(Ra)lIm 1% (R.)+n,(%) I XKer ha1. (18) 

Similarly, the set for problem 2a is: 

n z ( ~ 6 ) / ~ ~ [ ~ z ( ~ b ) ~ n 2 ( ~ ~ ) l  XKer hbl. (19) 

Here the symbols x denotes the Cartesian product of sets; 
generally speaking there is no natural group structure in the 
sets ( 18), ( 19), except in some special cases. For instance, if 
one of the components of the mapping vanishes, the remain- 
ing one is obviously a group, and multiplication in it will 
correspond to merging of singularities. Another special case 
is realized when 9 = k, (or k, ) . We then obtain the rela- 
tive homotopy group r2 (R, ,a ,  ) [respectively, .rr, (R,, 
2, ) 1, which corresponds to the situation considered in 
Refs. 7,14, when a subspace R of possible values of the order 
parameter on the boundary was fixed, and no transition 
phase appears near the boundary. 

Let now the symmetry Ha, of the asymptotic solutions 
be higher than the symmetry Hof the whole solution A '(x). 
As is easily seen, the solution of the problems 2a,b remains 
valid. Since the formulation of problem 1 is completely anal- 
ogous to the formulation of problems 2a,b, it should be clear 
that the answer to problem 1 in the general case is given by 
the formula 

- 
where we have introduced _2/ the set R, x R, = h( 9 ). For 
H = Has one can identify R, X R, and 3 and we return to 
r 2  (Ra x R ~ , Y  1. 

We consider, for example, the problem 2b. We need to find 
the set of homotopically distinct pairs of mappings 
Fo:dD-+ 3; Fa:D+R,, such that haoFo =Fb l a D .  The map- 
ping Fo determines a loop in 3, is taken by ha into R,. The 
mapping Fa determines "stretching a film" across the image 

RP 
of that loop in R, . The homotopy class r ~ r ,  ( 9 ) of the map 
Fo must be such that on the image h, (y)  of the loop y ~ r  one y \  

can "stretch a film" in R,, i.e., one must have R K e r  h A .  ,(::3, 

Thus the set of homotopically distinct maps Fo is Ker h A .  
Let y be a loop of class &Ker h (Fig. 3).  Then the distin- 
guishing indices of different "film stretchings" in R, of the I 

loop ha (y)  C X ,  are described by the component II, of the A"& 

group r, (R, ,go ). Writing this component explicitly we 
find the answer to problem 2b for the desired pairs of map- FIG. 3. The case 2. The map h, maps the loop y into 2,; on its image 
pings: h, ( y )  one can "stretch" a film in R , .  
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We still note that in the sets (18), (19), (20) for 
H #Hus one can select the component responsible for the 
interior degrees of freedom of the boundary, i.e., the set of 
separators for the distributions of the order parameter, 
which differ only within the thickness of the boundary (but 
agree on the surface and in the bulk). Such a component will 
be 

where the mapping of the fundamental groups is induced by 
the projection of the bundle G,/H+ G,/Has with the fiber 
Has/H. Using the exact sequence of this bundle one can also 
write 

from where we see, for instance, that in the case of discrete 
groups H, Has the component I is trivial. 

For the case of line singularities on the boundary and 
the case of domain walls which come from the interior, one 
can pose problems analogous to 1,2a, 2b, 3; in the answers it 
is necessary to lower the dimensions of the homotopy groups 
by one unit. In particular, for the case H = Has we find that 
the isolated singularities on the boundary are described by 
the set 

3. THE TOPOLOGICAL CLASSIFICATION OF DEFECTS ON 
THE A-BBOUNDARY 

We now consider directly the boundary separating the 
A- and B-phases of superfluid 3He. We restrict our attention 
to the case of small distance scales, when the additional in- 
teractions can be neglected, and the degeneracy spaces of the 
phases are7 

Ra=R,=(S2XS0 (3) ) /Zz, 

R,=RB=U(l) XS0 (3 ) .  

