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An attempt is made to explain why there are no experimental data on stimulated scattering of 
sound by inelastic modes of a medium. Equations derived here in the geometric-acoustics 
approximation describe the propagation of a weak sound wave superposed on an intense pump 
wave. The excitation of relaxation modes of the medium-quasisteady entropy and vorticity 
waves-is taken into account. A detailed study is made of the influence of the acoustic streaming 
which is set up by the pump beam. Since this streaming is nonuniform, low-frequency beats of the 
sound vibrations can reach resonance with relaxation modes only in a narrow part of the overall 
interaction region. As a result there is a sharp decrease in the overall growth rate, and the steady- 
state scattering cannot compete with the excitation of harmonics of the pump wave. The 
possibility of observing scattering of this type under unsteady conditions is assessed. There are 
several stringent requirements to be met if an experiment is to be carried out. 

1. INTRODUCTION 

The propagation of intense sound could hypothetically 
be accompanied by an effect like stimulated thermal scatter- 
ing of light.' The role of the slow scattering wave might be 
played by vortex modes,2 thermal modes,394 compressional 
 mode^,^,^ and other inelastic modes of the medium. 

The scattering can be described as follows. The incident 
sound wave and the scattered sound wave (of approximately 
the same frequency) interfere, exciting a quasisteady wave. 
The latter in turn interacts with the incident wave and 
pumps the scattered wave. This mechanism is effective if the 
interference wave is approximately the same as one of the 
relaxation modes of the medium, i.e., if the difference be- 
tween the frequencies of the incident and scattered waves is 
on the order of the reciprocal of the decay time of the corre- 
sponding mode. The ratio of the oscillation period of the 
sound wave to the relaxation time determines a threshold 
value of the pump intensity, above which the scattered wave 
is amplified. 

Unlike stimulated scattering of sound by sound, this 
process is capable in principle of competing with harmonic 
generation. In other words, the typical scattering length 
could be shorter than the wave-breaking distance. 

In this paper we attempt to explain why scattering of 
this type has not been observed experimentally. We find the 
conditions under which it might become possible to detect 
this effect. 

Previous studies have ignored an important distinction 
between the propagation of sound and the propagation of 
light: The propagation of sound is accompanied by high- and 
low-frequency transport in the medium. Large-scale acous- 
tic motions are particularly The Doppler cor- 
rections to the frequencies of the quasisteady waves which 
are excited by the transport via acoustic streaming can reach 
the values of these frequencies themselves and can even ex- 
ceed them. The velocity of acoustic streaming is proportion- 
al to the pump intensity and has a highly nonuniform spatial 
distribution. As a result, the resonance condition is violated 
over the greater part of the interaction volume. Under these 
conditions the effective nonlinear growth rate is no longer a 

linear function of the pump intensity, and the scattering is 
suppressed. It follows from the calculations below that satu- 
ration of the growth rate is unavoidable under steady-state 
conditions. It would apparently be possible to detect the 
scattering under nonsteady conditions, but not just any liq- 
uid or gas would be suitable for the observation. It would 
instead be necessary to carefully select the medium. In addi- 
tion to having a viscosity and a thermal conductivity, it 
would have to have an additional slow relaxation mecha- 
nism. The temporal and spatial characteristics of the condi- 
tions would have to meet some stringent requirements. 

2. BASIC EQUATIONS 

For clarity we examine a very simple medium which 
can be described by the standard hydrodynamic equations 
and by an equation of state of a general type. It is convenient 
to put this system of equations in a form such that the left 
sides of the equations describe independent, undamped 
modes of the medium, while the right sides describe damping 
of these modes and the interaction: 

d 
- p+p, div v=-div(pv), 

d t  

Herep, P, T, S, c, v, and W = curl v, are the density, pres- 
sure, temperature, entropy per unit mass, adiabatic sound 
velocity in the medium, mass flow velocity, and vorticity. 
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The tensor a; is the viscous stress tensor, which contains 7 
and { (the shear and bulk viscosity coefficients), and x is the 
thermal conductivity. A tilde (") means the deviation of the 
parameter of the medium from its thermodynamic equilibri- 
um value, which is in turn marked by the subscript 0. Equa- 
tions (2. l )-(2.4) close series expansions of the equations of 
statep =p(P,  S ) ,  T = T(P, S) in the perturbations ? j a n d ~ .  

We consider the scattering of an intense sound wave 1, 
with frequency a, and wave vector k, = (a, /c)n,, into a 
weak sound wave 2, with a, and k, = (a, /c) n, . Here n, 
and n, are normalized vectors along the propagation direc- 
tions of waves 1 and 2, respectively. Causing the scattering is 
the quasisteady interference wave 3, with w = a, - In, and 
k, = k ,  -k, (w4f i1 ,0 , ;  Ik,I-Ik,I, Ik2I). 

