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The effect which stationary electric and magnetic fields coupling the excited states of the working 
transitions of an atomic subsystem can have on resonant four-wave mixing is investigated. The 
atom-field density matrix formalism developed for resonant four-wave mixing by Holm, Sargent 
etal. [Phys.Rev.A31,3112 (1985);31,3124 (1985)l isemployed.Thetheorydevelopedinthis 
work is extended to the case of interaction ofphotons with different polarizations. It is shown that 
new combination tones and the corresponding spontaneous sources required for a quantum 
description of four-wave mixing then arise. The nonlinear Faraday effect for the pump wave is 
investigated in the case of a magnetic field acting on the atomic subsystem. 

1. INTRODUCTION 

Resonant four-wave mixing (FWM) has been intensely 
studied both theoretically and experimentally (see, e.g., Ref. 
1 ) .  In the description of FWM processes it is possible to 
distinguish two main approaches: the semiclassical treat- 
ment, in which the electromagnetic field is described classi- 
cally and the atomic subsystem is described quantum-me- 
chanically, and a completely quantum-mechanical 
description. The simplest model of the atomic subsystem is a 
gas of two-level atoms. FWM was considered in Ref. 2 using 
this model for arbitrary intensities of the pump wave, in the 
linear approximation with respect to the field amplitudes of 
the modes symmetrically detuned from it and implementing 
the semiclassical description. A quantum theory in the for- 
malism of the atom-photon density matrix developed by 
Scully and Lamb3 was constructed by Holm, Sargent et 
An analogous description was developed in Ref. 6 using Ha- 
ken's method5 and the apparatus of Keldysh's graphical 
technique for nonequilibrium Green's functions7 in Ref. 8. 
The main difference between the quantum and semiclassical 
approaches has to do with the presence of spontaneous 
sources in the equations for the fields in the quantum treat- 
ment, which, naturally, are absent in the classical descrip- 
tion. Note that the theory developed in Refs. 4 and 6 does not 
take account of reabsorption of radiation and is applicable 
mainly for optically thin media.8 

The main parameters in resonant FWM are the intensi- 
ty of the pump wave and the detuning of its frequency from 
resonance, which determine the kinetic coefficients in the 
equations for the conjugate modes.2s4 The introduction of 
additional parameters would make it possible to more effec- 
tively influence the FWM process. This is important, for 
example, in problems of squeezed states of magnetic  field^,^ 
where FWM is a very efficient method.6310x1' One means of 
achieving such a parametric effect is to take advantage of the 
influence stationary electric and magnetic fields have on 
FWM processes, which is the subject of this paper. This 
problem is also of independent interest for questions asso- 
ciated, for example, with the propagation of intense laser 
radiation in a plasma, etc. 

In the description of the atomic subsystem we will re- 
strict ourselves to the three-level approximation, where the 
two upper levels are coupled by the stationary electric or 

magnetic field (in the latter case one considers transitions of 
the form J = 0- J = 1, with the magnetic field directed par- 
allel to the direction of propagation of the radiation). We 
will treat the monochromatic pump wave, which is allowed 
to be of arbitrary intensity, classically, and we will assume 
the side modes to be quantized. 

2. BASIC EQUATIONS 

In the present work we will make use of the description 
of the atom-photon density matrix2 developed for FWM in 
Refs. 4. Some aspects of the problem will be analyzed by 
means of the Keldysh technique for nonequilibrium Green's 
 function^.'.^ We represent the Hamiltonian of the system 
under consideration in the form 

where the first two terms are the Hamiltonian of the unper- 
turbed atomic subsystem and of the free radiation field, and 
Zi is the interaction Hamiltonian of the atoms with the 
pump wave and the stationary electric (or magnetic) field. 
The last term in Eq. ( 1 ) describes the interaction between 
the quantized electromagnetic field and the atomic subsys- 
tem. The equation of motion for the atom-photon density 
matrix has the form 

where T(pa, ) is an operator which describes relaxation pro- 
cesses. Carrying out the convolution in Eq. (2)  over the pho- 
ton variables, we obtain an equation for the atomic density 
matrix p, and, conversely, taking the trace over the atomic 
states, we have an equation for the photon component of the 
density matrix, P. Following Refs. 4, we represent the atom- 
photon density matrix in factored form, pap = Pp. Neglect- 
ing effects associated with radiation capture, and also with 
saturation of the atomic subsystem by the quantized fields 
(naturally assuming therefore that they are small), we have 
the following equation for the atomic density matrix: 