These spaces are subsets of the maximal space of order pa- 
rameters, the space R,,, = M(3,C) of complex 3 x 3 matri- 
ces. The order parameter in the A-phase has the form 

AaiA=.AA (7') da (eii+iezi), (22) 

where d is a unit vector indicating the direction for which the 
projection of the spin of Cooper pairs is zero, and el , e2 are a 
pair of orthogonal unit vectors; the third vector 1 = el X e2, 
which together with the pair (el ,e2 ) form a basis, points in 
the direction of the orbital momentum of the Cooper pairs. 

The order parameter in the B-phase is 

Aa,B=AB ( T )  exp (i@)Rai, (23) 

where Q, is the phase of the Bose condensate; Raicr0(3);  the 
matrix R,, determines the relation between the anisotropy 
axes of the orbital and spin properties of the phase; and 
A, ( T) and A, ( T )  are the energy gaps in the two phases. 

As was shown in Ref. 2, two maximal symmetry groups 
are possible for the distribution of the order parameter 
A O(x)M(3,C) within the boundary, namely 

Here C,, ( I  = x,y,z) is a simultaneous rotation of the coordi- 
nate and spin spaces by a around the 1 axis (see Ref. 5) .  The 
most stable A-B boundary corresponds to the symmetry 
H = 9;" and the following asymptotic forms of the solu- 
tion (3)  (see Refs. 1 ,2)  : 

where 2,4, f are the unit vectors along the coordinate axes. 
As is easy to see, Has = H and the value of the vector 1 

for A OA is 1 = 4. In the sequel we shall call such an A-B 
boundary a boundary with the boundary condition llx. 

In addition to the boundary condition llx we also con- 
sider a distribution of the order parameter with the symme- 
try H = BP' and the asymptotic forms 

for which also Has = H and 1IJx; this case will be called a 
boundary with the boundary condition lllx. 

We consider the case llx. The degeneracy space of the 
states of the boundary is, according to Eq. (4),  

The point defects of the boundary are classified by the ele- 
ments of the group a (  Y ) = Z e Ze Z2 ,  i.e., by three indices 
(n, ,n2,n3 1, where n, ,n2EZ; n,EZ,. We have chosen the 
standard generators in , ( U 1 ) , a, (S0(2)L),  
a, (S0(31S), corresponding to loops which enclose the cir- 
cles U( 1 ), SO(2) L, SO(2) once, respectively; the circle 
S0(2IS  consists of rotations of the spin space around the x 
axis. 

According to Eq. ( 5  ) there are maps h, : Y - R, , 
h, : -+ RB,  which induce the homomorphisms ( 10) : 

We choose in a, (R, ) = 2, the standard generator, repre- 
sented by the loop whose projection onto S2 joins diametri- 
cally opposed points of the sphere, and whose projection 
onto SO(3 ) is a once-traversed circle SO(3) CSO(3) (see 
Ref. 7); in a, (R,) = Ze Z2 the generators are selected as 
they were done in a, ( Y ). In order to find the homomor- 
phisms h 1, h L, one must find the images of loops in Y 
which are the standard generators in a, ( 9 ), obtained by 
the action of all elements of these loops on the asymptotic 
forms A OA = A, 2, (2,  - iii ) and A OB = A,S,, . We find 
thus 

hA1 : (nl, n,, n,) - (2(nl+n2) mod 4) ,  (29a) 

hsi : (n,, n,, n,) -. (n,, n,-tn, mod 2 ) .  (29b) 
(We represent the group Z4 by the residues 0, 1,2,3, mod 4, 
and the group Z2 by the residues 0, 1, mod 2. The addition 
n,  + n2 mod 2 denotes addition in Z2 . Equations (29) mean 
that under the homomorphisms h i ,  h A the element 
(n,,n,,n3) goes into the indicated elements of the groups Z4 
and Z CB Z2 , respectively. ) 

We now have 
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Ker hni={ (ni, n,, n,) 1 n, n, i 2). (30) 

Ker  h,' = {(O, n,, n, mod 2))  = 2, (31) 

Ker hl=Ker h A 1 n ~ e r  hBi= ((0, n,, 0) I n, i 2) =22. ( 32) 

Here a :  b indicates that b divides a. The notation 
{(n, ,n,,n, ) I  ..... 1 means the set ofelements (n, ,n,,n, ) such 
that the property to the right ofthe vertical bar is true. These 
formulas determine the values of the indices (n, ,n2,n3 ) of 
the singularity on the separation surface for which the loops 
surrounding the point can be "spanned by a film" respective- 
ly in R A Y  R,, RA X RE (the possibility of "stretching a film" 
in the latter case is, of course, equivalent to the possibility of 
doing this simultaneously in R, and RB ). 