In deriving a perturbation theory we make use of the 
circumstance that the damping is weak for all the waves and 
that the amplitude of the given pump is small1': xk2 ,  
vk24f11,,, IA I 2  = Ivl/cI241, wherexandvarethethermal 
diffusivity and kinematic viscosity, respectively, of the medi- 
um. 

3. NONLINEAR GEOMETRIC-ACOUSTICS EQUATIONS 

Let us derive equations for the slow evolution of waves 2 
and 3 superposed on the pump wave. These equations will be 
linear in the amplitudes of these waves. The interaction of 
waves 2 and 3 with the pump wave 1 and the damping of 
these waves are described here in the first nonvanishing or- 
der in the amplitude of the pump wave and in the dimension- 
less damping rates for these waves (these damping rates are 
expressed in units of the frequency of the pump wave). As- 
suming that the frequency of the sound changes little due to 
scattering, we ignore the distinction between a, and a,. We 
omit the corresponding subscript where we can do so with- 
out causing any confusion. 

Wave I. It is customary to express the amplitudes of the 
oscillations of the various physical quantities in the pump 
wave in terms of a dimensionless amplitude A:  

Pi=pocZA, pl=poA, v1=cAnt. (3.1) 

The velocity distribution in the wave is irrotational. The en- 
tropy perturbation is a small quantity of first order, 

where is the bulk expansion coefficient, and c, is the spe- 
cific heat (per unit mass of the medium) at constant pres- 
sure. 

Wave 2. The relations between the oscillation ampli- 
tudes of the pressure, the density, and the velocity are again 
given by (3. I ) ,  where the subscript 1 is to be replaced by 2 in 
all cases, and the amplitude A is to be replaced by a. The 
entropy and the vorticity, on the other hand, acquire some 
additional perturbations, because of the interaction of the 
pump wave 1 with the quasisteady wave 3: 

Beats of waves 1 and 2. These beats (which we will call 
wave 4) occur at the doubled frequency and with the resul- 
tant wave vector. At the accuracy level of this analysis, this 

wave is irrotational and adiabatic. The perturbations of the 
pressure, the density, and the velocity are 

where 

Beats of waves I and 3. These beats (wave 5) occur at 
the fundamental frequency f2 and with the wave vector 
k, = 2k1 - k,. Only the perturbations of the entropy and 
the vorticity in this wave will be important to the discussion 
below: 

Low-frequency, large-scale perturbations of the medi- 
um. The propagation of intense sound is accompanied by 
heating of the medium and by excitation of vortex flows. 
These effects are quadratic in the sound amplitude. The de- 
viations of the physical properties of the medium from their 
equilibrium values are determined by the geometry of the 
particular problem. The spatial and temporal variations of 
these deviations are also determined by this geometry. The 
effect of the nonuniformity of the medium which stems from 
heating the medium is unrelated to the mechanism for the 
suppression of scattering which we will be discussing below. 
That topic requires a separate study, and we intend to return 
to it in another place. The time-independent part of the ve- 
locity, v,, is related to the acoustic-streaming velocity U, 
by 7-9 

The last term on the right side of Eq. (3.11 ) arises from the 
formal averaging over the oscillation period. The velocity of 
steady-state acoustic streaming usually reaches a value on 
the order of CIA I2(kRl2, where R is a characteristic trans- 
verse dimension of the acoustic sound beam. Acoustic 
streaming is suppressed if the sound is propagating in a 
closed channel and if the amplitude of the acoustic vibra- 
tions is uniform in any cross section. The velocity of the 
suppressed acoustic streaming is CIA l 2  in order of magni- 
tude. 

Dynamic equations for the interacting waves. Using the 
values calculated above for the perturbations, we find the 
following equations to describe the slow evolution of the di- 
mensionless amplitudes of the interacting waves. For the en- 
velope of sound wave 2, we find 
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where the form factors Fand G are given by 

The linear damping rate r is given by the well known expres- 
sion 

where y = C,/C,  is the ratio of specific heats. 
The first term on the right side of Eq. (3.12) describes 

linear damping of the weak sound wave. The second and 
third terms describe the conversion of, respectively, the en- 
tropy wave and the vorticity wave into the weak wave, as a 
result of the interaction with the pump wave. Finally, the 
last two terms contribute nonlinear corrections to the dis- 
persion relation. 

On the left side of Eq. (3.12) there is a term with a 
Laplacian operating on the amplitude. This term may prove 
important in studies of diffraction and nonlinear-dispersion 
effects. 