Assuming that the amplitudes of all the fields vary only 
slightly during the characteristic lifetime of the atomic sub- 
system, we can find the stationary solution of Eq. ( 3 )  and 
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thereupon obtain an equation for the slowly varying photon 
density operator P. This equation depends on the specific 
structure of the Hamiltonian Z. For example, for the sin- 
gle-mode model of the laser, the equation for the density 
operator of the radiation has the form', 

where a + and a are the photon creation and annihilation 
operators. The coefficients A and C describe, respectively, 
the arrival (due to linear amplification) and departure of 
photons (due to radiation losses in the cavity). Expressions 
for the photon occupation numbers are given by the relation 
n = (a + UP),  and from Eq. (4)  we find the equations of 
motion for the photon occupation numbers: n = (a  +UP ). 

3. FOUR-WAVE MIXING IN AN ELECTRIC FIELD 

The atomic subsystem is depicted schematically in Fig. 
1. The two upper close-lying levels (2 and 3) are coupled by 
the stationary electric field with field vector E,, (it is also 
possible to have collisional mixing between them with fre- 
quency v, ) . For definiteness we assume that the field vectors 
of the stationary electric field and the pump wave are paral- 
lel, although in the present problem the final results do not 
depend on the angle between them. The pump wave induces 
transitions between the first and second levels. In the case 
when the atomic subsystem is open ( T, #O), the quantity qj 
describes the rate of collisional pumping to the jth level. Em- 
ploying the rotating-wave approximation, we represent the 
Hamiltonians Pi and &PC in the form 

where EL ( t )  = EL exp(iwL t )  is the field vector of the pump 
wave, aj + is the creation operator of the photons with wave 
vector kj and frequency wj,,ujk are the matrix elements of the 
dipole moment. is the spatial mode factor, g is a coupling 

FIG. 1. Diagram of the levels of the atomic subsystem and transitions 
between them for FWM in a stationary electric field. 

constant which we assume to be identical for both modes 
(we assume that the wave synchronism conditions 
k, + k, = 2kL, a, + w, = 2w, also apply for them), and 
R jl are the projection operators onto the states j and k. 
These latter are a generalization of the Pauli matrices o + 

for two-level systems and in the present case have the form of 
3 x 3 matrices. Using these operators, we write the compo- 
nents of the atomic density matrix as follows: 

Let p describe the column of slowly varying compo- 
nents of the density matrix of the atomic subsystem (i.e., we 
distinguish beforehand the rapidly oscillating factors pro- 
portional to w, ) : 

Then Eq. ( 3 ) has the form 

where qT = (q, ,q2 ,q3 ,0,0,0,0,0,0), and the matrix L has the 
form 

-ir1 i y  
0 - iy2  
0 iv, 

-V V 
v* -v* 
0 E 
0 -E* 
0 0 
0 0 

0 -v* 
iv, V* 

-iy3 0 

0 An* 
0 0 

-E 0 
E* 0 
0 -E* 
0 0 

0 0 0 0  
E* -E 0 0 
-E* E 0 0 
0 0 - E O  
0 0 O E *  

A,,* iv, 0 -V 
i v ,  -A,, V* 0 
0 v A,,* o 

-V* 0 0 -A13 

where 

V = ~ , ~ E L / ~ ,  E = p a z E s t I f i Y  7 2 = r 2 + ' I + v c l  

-r +Y,, ~ , 2 = ~ L - ~ z , + i y I z r  A ~ ~ = O L - - O J I + ~ Y * ~ ~  
3-  3  

Aa2=osz+iysz,  Y j k =  ( r j + y k )  12, a j k =  ( ~ j - ~ k ) l ~ l  

E, is the eigenenergy of thejth state of the atom, and y is the 
rate of radiative relaxation of the transition 2 + 1. In the case 
when the atomic subsystem is closed (qj = r, = 0) Eq. (6) 
must be supplemented by the condition Tr  p = 1. 