We have thus defined the second components of the sets 
of answers (18), (19), (16) to the problems 2b, 2a, 1, re- 
spectively. We now calculate the first components, which 
determine the number of nontrivial "film stretchings" for a 
fixed homotopy class of the loop surrounding the singular- 
ity. We determine the first component II, of the group 
q ( R ,  x R , , ~ )  according toEq. (15): 

where we have made use of the fact that .rr, ( Y ) = 0 and 
.rr, (RE) = 0. Since both components II, and II, of the 
group ?r, (R, x RB, 9 ) are infinite cyclic groups, 
.rr, (R, X RE, Y ) equals their direct sum, 
n-, (R, x RE, Y ) = 9' e 2 9 ;  we denote the first index by p 
(the second index is equal to n, and is necessarily even). As 
regards the answers ( 19), ( 18) to the problems 2a and 2b, 

TABLE I. The boundary condition 1Lx. Classification of singularities. 

the first component vanishes and no additional indices ap- 
pear. Indeed 

n,(R,)lIm [nz(fTB) +~Z(RB) l = O ,  
since n-, (RB = 0, and 

- 
since R, = (S'x5"xS2)/Z2 and 7 r , ( ~ A ) - + ? r , ( ~ A )  
turns out to be a homomorphism. The information obtained 
in this way is collected in Table I, which also contains an 
explanation of the physical meaning of the indices and singu- 
larities corresponding to certain choices of indices. This 
classification agrees with the results listed in Ref. 6. 

In this classification isolated boojums appear naturally 
on the surface, as well as boojums which are end-points of 
vortices in the interiors of the phases. The latter are analogs 
of the Dirac monopole,'2913 where the role of the vector po- 
tential is played by the superfluid velocity v,, and the role of 
the magnetic field by its vorticity curl v,. One should how- 
ever, note the difference, that for the Dirac monopole the 
line singularity of the distribution of the vector potential is 
an artefact, and disappears when one considers the corre- 
sponding principal bundle, whereas vortices in 3He are real 
and experimentally observed. This distinction is connected 
with the gauge invariance of electrodynamics which is ab- 
sent in 3He. 

We note that since there are no additional distinguish- 
ing indices except n, , n,, n, in the cases 2a, 2b, and 3, the 
fusion and decay of the singularities we consider, with the 
exception of those coming from the bulk, is described by 
addition in n-, (9 ), and all such singularities can be ob- 

1. Isolated singularity on 
the surface; (p,O,n,,O), 
n2i2 

Type of singularity; classi- 
fying indices 

P Degree of the map of the hemisphere S: 
onto the sphere of the vector d 

- 

nz The number of rotations of the vector 1 as 
the singularity is circumvented 

~ ~ d ~ x  or array ofindices 

(1,0,0,0) Point singularity coming to the boundary 
from the bulk of the A-phase 

meaning of the index or of the 
singularity defined by an array of indices 

(o,o, 2-0) I Boojum on the surface 

- 

3. Singular line which in- 
tersects the boundarv: 

2a. Singular line from the n~ I See above 
A-phase ending at the sur- 
face of separation; (O,n,, ( 0 , t  4 )  One-quantum vortex in the A-phase with 
mod 2) end on the boojum 

2b. Singular line from the nt Increase of the phase Q (m units of 2r) in the A- and 
B-phase ending at the sur- B-phases as the singularity is circumvented 

One-quantum vortex intersecting the 
boundarv 

face of separation; 
(n,,n,,n,), n ,  + n,i2 

One-quantum vortex in the A-phase, 
transforming into a disclination 
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(1, I ?  0) One-quantum vortex in the B-phase with 
end on the boojum 