The conversion of the entropy wave into a scattered 
sound wave results from (first) the transport of the low- 
frequency perturbation of the entropy density by the high- 
frequency streaming in the pump wave and (second) the 
modulation of the sound velocity in the quasisteady wave. In 
expression (3.13) for the form factor F, these mechanisms 
are described by respectively the first and second terms in 
square brackets. This transport effect has been ignored in 
previous studies2' (Refs. 3, 4, and 10). 

The development of the entropy wave is determined by 
the thermal conductivity in the field of the nonlinear heat 
sources and by convection in the acoustic streaming: 

where 

Vorticity is generated by nonlinear stresses, which are 
opposed by linear viscous forces. The vorticity is transported 
by the acoustic streaming: 

where 

In Eqs. (3.17) and (3.19) we have discarded some 
terms which are associated with differentiation of the oscil- 
lation amplitudes of respectively the entropy and vorticity 
with respect to the spatial coordinates. The legitimacy of this 
simplification will be discussed below. 

4. STEADY STATE 

We seek steady-state solutions of the dynamic equa- 
tions for the interacting waves. In this case, Eqs. (3.16) and 
(3.18) become algebraic equations for the quantities 3, and 
W,. Substituting them into the equation for the envelope of 
the sound wave, (3.12), we find a nonlinear dissipative cor- 
rection k,,, to the wave number k, : 

An amplification with a low threshold could be estab- 
lished locally in, for example, a very viscous liquid ( v ) ~ ) .  
In this case-which we will, for definiteness, have in mind 
below-viscous terms dominate the linear damping rate and 
the form factor D,. At the optimum value of the frequency 
detuning S = w - (k3U,), i.e., under the condition 
S z x k  :, the contribution to the damping rate from the inter- 
action with the entropy wave is on the order of rlA 12Cl/S. 
The threshold is reached as early as JA l 2  z S / n ,  and signifi- 
cant amplification can be achieved at [A 1 ,)S/fl. 

If the acoustic streaming were uniform, incorporating it 
would have only one result: an additional Doppler frequency 
shift of the scattered wave. Since the acoustic streaming is 
nonuniform, however, the detuning S depends on the coordi- 
nates, and the resonance condition can be satisfied only in a 
bounded region with a size which becomes smaller as the 
pump intensity becomes larger. Outside the resonance zone, 
the growth rate is small (on the order of the linear damping 
rate). Furthermore, the amplification gives way to an at- 
tenuation when the sign of 6 is reversed. 

In evaluating the total amplification, we restrict the 
analysis to the nonuniformity of the acoustic streaming 
along directions transverse with respect to the pump beam. 
In this appro~imation,~' the acoustic-streaming velocity is 
directed along the beam axis and is a quadratic function of 
the transverse coordinate r. The nonlinear growth rate thus 
has the profile 
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whereso is the detuning at the beam axis, and S, is the differ- 
ence between the Doppler shifts at the axis and periphery of 
the beam. 

The total amplification can reach a significant level 
only if T, is positive over the entire interaction volume. In 
turn, that situation is possible if the resonance zone is at the 
axis or periphery of the pump beam. Just where depends on 
the direction of the streaming velocity and on which wave- 
Stokes or anti-Stokes-is being amplified. If the resonance 
zone lies somewhere else, it consists of regions differing in 
the sign of the detuning and, correspondingly, in the sign of 
the growth rate. The amplification and attenuation in these 
regions cancel out. Using (4.2), we can easily estimate the 
dimensions of the resonance zone: 

The superscripts a and b refer to the cases in which the reso- 
nance zone is at the axis and boundary, respectively, of the 
beam. 

The direction of the streaming velocity and its order of 
magnitude differ for developed and suppressed acoustic 
streaming. We will accordingly discuss these cases separate- 
ly. 

Well-developed acoustic streaming is the typical form 
of large-scale acoustic streaming. The direction of the 
streaming velocity at axis of the pump beam coincides with 
the beam direction. In order of magnitude, the streaming 
velocity 

If it is the Stokes wave which is being amplified, the 
resonance zone lies at the beam axis (So = 0 ) ;  ifit is the anti- 
Stokes wave, this zone is at the beam periphery (So = S, ). 
According to (4.3), the dimensions of the resonance zones 
in these cases are, in order of magnitude, 

In each case the width of the zone is much smaller than the 
wavelength, telling us that pronounced variations arise in 
the resonance zone, and Eqs. (3.16) and (3.18) must be 
modified. We will return to this topic in the following section 
of the paper; at this point we turn to an analysis of the sup- 
pressed acoustic streaming. 