For the photon density operator in second-order per- 
turbation theory in the coupling constant g we have the fol- 
lowing eq~a t ion :~  

For the photon occupation numbers n, and combination 
tone operators ( a ,  a, ) = (a ,  a, P ) we have equations which 
are identical in structure with the equations of Refs. 4: 
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The coefficient kc describes the intracavity losses (for the 
case of intracavity FWM). For the coefficients A,, B,, C,, 
Dl, we have the following expressions: 

where pJk is the stationary solution of system (6); 
m,, = det MJ,/det M, and MJ, is the minor of the matrix 
M = L + YE (here E is the identity matrix), v = W ,  - w ~ ,  
and N is the number of atoms. We obtain the corresponding 
coefficients with index 2 from these expressions by making 
the substitution v+ - Y and taking the complex conjugate. 
The quantity A, +A 7 ,  which is the spontaneous source in 
the equations for the photon occupation number n , ,  de- 
scribes the resonant fluorescence spectrum, which was first 
obtained for an open two-level system by Rautian and So- 
bel'man,I3 and for a two-level atom by MollowI4 (these re- 
sults are contained in our expressions if one sets E,, and v, 
equal to zero). Analogously, the inhomogeneous term in Eq. 
(9b) C, + C2 is the "spontaneous" source for the quantum 
combination tone (a,a, ). As was shown in Ref. 10, this 
quantity determines the squeezing of the fields in resonant 
FWM. The coefficients B, -Al + C.C. and C, - D l  de- 
scribe absorption (amplification) of the photons and four- 
wave mode coupling, respectively. 

The resonant fluorescence spectrum of two-level sys- 
tems in a strong electromagnetic field is a triplet of Lorent- 
z i a n ~ , ' ~ " ~  in which the side components are shifted relative 
to the central component by the generalized Rabi frequency 
a, = [ (w, - ) 2  + 4V2]  The effect of a stationary 
electric field on the resonant fluorescence spectrum (more 
precisely, its unshifted component) in the three-level system 
which we are considering is shown in Fig. 2. For comparison 
with the spectra of a two-level atom, we make the lower level 
in the calculations for Figs. 2 and 4 the fundamental: 
vc = r2 = 0, r3 = y, q2 = 9, = 0, q, = i y p 3 .  

It is well known that the resonant fluorescence spec- 
trum can be interpreted as resulting from transitions 
between the quasi-energy levels that are formed as a result of 
the action of the electromagnetic wave on the atomic subsys- 
tem (states of the "dressed" atom). The quasi-energy spec- 
trum in the system under consideration here can be easily 
obtained from expressions for the poles of the retarded 
Green's functions. Implementing the approach developed in 
Ref. 8 using the Keldysh graphical technique, we obtain the 
following expressions for the retarded Green's functions: 

FIG. 2. Effect of a stationary electric field on the resonant fluorescence 
spectrum for V / y  = 5, o, = w,, , and E / y  = 1 (solid curve), 2 (dashed 
curve), and 3 (dot-dashed curve). 

where 

For V, E )  A,, , A,, it is possible to find an approximate 
solution of the cubic equation 

which describes the quasi-energy spectrum of the given sys- 
tem: 

W2=IV12+lE12. (12) 

Using the relations ( 12), it is possible to represent ( 1 1 ) in 
the form 

GILT ( E )  = - 

1 (21'"'' ; IE12 G 3 a ' ( ~ + O L )  = -- l E l '  ) 
2W2 E - E "  E - & -  E - F +  

The quasi-energies of the atomic subsystem are repre- 
sented schematically in Fig. 3. From expressions (13) and 
Fig. 3 it can be seen that as the strength of the stationary 
electric field grows the quasi-energy spectrum is redistribut- 
ed and additional lines appear in the resonant fluorescence 
spectrum (see Fig. 2). 

The photon absorption (gain) coefficient varies signifi- 
cantly. Along with the appearance of new lines in the absorp- 
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FIG. 5. Diagram of the levels of the atomic subsystem and transitions 
between them for FWM in a stationary magnetic field. 