(090, 1) I Disclination in the B-phase (ends with- 
out a boojum) 



tained as a result of the composition of "basis singularities," 
for example ( 1,0,0), (0,1,0), (0,0,1) . It  is easy to show that 
any singular line which intersects the boundary can be "torn 
up," i.e., decomposed into several singularities of the type 
2a, b. This follows, e.g., from the fact that one can choose the 
basis ( 1,0,0), (0,1,0), (0,0,1) . The supplementary index p 
corresponds to singular points coming from the bulk of the 
A-phase; we see that such points can merge with an isolated 
boojum on the surface (one thus obtains a singularity with 
the index (p,0,n2,0), and after merging with the end of a 
vortex the indexp is forgotten. In fact, owing to the nontri- 
viality of the action of 37, ( 9 ) on ?r, (R, ), the index of the 
singular point arriving at the boundary from the interior is 
determined to within a sign (see Ref. I ) ,  but the action of 
rr, ( 9 ) on r2 (RA x RB ) = r2 (RB ) is trivial, and therefore 
the index p is now uniquely defined. One more conclusion 
from Table I is that a half-quantum vortex in the A-phase 
cannot terminate on the interface with the B-phase. 

We now consider the other boundary condition ll(x. 
The degeneracy space of the states of the boundary, accord- 
ing to Eqs. (4) and ( 2 5 ) ,  is 

Here the factoring with respect to the internal Z2 corre- 
sponds to an identification of elements which differ by a si- 
multaneous spin-orbit rotation c,,, and the factorization 
with respect to the external Z,  identifies pairwise the con- 
nected components of Gi, reducing their number from four 
to two. The fundamental group is again 

but the generators have to be chosen differently. The gener- 
ator of the first Z is represented by a loop U( 1 ) C O(2) G, the 
second generator Z is represented by a loop y, where y ( t )  is a 
combined spin-orbit rotation by an angle rrt around the x- 
axis. The generator of the group 2, is represented by the 
loop SO(2) "C SO( 3) ". The point singularities of the bound- 
ary are described by three indices (n, ,n,,n, ); n, ,n,dZ, 

The homomorphisms ( 14) have the form 

hAi : (n,, n,, 12,) -+( (2n,+n2) mod 4 ) ,  (35a) 

hB' : (n1, n,, n,) (nl, n,). (35b) 

Hence 

KerhA3={(nl, n,, n,) 12n1+n, i 41, 

Ker k g = {  (0, n,, 0) ), 

Ker hi={(O, n,, 0 )  In, i 4). 

The computation of additional separators leads, similar to 
the case Ilx, to the conclusion that 
.rr, (RA X RB9 9 ) = Ze 4 2  (there appears an additional in- 
dex@ describing sinular points which come from the inte- 
rior), and in the cases 2a,b no additional indices make their 
appearance. The results are summarized in Table 11. 

The assertion made above remains valid: that fusion of 
singularities corresponds to the addition of indices, and that 

TABLE 11. The boundary condition ll(x. Classification of singularities. 
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Type of singularity; classifying 
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2a. Singular line from the A-phase 
ending at the surface of separa- 
tion; (O,n,,O) 
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Index or array of 
indices 

P 

n2 

( 1 , 0 , 0 , 0 )  

Physical meaning of the index or of the 
singularity defined by an array of indices 

Degree of the map of the hemisphere S i  
onto the sphere of the vector d 

Increase of the phase in the A-phase (in units of a) 
and the number of rotations of the vector d when cir- 
cumventing the singularity 

Point singularity coming to the boundary 
from the bulk of the A-phase 

2b. Singular line from the B- ( I Increase of the phase (in units of 2 ~ )  in 
phase ending at the surface of sep- the A- and B-phases as the singularity is 
aration; (n,,n,,n,),  2n1 + n,i4 circumvented 

n3 

( 1 , 2 , 0 )  

( o , o , f )  