If the characteristic streaming velocity is to be reduced, 
the pump wave must propagate in a waveguide and must be 
completely uniform over the cross section of the waveguide. 
In addition, any possibility of an average mass transport 
over the cross section must be eliminated. 

For simplicity we consider the case of a planar one- 
dimensional waveguide. In this case the velocity of the 
acoustic streaming is directed opposite the pump wave and 
has a parabolic profile 

If it is the Stokes wave which is being amplified, the 
resonance zone is at the waveguide wall (superscript b),  

while if it is the anti-Stokes wave the zone is at the waveguide 
axis ( a ) .  The dimensions of the resonance zone are, in order 
of magnitude, 

Since the width of the resonance zone in this case is 
considerably larger than the wavelength, Eq. (3.12) gives a 
valid description of the evolution of the scattered wave. This 
evolution is determined by the interplay of three competing 
processes: the amplification of the wave, the escape of this 
wave from the resonance zone, and the phase distortions of 
the wave. We can look at two typical situations: the amplifi- 
cation of a probe beam and propagation of a waveguide 
mode. 

We first consider the amplification of a probe beam di- 
rected at some angle from the axis. If this angle is not too 
small, phase distortions do not have time to build up over the 
time taken by the probe beam to traverse the resonance zone. 
The overall amplification is found by integrating the local 
growth rate along the path of the probe beam. The effective 
amplification along the waveguide axis is characterized by a 
growth rate 

R 

where 8 is the angle between the direction of the probe beam 
and the axis of the waveguide. The nonlinear growth rate for 
the Stokes wave (superscript b),  averaged over the cross 
section, is, according to (4.6), (4.2), and (4.8), 

That for the anti-Stokes wave (superscript a )  is 

It can be seen from these expressions that the depend- 
ence of the effective growth rate on the pump amplitude is 
weakened by the nonuniformity of the amplification. Be- 
cause of this factor and because the amplification length can- 
not be greater than the breaking distance for the pump wave, 
which is known to be inversely proportional to the amplitude 
of this wave, the total growth rate reaches saturation at a 
point far above the threshold. Although amplification of the 
scattered wave is possible, it remains at the threshold level in 
the case cos 8 z 1. 

On the other hand, we can conclude from (4.8) that the 
growth rate increases without bound as 8-+?r/2. The reason 
is that in the case of nearly transverse propagation the probe 
beam can intersect the resonance zone repeatedly while tra- 
versing a unit length along the axis of the waveguide. Actual- 
ly, expression (4.8) breaks down at angles close to ~ / 2 .  The 
physical reason is that the minimum difference 
SO = ?r/2 - 8 cannot be smaller than the diffractive diver- 
gence angle of the beam which is built up over the amplifica- 
tion distance la,, =: (T, ) '. This minimum difference is 
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Substituting this expression for cos $in (4.8), and multiply- 
ing by the breaking distance I,, =: ( k  IA I ) - ', we find the 
maximum integral growth rate to be 

mas- 
Fin< - 1 A l- ' (<I'xL)/k) 'h,  

Using the values for the average growth rate in (4.9), we 
conclude that the total amplification can reach a level on the 
order of (Y/x) if the pump amplitude is near the threshold 
level ( lA I zxfl /c2) .  

These qualitative considerations can be supported by 
the following calculation. We assume that the probe beam is 
propagating in a direction nearly transverse to the wave- 
guide axis (along the x axis). In the term with the Laplacian 
in (3.12) we retain the second derivative of the amplitude 
with respect to z. It is a straightforward matter to find a 
solution of the resulting equation in the form 

X 

where q, is the z component of the wave vector q. When the 
fast phase dependence exp(iflx/c) is taken into account, we 
see that the solution describes a wave which is propagating 
from one wall of the waveguide toward the other. The re- 
flected wave corresponds to a change in the sign of x. The 
superposition of these waves is a waveguide mode if the fol- 
lowing quantization condition is satisfied4' : 

where the average has the same meaning as in Eq. (4.8). We 
thus find 

Under the condition k , )  (kt,, ), the result from (4.8) 
matches with (4.12). In the opposite case k, 4 (k,,, ), we 
obtain the diffraction limit, which was discussed qualitative- 
ly above. 

