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The interaction between nonlinear electromagnetic waves in an electron plasma with a charged 
particle dynamically stochastized by these waves is studied. It is shown that chaotization of the 
process inevitably accompanies propagation of the waves, which leads in turn to their slowing 
down due to the scattering by the stochastized group of particles. 

Propagation of solitary electromagnetic waves and dy- 
namic stochastization are being vigorously studied recently 
as two manifestations of the the essential nonlinearity of a 
physical system. This "essence" is often measured by 
whether one of these phenomena can be achieved. In a num- 
ber of cases both phenomena could exist in the same system. 

In this paper a model medium for a study of the interac- 
tion between propagating nonlinear waves and dynamical 
chaos of the charge carriers is considered. The nature of 
these nonlinear phenomena is quite different (correspond- 
ing to a complete integrability or nonintegrability of the evo- 
lution equations describing them). In our case this contra- 
diction is eliminated by the fact that a nonlinear wave is a 
macroscopic phenomenon,' while dynamic stochastization 
is implemented on the microscopic level2 in the dynamics of 
an individual conduction electron. 

Consider an ideal electron gas with the dispersion law 
given in Ref. 3. Such a dispersion law of charge carriers oc- 
curs, e.g., in a homogeneous semiconducting superlattice 

where A is the halfwidth of the miniband, d is the period of 
the superlattice whose axis is denoted by z, and m is the 
effective mass of the charge carriers. 

As it is shown in Ref. 1, in such a system the Maxwell 
equation for the z-component of the vector-potential of elec- 
tromagnetic field A, is the Sine-Gordon equation under the 
condition that the relaxation frequency v of the electrons is 
substantially smaller than the characteristic frequency of the 
field: 

the characteristic spatial scale of which is substantially long- 
er than the electron wavelength A, and the period d of the 
superlattice: 

-- c2  A F + W 2  sin ( F )  =O, 
at2 

(2) 

where F =  edA,/&, c is the speed of light in the medium, 
and Wis the characteristic frequency. 

The Sine-Gordon equation (2)  possesses several essen- 
tially nonlinear solutions. In this paper, we employ a solu- 
tion in the form of a cnoidal wave 

which determines the degree of nonlinearity of the wave. 
Here for example the electric component of the field is of the 
form 

f i x ,  vw 
E , = 2 -  

On the other hand, Bass et al.'s4 have shown that in the 
same system the charge motion is stochastized provided the 
system is located in a constant magnetic field H in the direc- 
tion perpendicular to the axis of the superlattice (for exam- 
ple, along the x axis) and a variable electromagnetic field. In 
that case, at the top of the miniband a layer of dynamically 
stochastized charges is formed for arbitrarily small ampli- 
tudes of the electromagnetic wave (there are no random 
forces in the system). This is due to the instability of the 
separatrix of Larmor oscillations relative to the dynamic sto- 
chastization under the effect of periodic forces (cf. Ref. 5).  
The width of the stochastized layer is uniquely determined 
in this case by the parameters of the electromagnetic wave.' 

As it is well known, the electrons in the region of dy- 
namic chaos are uniformly distributed in a region of the 
phase space of Larmor oscillations. This implies that the 
contribution of these carriers to the conductivity vanishes, 
since they form only nonthermal fluctuations. Their statis- 
tics is not determined by thermodynamic considerations (as 
in the case of equilibrium thermal noise), but solely by the 
parameters of the fields and the superlattice i t ~ e l f . ~  

Evidently, in the general case both groups of carriers 
ought to be taken into account. In that case, the propagation 
of an electromagnetic wave in a superlattice located in an 
external constant magnetic field leads on the microscopic 
level to a dynamic chaotization of the electronic plasma, 
while on the macroscopic level it leads to the formation of a 
cnoidal wave scattering off the electrons it has chaoticized 
itself. Both phenomena and their interactions are inevitable 
properties of the system under consideration. They arise for 
the same reason, nonlinearity of the dispersion law ( 1 ), and a 
consistent treatment of them does not involve any arbitrary 
parameters. 

GENERAL APPROACH 

To describe such an electron gas it is necessary to solve 
the system of equations which includes the kinetic equation 

( 3 )  e l + v - f + e ( ~  d  + --)%f=-- [ v H l  d f - f o  
d t  dr z 

(5) 

where v is the wave velocity, r is the coordinate along the 
direction of the propagation, and O(x( 1 is a parameter and the Maxwell equation 
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whereg(~)  is the density of states and the integration is car- 
ried over the whole miniband ( 1 ). 