3. Singular line which intersects 0 l  O) i the boundary; (nl ,n2,n,)  

( 0 , 0 , 4 , 0 )  / Boojum on the surface 
- 

nz ( See above 

The presence of a disclination in the field 
of the matrix R,, in the B-phase 

One-quantum vortex in the B-phase with 
end on the boojum 

Disclination in the B-phase (ends with- 
out a boojum) 

Half-quantum vortex in the A-phase, 
transforming into a one-quantum vortex 
in the B-phase 

( 0 , 1 , 0 )  

( 0 , 2 , 0 )  

Half-quantum vortex in the A-phase with 
end on the boojum 

One-quantum vortex in the A-phase with 
end on the boojum 



basis elements exist, with the observation that in this case the 
index p is defined only up to sign, even for a singularity 
which is already localized on the surface of separation, since 
in the image of the homomorphism h i  there appear odd 
elements which act nontrivially on ?r, (R, ). The essential 
distinction from the case lllx is that here a half-quantum 
vortex of the A-phase may have its end on the surface of 
separation (cf. Refs. 12, 13). 

As far as line-singularities on the boundary are con- 
cerned, it is easy to see that in the case llx such singularities 
are exhausted by half-quantum vortices coming from the 
bulk of the A-phase, with both possible topological charges 
of such a vortex being equivalent: 

For the limiting case lllx we have 

and all line singularities reduce to the boundaries of "is- 
lands" which can appear on account of the non-connected 
character of the degeneracy space 9. 

4. SlNGULARlTlES OF THE SURFACE LAYER IN SUPERFLUID 
JHe 

We now consider the boundary between 3He-B and the 
wall of the vessel. The structure of the order parameter near 
the wall has been investigated in Refs. 19-23. Reference 23 
lists eight structures of the order parameter; here we consid- 
er the possible singularities of these structures. The nota- 
tions are according to Ref. 23, and the symmetry classes, 
according to Ref. 20. 

The asymptotic behavior of the solution in the B-phase 
in all the structures is A = A,Sai. The subgroup of the 
group (2) Gi = O(2) x 0(21L xSO(3)' preserving the 
asymptotic behavior is Ha, = 0(2)'xZ;, where O(2)' is 
the group consisting of combined spin-orbital rotations 
around the x axis, and their compositions with the element 
C,,P [Eqs. (24), (25) 1, and Z2 is the group with generator 
T. The space 2, of the values of the order parameter which 
one can obtain by the action of all elements of Gi on A z: is 
2, = U( 1) XSO(3) and coincides with the whole degener- 
acy space R, of the B-phase. Therefore .rr, (R,,R,) = 0, 
holds, but the problem of boundary singularities remains 
nontrivial because the distribution of the order parameter in 
the bulk of the boundary may exhibit a lower symmetry H 

than Has. We now consider the eight structures listed in Ref. 
23 (see Fig. 4) 

The structures PI, p '. These are maximally symmetric 
distributions of the order parameter of the symmetry class 
17. In the layer between the B-phase and the boundary there 
is a planar phase; the texture of the orbital vector 1 is homo- 
geneous. The symmetry group of the solution is 
H = O(2) ' X Z ; = Has. The degeneracy space of the states 
of the boundary is 

9=Gi/H=U(I) XSO (3) = R E .  

There are no line defects on the boundary, all point-defects 
are exhausted by ends of singular lines coming from the bulk 
of the B-phase, and are classified by elements of the group 
r1 (RE) =Z@Z2. 

Before discussing the other structures corresponding to 
a lower symmetry we make a few remarks. In all the follow- 
ing structures we have T, ( 9 ) = Ze  Z @ Z,, the point sin- 
gularities of the boundary are classified by three indices 
(n,,n,,n,);n,,n,EZ,n,~Z,,ofwhichtheindicesn,,n, will 
always correspond to ends of vortices and disclinations, 
coming from the bulk of the B-phase. The index n, describes 
"internal" isolated point singularities of the boundary (see - 
the end of Sec. 2). Indeed, since RB = R E ,  the map h,: 
9 +RE (5b) coincides with the projection of the bundle 
Gi/H+ Gi/H,, with fiber HJH. Therefore the set Ker h 
which, according to Eq. ( 19) describes isolated point singu- 
larities of the boundary, coincides with the component I of 
"internal" degrees of freedom of the boundary, introduced 
in Eq. (21 ). The physical meaning of the index n, will be 
explained separately for each structure. In addition, for 
some structures, on account of the non-connectedness of the 
degeneracy space the appearance of singular lines is possible 
on the boundary, lines which are "internal," i.e., their pres- 
ence influences only the distribution of the order parameter 
within the boundary, but has no influence on the distribution 
of the order parameter in the bulk of the B-phase. 