Expression (4.8 ) is also incorrect in the case of back- 
scattering. In this case the scattered probe beam may lie en- 
tirely in the resonance zone. Because of the pronounced non- 
uniformity of the induced wave, however, the propagation of 
the probe beam is accompanied not only by amplification of 
this beam but also by substantial phase distortions. Actually, 
the probe wave decays into independent modes (when the 
nonuniform, complex "refractive index" is taken into ac- 
count), and its amplification is limited by the maximum 
growth rate of these modes. For a mathematical description 
of the structure of these modes, we work from Eq. (3.12), in 
which the vector n, is directed along thez axis, and from the 
Laplacian we retain 6' 2/6'x2. We seek a solution of the result- 
ing equation in the semiclassical approximation: 

X 

where 

p (x) =* [2 (Qlc) ( -6k+kt.t)] ". (4.14) 

In order to satisfy the boundary conditions, we need to use a 
superposition of two linearly independent solutions (4.13), 
with different signs ofp(x) in (4.14). It is a straightforward 
matter to derive quantization conditions which determine 
the spectrum Sk: 

where n is an integer. 
We will first show how to find the effective growth rate 

in (4.8) from the quantization condition (4.15). If the 
strong inequality ISk I ) I kt,, I holds throughout the interac- 
tion volume, including the resonance zone, we can write the 
expansion 

and seek a solution of the dispersion relation (4.15) by 
successive approximations. In the first two orders we find5' 

The imaginary part Sk '2' is the same as re, from (4.8). The 
resulting expressions are valid for scattering angles 

which are so large that 

If the last inequality does not hold, expansion (4.16) is not 
valid in the resonance zone. 

We turn now to the directly opposite case: 

which corresponds to n = 0( 1 ). If the resonance zone is not 
at the center of the waveguide (it might be at the boundary of 
the waveguide), the solution of the dispersion relation 
would have to be found numerically. In order of magnitude, 
we have ISk I =: J?. If the resonance zone is instead at the cen- 
ter of the waveguide, we can find Sk asymptotically, by as- 
suming 

The integral in (4.15) can be evaluated approximately by 
breaking up the integration region into three parts: the reso- 
nance zone proper, of size L :es; the wings of the resonance 
zone (R ) 1x1 ) L :es ); and the nonresonant region, which is 
the rest of the volume. The contribution from the resonance 
zone can be calculated by multiplying the size of the zone by 
the characteristic value of the momentum: 

which is, in order of magnitude, R ( W e )  (FD, ) In the 
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nonresonant region, the momentum is p(x)  
z ( - 2flSk / c )  and the size of the resonance zone is 2R. 
Finally, in the wings of the resonance, we have6' 

The corresponding contribution to the integral (4.15) is 
therefore logarithmic: 

From the condition that the phase contributions in the wings 
and outside the resonance zone cancel out we find 

The amplitude dependence in (4.18) is seen to be even 
weaker than in (4.9b). For this reason, the growth of the 
scattered wave could hardly compete with harmonic genera- 
tion, even though amplification is in principle possible above 
the threshold. 

5. WELL-DEVELOPED ACOUSTIC STREAMING 

We consider the propagation of a test sound wave su- 
perposed on the pump wave, with well-developed acoustic 
streaming. We assume that the plane pump wave, with a 
wave number k = fl/c, is propagating along the z axis and 
that its propagation direction is the same as that of the veloc- 
ity of the acoustic streaming, U, (x).  Here, as in the preced- 
ing section of this paper, we consider the plane-geometry 
problem. We assume a coordinate dependence exp (iqz)a (x)  
for the amplitude of the oscillations of the test sound wave. 
Correspondingly, for the low-frequency entropy oscillations 
we have 

where Q = k - q. The conversion of the test sound wave into 
the entropy wave and vice versa are described by modified 
dynamic equations for the interacting waves7' : 

where K :  = k - q2 + 2ikr. This is a simplified system of 
equations; it totally ignores the low-frequency oscillations of 
the vorticity. The justification for this simplification is that 
the vorticity contribution enters the nonlinear growth rate 
and the nonlinear diffractive distortions additively and 
differs from the entropy contribution in that ,y is replaced by 
Y.  For this reason, the former is always smaller than the 
latter in accordance with the assumptions made in the pre- 
ceding section of this paper (more on this below). 

Equations (5.1 ) and (5.2) must be supplemented with 
boundary conditions, the vanishing of da(x)/dx and o (x )  
at x = & R. We seek a solution of these equations by an 
iterative method in the small amplitude A of the pump wave. 
In zeroth order we find 

+. ( x )  = ( 2 R )  - I h  { cos ( K A ) ,  v=Z 
K,=vn/R, 

sin ( K J )  , v=Z+'/,' 

where a is a dimensionless amplitude. In first order in the 
pump amplitude we have a"'(x) = 0, and we find CT "'(x) 
from Eq. (5.2) after we substitute the solution (5.3) into it. 