Here the distribution function [at least in the T-approx- 
imation( 5) 1 is constant in the region of dynamic chaos 
(since this type of motion is ergodic5 ) 

f-dId0-dedO1Q ( e )  , (7) 

so that an investigation of Eq. (5) is reduced to the deter- 
mination of the boundaries of this region. For this purpose, it 
is sufficient to solve the corresponding system of equations 
for the characteristics which coincide with the trajectories of 
individual electrons in the real electromagnetic field, but 
without taking their scattering into account, i.e., it is suffi- 
cient to consider a conservative system with the Hamilto- 
nian (1). 

To derive the wave equation it is necessary to take into 
account that the distribution function consist of two qualita- 
tively different parts (cf. Fig. 1) : a regular part (following 
Ref. 1 we choose here the Boltzmann distribution) for 
- AGE<&* and the stochastized part (7) for &*(&<A. Then 

wherej, and j, describe the contributions to the conduction 
of the corresponding regular and stochastized groups of car- 
riers. 

Since the separatrix (in this case of the Larmor oscilla- 
tions) is unstable against dynamic stochastization5, the 
chaotized group of carriers can not be eliminated and only 
the width of the layer it occupies (region 1 in Fig. 1 ) depends 
on the specific parameters of the waves propagating in the 
medium. In the expression for E* (A, ), the explicit depen- 
dence of the boundary of the stochastic layer on the param- 
eters of the waves is identified. 

Practically, this problem reduces to a solution of the 
self-consistent system ( 5 ) ,  (8).  In this paper we confine our- 
selves to the case of a weak stochastization A - E* (A, i.e., 
although the stochastization substantially changes the na- 
ture of the electron motion, the relative volume of the region 

of phase space occupied by it is small. Then the interaction 
between the cnoidal waves and the dynamic chaos can be 
viewed in terms of stochastic perturbation We 
choose the cnoidal wave (4) as the unperturbed solution; the 
wave propagation along (x axis) or perpendicular (y axis) 
to the magnetic field. The period of such a wave is equal to 

2K ( x )  (2-v2) " T=Q-' = - 
nW I v 

which for a typical superlattice constitutes 
T - K ( x ) c / v .  10- l2  s. 

CHAOTIZATION OF THE DYNAMICS OF THE CHARGE 
CARRIERS 

To determine the region of stochastization of the dy- 
namic system with the Hamiltonian ( 1) in the external elec- 
tromagnetic field (4), 

we use the Chirikov method5 valid for weakly perturbed 
systems. A meaningful criterion for the validity of the ap- 
proximation is indicated below. 

We take the overlapping of neighboring resonances of 
unperturbed Larmor oscillations and the electromagnetic 
wave (4) as the chaotization criterion. Expanding (9) into a 
Fourier series it is easy to verify2 that the resonances of the 
dynamic system correspond to the fulfillment of the condi- 
tion 

where r is odd (even) when the wave propagates along 
(across) the magnetic field, 1 is an integer and 

is the Larmor frequency of the unperturbed oscillations 
[E,  = 0, Eq. (9) 1. 

This resonance structure is quite complex. From all the 
possible overlapping conditions one should choose the least 
restrictive. It can be shown that this choice depends on the 
ratio of the frequencies S = f l ( ~ ) / Q ( x )  at the resonance 
point (10). 

Using results of Ref. 2 it is easy to obtain the explicit 
form of the Chirikov overlap criterion. 

When the wave moves along the x axis 

HK ( x )  

nc 

When the wave moves along they axis (and for arbi- 
trary 6) FIG. 1. Electron distribution function. 
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FIG. 2. Chaotization criterion. 

The Chirikov criterion is presented graphically in Fig. 2 
where C(E) and C, are respectively the left and the right 
parts of the criteria ( 11 ) and ( 12). One can observe that the 
dynamic chaos region does exist for any values of the param- 
eters of the electromagnetic field (4). 

To obtain an analytic relationship between the location 
of the boundary of the layer E* and the parameters of the 
wave, we assume equality in ( 11 ) and ( 12). This also deter- 
mines the physical meaning of the condition that the weak- 
stochastization approximation be well-posed: A - &* ( A. 

DYNAMICSOFA NONLINEAR WAVE IN A SUPERLATTICE 

Utilizing the Boltzmann distribution in the regular re- 
gion - A<&<&* and the stochastized distribution (7) in the 
region E* \<&<A, we arrive at the wave equation ( 8 ) explicit- 
ly: 

o a 
F-c-2 --- F+ W o 2  sin F=j., 

9 t2 dr2 
e2n Ad2 Ii (A,'kT) 

WoZ=4n ---- 
A2 lo (AlkT) ' 

cj.>=o, 

A-E 328 A 
@=E,  (_)+ .ln erp -, 

kT 

where ( ) indicates an average over the realizations, Ii is the 
Bessel function of imaginary argument and Ei is the integral 
exponential function. 