The structures A ', 2 '. In the layer between the B-phase 
and the wall of the vessel there is the A-phase, the texture of 
the vector 1 is homogeneous and l(Jx. The symmetry class is 
11. The symmetry group of the solution is 
H = g y '  = {l,C2x,C2yPT,C2zPT). The degeneracy space 

has already been studied in Sec. 3, in connection with the A- 
B boundary with boundary condition lllx. The index n, can 

I l l  I I I 

P 4 4 4  f 1 4 4 4  P f f J  A f f f  
FIG. 4. Various surface structures in superfluid 

17 f l 2  3 'He-B; the letterp denotes the planar phase, the 
letters A, B, the corresponding phases. The tex- 
ture of the orbital vector Iis schematically repre- 
sented by arrows. Under the picture represent- 
ing each structure is indicated its notation in 
Ref. 23 and the symmetry class of Ref. 20. 
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be interpreted as the accumulation of phase in units of r and 
the number of half-rotations of the vector d in the boundary 
layer of the A-phase when the singularity is circumvented. 
Since we have ?r, ( 9 ) = 2 the formation of internal singular 
lines is possible, separating the two islands with 1 = + 2. 

The structure A '. In the layer between the B-phase and 
the wall of the vessel there is the A-phase, the texture of the 
vector 1 is inhomogeneous: on the boundary of the vessel 1 
satisfies the normal boundary condition Illx, and at the 
boundary with the B-phase Illy. The symmetry class is 3. The 
symmetry group of the solution is H = { 1, C2, PT}. The de- 
generacy space of the states of the boundary is 

The index n2 indicates the number of rotations of the vector 1 
when the singularity is circumvented. Since ?.r, ( 9  ) = 2 the 
formation of internal singular lines is possible, separating 
the two islands with the direction of the superfluid flow 
along the z axis or opposite to it (see Ref. 22). 

The structure 2 2. The difference from the structure A 
is that owing to the narrowness of the surface layer of A- 
phase the texture of the vector 1 is absent, and everywhere 
Ilk. An additional symmetry element arises and the symme- 
try group of the solution becomes H = g i l '  
= {l,CZx T,CZy P,C2, PT}, corresponding to the symmetry 

class 7. The degeneracy space of the states of the boundary is 

3 = U ( l )  xso ( 2 ) = x s o  ( 3 )  S, 

and the only difference from the structure A is the absence 
of singular lines, since now .rr, ( 9 ) = 0; this means that here 
the superfluid flow is forbidden by the symmetry. 

The structure p2. In the layer between the B-phase and 
the wall of the vessel there is a planar phase. The texture of 
the orbital vector 1 is inhomogeneous (as in the case A 2).  

The symmetry group of the solution is enlarged compared to 
the caseA to H = {1,T,C2,~,C2,~~},  corresponding to the 
class 8. The degeneracy space is 

%=U(1)  XSO(2)LXSO(3)s ,  

and the distinction from the case A is only in the absence of 
superfluid flow. 

The structure ?i '. Owing to the narrowness of the sur- 
face layer of A-phase the texture of the vector 1 is absent. A 
deformation of the order parameter of the planar phase oc- 
curs, leading to a conversion to the polar phase at the wall of 
the vessel (Ref. 23). (A similar phenomenon must also oc- 
cur for the 2 structure, for which so far neither an analytic 
nor a numerical solution has been found.) The symmetry 
group of the solution is H = { 1, T, c,, , CZy P,C2, P, 
CZx T,C2yPT,C2,PT), corresponding to the symmetry class 
12. Compared to the symmetry group for P2 there appears 
the new element C2, which leads to a further factoring of the 
degeneracy space 9 U( 1) x (S0(2)L X S O ( ~ ) ~ ) / Z , .  The 
index n2 indicates the number of half-rotations of the vector 
1 when the singularity is circumvented. 