We seek a solution for the entropy wave in the form 

0 ( X I  =a'DsAP ( x )  +, ( 2 ) .  (5.5) 

Over the greater part of the volume we can ignore the second 
derivative with respect to x, so we can write 

9(5) =iQ/a ( I ) ,  o ( x )  =o-QU,(x). (5.6) 

This approximation breaks down near roots of the function 
w (x) . The behavior of Y (x)  near these roots is determined 
by reference equations, to whose derivation we now turn. We 
denote by x, a root of w (x)  . We define the length scale L? in 
such a way that the two terms on the left side of Eq. (5.2) are 
of the same order of magnitude at distances Ix - x, I <L?. 
We set x = x, + Y e ,  where { is a new local coordinate, if 
x, ) 9. Near x, we have w(x) = w'L?~ .  If xO = O( L?), 
then w(x) = o "  Y 2 ( f  - 5; ). After the substitution 

we find the following reference equations for the function 
W6): 

In each case we have S = ( QL? ) 2.  

In order of magnitude [see (4.4)], we have 
w'zflIA I2Rk2 and wVzRIA 12k2. We thus have 6 4 1  and 
K,L? 4 1. By virtue of the last inequality, the right sides of 
the reference equations reduce to unity. In other words, the 
function a"' (x)  varies negligibly over the interval 2. 

Solutions of the reference equations can be found 
through quadratures with the help of the solutions of the 
corresponding homogeneous equations: Airy functions [for 
( 5.8a) ] and parabolic cylinder functions [for (5.8b) 1. For 
our purposes, however, there is no need for explicit expres- 
sions for the corresponding integral representations. The 
only important point is that the functions G(6)  are regular 
near 5- = 0 and that the following asymptotic forms occur at 
6 %  1: 

G ( 5 )  G ( E )  = i  (t02-52) -'. (5.9) 

Since the parameter S is small, and the function B(6) 
regular, the behavior of this function depends only negligi- 
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bly on 6.  It follows that the order of magnitude of Y (x)  near 
the roots of this function is found from (5.8), where 
G(c)  = 0( 1 ) . Comparing 2' with the dimensions of the 
resonance zone, (4.5), we easily see that if the resonance 
zone is at the center it undergoes broadening: 

For an arbitrary position of the zone, in contrast, the zone is 
more likely to shrink: 

In each case, the height of the ~ ( x )  peaks decreases by a 
factor of (kR) '. 

Using standard perturbation theory, we find correc- 
tions to the wave amplitude and to the transverse wave num- 
ber: 

26KvKv(O'+ (6Ko)26,,o=k21 A1'FDs(ylYJl y), (5.11) 

where the matrix elements are 
R 

Expression (5.10) can be used to evaluate the diffrac- 
tion effects. From (5.1 1 ) we find the nonlinear growth rate, 
with the help of 

To evaluate the integrals in (5.12), we break the inte- 
gration region upinto parts in such a way that we can single 
out a pseudoresonance zone. The reference equations are 
still valid inside this pseudoresonance zone, but at its boun- 
daries the function G(6) goes into its asymptotic behavior. 
Outside the pseudoresonance zone, the asymptotic expres- 
sion in (5.7) is valid. 

We first note that for an arbitrary position of the pseu- 
doresonance zone the basic contribution from this zone to 
the growth rate (5.13) vanishes. The reason is that the refer- 
ence equation (5.8a) is invariant under a change in the sign 
of 6 and a simultaneous complex conjugation of the function 
B(6). Consequently, Im G(6) is an odd function of its argu- 
ment, and the contributions to the imaginary part of integral 
(5.12) from left-hand and right-hand &-neighborhoods of x, 
cancel out. The logarithmic contributions from the nonre- 
sonant regions at the boundaries of the pseudoresonance 
zone also cancel out. 

In summary, as in the case of the suppressed acoustic 
streaming, we would not expect anything in the way of a 
significant amplification unless the pseudoresonance zone 
lies at the periphery or center. Let us examine both possibili- 
ties. 

In examining the peripheral pseudoresonance zone, we 
need to take account of the boundary condition on the en- 
tropy. The effect of the boundary layer becomes important. 
We should not, on the other hand, expect that the contribu- 

tion from this boundary layer would completely cancel out 
the contribution from the pseudoresonance zone. The latter 
can be estimated in order of magnitude by multiplying the 
value Y (x, zR)  by the size of the characteristic interval 
9. As a result we find 

I:.. = gz82 A 1 'FD,. (5.14) 
R X 

Substituting in 9 from (5.8a), we find a small amplitude- 
independent growth rate I',, -- I'/(kR ) 2. The contribution 
of the nonresonant region to I', comes primarily from near 
the boundary ofthis region, where w (x )  is small [see (5.8) ] : 

Comparing this expression with (4.9a), we see that the am- 
plification in this case is far less effective, and it is not possi- 
ble to exceed the threshold. 