FIG. 3. Diagram of the quasi-energy levels in strong fields. The "intensi- 
ty" of the middle sublevel of the second level is negligibly small. 

tion (gain) profile, the action of a stationary electric field 
results in the removal of saturation between the first and 
second levels. This causes the photon amplification region to 
disappear in strong fields (see Fig. 4).  Other kinetic coeffi- 
cients in Eqs. (9)  also vary significantly. 

Note that the situation of a three-level system in which 
the parametric equation is brought into being by an intense 
electromagnetic wave resonant with the transition between 
the second and third levels is similar to the parametric effect 
brought about by a stationary electric field, which we are 
considering here. 

Note also that Eq. (9a) can be used in plasma media to 
describe the transfer of radiation resonant with the lines 
schematically depicted in Fig. 1.15 In this case the photons 
with wave vector k, (different from k, ) describe the reab- 
sorption of radiation, and we assume that [ E L  12-nL < 1 .  
[The term in Eq. (9a) corresponding to FWM here, of 
course, is absent.] Since the transfer equation should be lin- 
ear in the occupation numbers (by virtue of their smallness), 
it is necessary to set Vequal to zero in the expressions for the 
absorption coefficients ( B ,  - A ,  + c.c.), and it is also nec- 
essary to limit the expression for the spontaneous source to 
linear accuracy in 1 V 1 with the further substitution 

FIG. 4. Coefficient of absorption of the quantized radiation in the pres- 
ence of a strong laser field and a strong stationary electric field for 
V/y = 5,0, =o , , , andE/y  = 1 (curve1),3 ( c u ~ e 2 ) , 5  (curve3); k,is 
the unsaturated absorption coefficient in the line center. 

I V 1 2 - ~ n , d  k,. It is then necessary in these kinetic coeffi- 
cients to average over the field strength E,, , which plays the 
role of the instantaneous value of the Stark micro field^.'^ 
The system of equations (9a) and (7) thus obtained is 
closed, taking account, in particular, of reabsorption of radi- 
ation. The expressions for the spontaneous emission in the 
rescattering function coincide in this case with those ob- 
tained in Ref. 15. 

4. FOUR-WAVE MIXING IN A STATIONARY MAGNETIC FIELD 

As the atomic subsystem in this case we use the model of 
a two-level atom with J = 0 in the ground state and J = 1 for 
the upper level. The quantization axis is taken to be aligned 
with the magnetic field vector H. An electromagnetic field 
propagates in this direction, so transitions in the atomic sub- 
system take place only for Am, = 1 (see Fig. 5) and the 
system is in fact three-level. It is assumed that relaxation in 
the atoms is of a radiative nature. 

An important difference between the FWM processes 
in a stationary magnetic field and FWM processes in a sta- 
tionary electric field considered here has to do with the more 
complicated polarization structure of the radiation in the 
former case: in this case there are two types of polarization 
(left and right) for all types of quanta, in contrast with one 
type in the latter case. This means that FWM can now take 
place via two channels 

(here u+u l )  where u denotes the type of polarization: left 
( - ) or right ( + ); it is natural to assume that 
w ,  + w ,  = w,.  Counterpropagating FWM in an analogous 
system was studied in Ref. 16. There the semiclassical de- 
scription was used, and FWM was considered only in one 
channel, for photons with identical polarization. 

The interaction Hamiltonians of the considered system 
in the rotating wave approximation have the form 

The notation used here is similar to that used in Eqs. (5 ) . In 
particular, EL, ( t )  = EL, aexp ( iw,  t )  is the electric field vec- 
tor of the pump wave with polarization a ,  aju is the creation 
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operator of a photon with wave vector k,,, and pm is the Separating out the rapidly oscillating factors 
magnetic moment. -exp ( f iw, t ) ,  for the components of the atomic density 

In what follows to simplify the description of the atomic matrix we have 
states we will use the following notational conventions: 
120) = l a ) ,  I 1)  = 10). For the projection operators the fol- ip=Yp, (15) 
lowing commutation relations are fulfilled: 

[R,, R+O+I=~R+~+, [R3, Ro+-I = -2Ro+-, where 

[Rz, R+o+l= -R+o+, [Rz, Ro+-I =Ro+-. 