The internal singularities we have considered are vortex 
lines starting at the surface of the vessel and ending at the 
boundary with the B-phase, and therefore, on scales of the 
order of several coherence lengths it is natural to consider 
them as line defects. At large scales they can be considered as 
peculiar point boojums of the boundary layer. 

5. SEVERAL FURTHER EXAMPLES 

The next problem to which it seems natural to apply the 
described method consists in the classification of the singu- 
larities at the A-B boundary with additional interactions 
taken into account (see Ref. 7). The presence of an external 
field leads to a lowering of the group Gi of symmetries of the 
physical laws in the presence of a boundary separating the 
phases. For example, suppose there is a magnetic field paral- 
lel to the A-B-interface, having the direction of the y-axis in 
the geometry we consider. Then the group Gi is 
G, = 0 ( 2 ) G S ~ 0 ( 2 ) L  xSO(2)'; here t h e g r o ~ p S O ( 3 ) ~ r e -  
duced to the subgroup of spin rotations around they axis, 
and time reversal T now enters Gi in a combination with a 
spin rotation by .rr around the x axis. The degeneracy spaces 
of the A- and B-phases are modified accordingly. The possi- 
bility of various boundary conditions was pointed out in Ref. 
5. Thus, there are data for an analysis of the singularities of 
the A-B-boundary in the presence of a magnetic field. 

In the same manner one can solve, for instance, the 
problem of classification of singularities of nontopological 
domain walls in the volumes of the A- and B-phases, which 
are analogs of the cosmic domain  wall^.'^,^^ The spaces Ra 
and R, are chosen identical and coincide with the degener- 
acy space of the phase under consideration. 

We also note that a formal consideration of the problem 
of particle-like solitons containing the A-B boundary lead, 
for example in the case H = Ha, to the relative homotopy 
group r, (RA x RB,Y ) (analogous to Ref. 7). 

6. CONCLUSION 

Thus, the procedure described in Section 2 yields a reg- 
ular method for classifying singularities on the interfaces 
between condensed matter phases. One naturally distin- 
guishes isolated singular points and singular lines, point and 
line singularities which are the endpoints of bulk defects in 
the phases, or intersections between bulk defects and the 
interface. Among the isolated singularities one distinguishes 
essential singularities of the boundary which cannot be tak- 
en into the interior of one of the phases (such point singulari- 
ties are boojums), and singularities which come to the sur- 
face from the volume. Together with the classifying indices 
are defined laws which govern their addition when the singu- 
larities fuse. The formulas obtained here generalize the 
method of relative homotopy groups (Ref. 14). For exam- 
ple, in the case of maximal symmetry of the solution at the 
boundary, isolated point singularities are classified by the 
group ?r, (RA x R , , ~ ) .  

The classification obtained in Sec. 3 for the singularities 
on the A-3 boundary contains completely the previously 
known information and allows one to draw some conclu- 
sions, in particular: 1 ) In the case of the boundary condition 
1Lx a semiquantum vortex cannot end on the separation sur- 
face; 2) for any of the two boundary conditions we have 
considered the singular point which came from the bulk of 
the A-phase can merge with a boojum on the interface and 
when it merges with the end of a vortex (Dirac monopole) a 
loss of quantum number occurs. Thus, the singular points of 
the bulk of the A-phase can be annihilated at the end of a 
vortex. For various states near the boundary of 3He-B with 
the wall of the vessel all possible internal degrees of freedom 
have been indicated, degrees which can play an essential role 
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in the explanation of the experimental 
I am grateful to G. E. Volovik for posing the problem 

considered here and for numerous useful discussions and to 
S. P. Novikov, who made a series of valuable remarks. 
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