If the pseudoresonance zone is at the center, the esti- 
mate (5.14) remains in force. Using (5.11 ), we find 

In order to evaluate the contribution from the nonresonant 
region, we need to substitute (5.7) into (5.12) and cut off 
this integral at its lower limit, at a scale Y .  We find 

which is the same in order of magnitude as (5.15b). Com- 
paring this result with (4.9b), we see that again in this case 
the amplification against the background of the well-devel- 
oped acoustic streaming is far weaker than against the back- 
ground of the suppressed streaming. 

We conclude with a discussion of the validity of pertur- 
bation theory, i.e., with a discussion of the distortions of the 
seed sound wave. The correction a?' (x)  is given by (5. lo) ,  
in which the matrix elements can be evaluated by the method 
used for the nonlinear growth rate. The denominator in 
(5.10) is k /R in order of magnitude for modes $, (x)  which 
are approximately the same as the fundamental mode 
$,(x), provided that the scattering occurs at an angle of 
order unity ( Y  % 1 ) . For backscattering [ Y  = 0( 1 ) ] we have 
K - K: = O( 1/R 2).  The diffractive distortions are thus 
at a maximum for backscattering: Their level increases by a 
factor of kR. An estimate of this level for the case in which 
the pseudoresonance zone is at the periphery yields 

This result can be regarded as small, since the damping is 
weak. The corresponding estimate in the case of a central 
position for the pseudoresonance zone yields 
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The parameter TR here can be assumed to be small, since it is 
not possible to create a uniform pump beam with a width on 
the order of the sound attenuation length. The parameter 
expressing the extent to which the threshold is exceeded, 
raised to the power 1/4, could hardly be a very large number. 
Consequently, even in the least favorable case the growth 
rate could be found correctly in order of magnitude by per- 
turbation theory. 

6. UNSTEADY CONDITIONS 

As was shown in Secs. 4 and 5, stimulated scattering of 
sound is suppressed in the steady state, since it is superposed 
on a nonuniform acoustic streaming. Could simulated sound 
scattering be detected under time-varying conditions? We 
consider an experiment in which the pump applied to the 
medium is a short pulse. In this case it might be possible to 
avoid the suppressing effects of the acoustic streaming if the 
latter did not have time to arise during the pulse length. On 
the other hand, a necessary condition for the detection of 
stimulated sound scattering is that the rise time of this scat- 
tering be at least comparable to the length of the pump pulse. 

It is a simple matter to estimate the duration of the tran- 
sients involved in stimulated sound scattering under the as- 
sumption that the acoustic streaming is not developed and 
under the assumption that the pump pulse is long (Ref. 12, 
for example). For this purpose we need to find the response 
of Eqs. (3.12), (3.16), (3.18) to an instantaneous sound 
probe signal, applied to the exit of the scattering medium, 
and we need to determine at which instant this response 
reaches a maximum at the entrance. Considering (as before) 
the contribution only from the scattering by the entropy 
wave, we easily find 

where I?,, is the total growth rate over the entire path of the 
probe signal in the steady state, with completely suppressed 
streaming. 

The rise time of the acoustic streaming is R '/Y in order 
of magnitude.' The suppressing effect of streaming on stim- 
ulated sound scattering, however, may become substantial 
even over a much shorter time. An increase in the character- 
istic value of the Doppler deviation (k, .U, ) to a level equal 
to the width of the gain line would be sufficient to render any 
further amplification of the probe signal ineffective. In the 
two cases of well-developed and suppressed acoustic stream- 
ing, two different mechanisms operate on the stimulated 
sound scattering. Since the velocity of well-developed 
streaming is in the same direction everywhere, as the stream- 
ing develops over the entire cross section of the pump beam, 
the spectral gain line shifts away from its original position. 
As a result, the frequency of the signal which was initially 
being amplified moves outside this line. In the case of sup- 
pressed streaming, on the other hand, resonance zones form. 
These zones contract, while their profiles simultaneously be- 
come sharper. In both cases the time scale for the manifesta- 
tion of the streaming is 

It follows from the limitation T, 4 r,, that the total growth 
rate is less than 

Using the velocity estimate in (4.5 ), we find the follow- 
ing result for the case of well-developed acoustic streaming: 

n a x  ( ~ k s l c ) '  
r i n t  = I A i T / k ,  ' 

Above the threshold we have 

so again in the time-dependent case amplification would 
hardly be possible, unless measures were taken to suppress 
the acoustic streaming. 