Since the time required for phases of the Larmor oscilla- 
tions to become decorrelated (of the order of their period) is 
substantially smaller than the typical time scales of a cnoidal 
wave (for typical superlattices, e.g., with parameters 
d = 100 b;, rn = lop2'  G, n = 1013 ~ m - ~ ,  c =  lo9 cm/s, 
H- lo2 Hs and v ( c )  the random process j, can be viewed as 
6-correlated. The spatial-correlation radius r,,, in the case 

of a propagation along the x axis is unbounded since the 
Larmor oscillations are not connected with the motion of the 
particles along the magnetic field. In the case of propagation 
parallel to the superlattice layers, r,,, may reach the value of 
the characteristic spatial scale Tv of the wave and even ex- 
ceed it: 

n2 (An) "' 10 G 
r,,, /Tv = -- 

HK(x) HK(x) ' 

Using the statistical properties of j, (at least in the 
limiting cases of homogeneous and 8-correlated random 
fields j, ) we can easily establish the behavior of arbitrary 
nonlinear waves in the medium by using the results of statis- 
tical perturbation theory. For example, for a sufficiently dis- 
perse wave (a chain of non-overlapping solitons) its interac- 
tion with the deterministic chaos results in slowing down6s7 
without a change in the locations of the centers of gravity of 
the bumps and in radiation of a continuous spectrum7. 

The average value of the speed of propagation varies 
over small time periods 

128 A '" Z,(AlkT)exp(-AlkT) 
13 1: (AlkT) 

according to the laws (cf. Ref. 6) 

3 t 
(u>=uo - - -n2uo -  

2 tl 

for a homogeneous fields j, and 

t 
<u)=v',-ut - 

tt 

for a &correlated field. 
The dispersion of the speed varies according to 

for a homogeneous field j, and 

t 
0 m - 

2tl 

for a 6-correlated field. Part of the energy of the nonlinear 
wave is transferred to the continuous spectrum 

for a homogeneous field j, and 

for a 6-correlated field where p(A) is the spectral density, 
and its parameter A determines the radiation frequency 
Q(A) = A + 1/4 and the wave vector U(A) = 1 - 1/4A - ' 
of the electromagnetic waves. 

DISCUSSION 

As was shown above, the propagation of nonlinear elec- 
tromagnetic waves in an electromagnetic gas with a nonqua- 
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dratic dispersion law ( 1 ) is inevitably accompanied by sto- 
chastization of part of the conduction electrons. This, in 
turn, affects the dynamics of the waves: they slow down be- 
cause they scatter off the chaotized particles. From the point 
of view of the wave propagation proper, this is a new damp- 
ing mechanism. 

On the other hand, the efficiency with which these two 
qualitatively distinct, essentially nonlinear, phenomena in- 
teract does not involve any free parameters and is deter- 
mined only by the characteristics of the medium and the 
wave velocity. A group of chaotized particles always exist 
(cf. Fig. 2) so that the interaction under consideration can 
not be avoided and a large number of harmonics of an arbi- 
trary strictly non-linear wave can result in dynamical chaos 
and in a weakly nonlinear subsystem of quasiparticles. It 
would therefore seem that the interaction between the non- 
linear electromagnetic waves and the dynamical chaos they 
produce in the form of quasiparticles on the microlevel in the 
medium has a wider physical significance. 
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"To isolate in "the pure" form the interaction under consideration, we 
neglect in this paper the well-known additive contribution of the regular 
group of electrons to the random fluctuations of the stream. 

'E. M. Epshtein, Fiz. Tverd. Tela (Leningrad) 19, 3456 (1977) [Sov. 
Phys. Solid State 19, 2020 ( 1977)l. 
F. G. Bass, V. V. Konotop, and A. P. Pancheva, Zh. Eksp. Teor. Fiz. 96, 
1869 (1989) [Sov. Phys. JETP 69, 1055 (1989)l. 
' F. G. Bass, A. A. Bulgakov and A. P. Tetervov. Vysokochastotnyye svo- 
lstva poluprovodnikov so sverkhreshetkoi (High Frequency Properties of 
Semiconductors with Superlattice), Nauka, Moscow ( 1988). 

4F. G. Bass, V. V. Konotop and A. P. Pancheva, Pis'ma v Zh. Eksp. Teor 
Fiz. 48, 106 (1988) [JETP Lett. 48, 114 (1988)l. 
A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion, 
Springer, New York 1983. (Russ. trans. Mir, Moscow, 1984). 
F. G. Bass, V. V. Konotop, and Yu. A. Sinitsyn, Zh. Eksp. Teor. Fiz. 88, 
541 (1985) [Sov. Phys. JETP, 61, 318 (1985)l. 
' Yu. S. Kivshar', V. V. Konotop and Yu. A. Sinitsyn, Izv. Vyssh. Uchebn. 
Zaved. Radiofiz. 30,374 ( 1987). 

Translated by Samuel Kotz 

F. G. Bass and A. D. Pauchekha 958 