The components of the atomic density matrix are written as pT=(p++, p--, poo, PO+, @+or PO-1 P-or P+-7 P - + I 7  

and the matrix Y has the form 

where 

and w, is the frequency of the transition 1-2.  Since the 
atomic subsystem is closed, the total probability is con- 
served, and the system ( 15), which is linearly independent, 
must be supplemented by the condition Tr p = 1. 

The equation of motion for the photon density matrix in 
the given case has tlre form 

This equation has a significantly more complicated structure 
than Eq. (8). This is because FWM, as was noted above, can 
occur between photons of different polarization. Therefore 
now along with averages of the form (a,;a,,) = n,, (the 
occupation number of photons with wave vector k,,) and 
(a,,a,-, ) ( j#j ' ) ,  which determined the photon dynamics in 
the previous case, there appear new correlators ( a s  a,, ) , 
(aj,af,. ) ( u # u l ) .  The equations of motion for the occupa- 
tion numbers and the combination tone operators in the 
present case have the form 

where 
aja=Ajajo-Bjoj.-kp, pja=Ajojc*-Bjajo,, 
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and it is assumed that j#jl and u+u1. The coefficients A, B, 
C, D are determined as follows: 

where p,, is the stationary solution of system (16), 
z,, = det Zjk/det Z, and Z,, is the minor of the matrix 
Z = Y + YE (here E is the identity matrix), and 
Y = 0, - w L .  We obtain the corresponding coefficients for 
j = 1 and a = ( - ) by making the substitution 51- - 51, 
V-7, and for j = 2 and a = ( + ), by making the substitu- 
tion Y - - Y followed by taking the complex conjugate. To 
obtain the coefficients forj = 2 and u = ( - ), it is necessary 
to make both of these substitutions. 

The coefficients A and C are free terms in Eqs. (18); 
they have the meaning of spontaneous sources for the pho- 
ton occupation numbers and quantum combination tones. 
Since the lower level is the ground state in the atomic subsys- 
tem under consideration here, these coefficients have two 
components in their own spectrum: an unshifted (or elastic) 
component, which is proportional to S(Y),  and a shifted (in- 
elastic) component. The unshifted component is especially 
important in weak electromagnetic fields ( V 4  y). Its contri- 
bution here is decisive, and in this case FWM has for the 
most part a degenerate character ( Y  = 0). We separate out 
the unshifted component in the spectrum of the spontaneous 
sources: 

A zd =2~cNg~p~,p,~~6 (v), 

C$ =2nNg2poopoa~8 (v), 

where 

and A 'I and A '""I are the elastic and inelastic components of 
the quantity A = A " + A '"'I (here u and a' may coincide). 

In strong electromagnetic fields ( V 9  y) the unshifted 
component, as a result of saturation, turns out to be small 
and the main contribution to the spectra of the spontaneous 
sources comes from the inelastic component. 

The magnetic field has a substantial effect on the kinetic 
coefficients [see Eq. ( 19) ] which determine the equations of 
motion of the photons ( 18). Figure 6 shows the dependence 
on the magnitude of the magnetic field of the inelastic com- 
ponents of the resonant fluorescence spectrum for the pho- 
tons with left polarization (A + + ) and the "spontaneous" 
source (A + - ) of the combination tone (a a - ). For sim- 
plicity (and in order to compare with the spectra of the two- 
level atom), we set V =  'and w, = w, in the calculations. 

We calculate, as in the previous case, the quasi-energy 
spectrum of the atomic subsystem. For the retarded Green's 
functions G j r  in the energy representation we have the fol- 
lowing expressions: 

where 

For V, 7, 51, A * we find an approximate solution of 
the cubic equation:" 

where 

Utilizing expressions (2 1 ) , we represent expressions 
(20) in the form 

J 
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FIG. 6. Resonant fluorescence spectra for photons 
with left polarization (a)  and for the "spontaneous" 
source (A + - ) of the combination tone (a a - ) 
(b)  for V / y  = 3 and R/y = 1 (solid curve), 3 
(dashed curve), and 6 (dot-dashed curve). 
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It is clear from these results that the presence of a magnetic 
field leads, first of all, to the appearance of five lines in the 
resonant fluorescence spectrum (in general, seven ) , and, 
second, to an asymmetric shape of the radiation spectrum 
(for prescribed polarization) even for V = 7 (see Fig. 6a). 