The corresponding estimate for the case of suppressed 
streaming, found with the help of (4.9), is 

Noting that the reciprocal of the first factor on the right side 
of Eq. (6.5) is equal to the ratio of the nonlinear growth rate 
to the linear growth rate, and expressing it in terms of the 
total gain over the sound breaking distance I,,, z (k IA I ) - ', 
we finally find 

In order to achieve a significant amplification under 
time-dependent conditions, it would thus be necessary to 
create, in a wide closed channel, an intense pump beam 
which was highly uniform over its cross section. Otherwise, 
acoustic streaming would develop as a result of the nonuni- 
formity of the pump beam. In addition, the linear damping 
rate of the sound in the medium would have to be high, and 
the thermal diffusivity x and the kinematic shear viscosity Y 

would have to be comparable in magnitude. These condi- 
tions can be met if the attenuation in the medium results 
from a bulk viscosity 5, whose large value stems from the 
existence of additional relaxation mechanisms. 

7. DISCUSSION 

In summary, the detection of stimulated sound scatter- 
ing in the usual formulation of the experiment-in a broad 
pump beam-is hardly feasible. If it is possible to observe 
stimulated sound scattering in gases and liquids at all, it 
would be necessary to satisfy some stringent conditions, to 
ensure suppression of the acoustic streaming. 

We can point out two possibilities for observing stimu- 
lated scattering. The first is time-dependent scattering in the 
specially selected medium which we described in the preced- 
ing section. The second possibility (which we did not discuss 
above) is steady-state scattering, in a cylindrical waveguide, 
of a beam which is reflected from the walls at a small angle (a  
whispering-gallery effect of a sort). Such a beam could never 
escape from the resonance zone if this zone were near the 
wall, so the beam should be amplified effectively. 

Steady-state stimulated sound scattering can be de- 
scribed in terms of waveguide modes with a large azimuthal 
wave number m [the angular dependence of the properties in 
the wave is expressed in terms of cos(mp) 1. The energy of 
such a mode is concentrated in a narrow zone near the wall, 
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with a width on the order of m - 'I3R.  Although the number 
m cannot exceed kR, the ratio of the size of the resonance 
zone, L :e,, to the length scale for the localization of the 
mode is given by 

Although this quantity could of course not be very large, it 
could definitely be of order unity. The question of a nonlin- 
ear stage for this exotic stimulated sound scattering remains 
an open question, however. The reason is that when the am- 
plitude of the scattered mode becomes comparable to the 
pump wave, the sound field becomes nonuniform, and this 
effect will cause a growth of acoustic streaming. 

We wish to express our gratitude to A. M. Dykhne for 
stimulating discussions in the initial stage of this work and 
for later interest in this work. One of us (S. P.) thanks V. L. 
Pokrovskii for the discussion of Sec. 5. 

I )  We are ignoring effects which stem from pump-wave depletion as a 
result of the transfer of energy to the scattered wave. 

'' The study of stimulated scattering by acoustic streaming carried out in 
Refs. 10 and 11 needs correction. The equation for the acoustic stream- 
ing describes an inconsequential relaxation mode in both those studies. 
In Ref. 10, this follows from the dispersion relation 
o = i(< + 471/3)p, ' k  ' which was found, while in Ref. 11 it follows 
from the circumstance that the acoustic streaming was derived in one- 
dimensional hydrodynamics. 

" We have in mind the very simple case of a plane beam or a cylindrically 
symmetric beam, uniform over its cross ~ection.".~ For a more complex 
geometry, we do not know the explicit profile of the acoustic-streaming 
velocity along the coordinate, and the nonuniformity of the beam would 
intensify the acoustic streaming. 

4' The quantization condition arises when the boundary conditions-the 
vanishing of the normal component of the velocity at the wall-are 
taken into account. The conditions that the tangential components of 
the velocity and the temperature deviations vanish are satisfied, as usu- 
al, by virtue of boundary layers. The width of these layers for quasi- 

steady waves can reach several times the length of the sound waves; such 
widths are negligible in comparison with the width of the resonance 
zone for suppressed acoustic streaming. 

5'In our approximation we have cos 6'~ 1. To take the deviation from 
unity into account, we would need to retain the second derivatives with 
respect to z in Eq. (4.1 ). 

6' The semiclassical approximation is valid in this region only under the 
inequality ( W c )  TR ' S  1. 

7' The derivation of these equations is analogous to the derivation of the 
geometric-acoustic equations in Sec. 3. The calculations are simplified 
by the circumstance that there is no dependence on the transverse coor- 
dinate in the pump wave. 
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