5. NONLINEAR FARADAY EFFECT 

In our consideration of FWM in a magnetic field, we 
have not allowed for the dispersion properties of the medi- 
um, which can have a substantial effect on the propagation 
of the radiation, for example, in the case of waves with linear 
polarization. This phenomenon in weak electromagnetic 
fields ( V< y) has been well studied.I9 In recent years the 
nonlinear Faraday effect-the rotation of the polarization 
plane of intensely resonant radiation ( V) y)  has been stud- 
ied both theoretically and e ~ p e r i m e n t a l l y . ~ ~ , ~ ~  

Let us consider the influence of the dispersion proper- 
ties of the medium on the propagation of the pump wave and 
of electromagnetic probe signals with linear polarization. 
The rotation angle of the polarization plane (RAPP) of the 
pump wave ( V = V) is given by the expression 

where I is the linear dimension of the medium, 
nu = 1 + 2n-N Re (,u,p,,/E,, ) is the index of refraction 
for a wave with polarization a. Using the stationary solution 
of Eq. ( 15), we obtain an expression for p, valid for arbitrary 
values of the parameter V/y: 

where 

Here V2 = I V 1 2 .  A similar result (albeit in still more cum- 
bersome form) was obtained in Ref. 2 1. 

In Fig. 7 it is clear that the shape of the RAPP line 
strongly depends on the parameter V/y ( R  % y). For V) R 

FIG. 7. Dependence of the rotation angle of the polarization plane of a 
strong electromagnetic wave on its resonance detuning, calculated ac- 
cording to formula (25) for a = 10, R/y = 5, and V/y = 5 (curve I ) ,  7 
(curve 21, and 10 (curve 3). 

the RAPP becomes a sign-invariant quantity, while for 
V>2R it acquires a quasi-Lorentzian shape (as a function of 
the magnitude of the detuning of the radiation from reso- 
nance). Figure 8 shows the dependence of the RAPP of in- 
tense electromagnetic radiation on the parameter R/V at 
exact resonance (w, = w, ). In these results the shape of the 
RAPP line is seen to be in qualitative agreement with the 
experimental results of Ref. 20. 

However, there is a substantial difference in the magni- 
tude of the angle q, shown in Fig. 7 from the results of Ref. 
20, consisting of the opposite dependence of p on V: whereas 
the RAPP decreases in Fig. 7 as the intensity of the radiation 
grows, in the results of Ref. 20, on the contrary, it increases. 
The dependence indicated in Fig. 7 is due to saturation of the 
atomic subsystem. In the experiment of Buevich et the 
thermal motion of the atoms is a significant factor: the 
Doppler linewidth satisfies Am, ) y and Aw, -R. There- 
fore an increase of the intensity of the radiation leads to two 
effects (besides the nonlinear interference effect, which al- 

FIG. 8. Rotation angle of the polarization plane of an electromagnetic 
wave in exact resonance as a function of the parameter R/V for V/y = 5, 
a = 10. 
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ters the shape of the RAPP line of the radiation): saturation 
of the atomic subsystem and increase in the number of reso- 
nant particles (effectively interacting with the radiation) 
due to field broadening. Since the decrease of p as a conse- 
quence of saturation has a power-law dependence on V, 
whereas the V-dependence of its increase due to growth of 
the number of resonant particles is exponential, naturally 
the overall effect is an increase of the absolute value of p. 

Let us now consider in this same statement of the prob- 
lem the influence of dispersion on the propagation of the 
linearly polarized electromagnetic probe signal. In order to 
avoid FWM with quanta of a different frequency, we assume 
that the probe signal propagates counter to the strong field. 
Here the symmetry of the system and the quantization axis is 
not changed, and to describe the polarizability of the medi- 
um at the frequency of the probe field we may use the first 
four of Eqs. ( 19). Treating the probe signal as a combination 
of waves of both left and right polarization, we define the 
field strength, following Ref. 4, as (aj,)  = Ej, = (aj,,P ). 
Dropping the index j and making use of Eq. ( 17), we have 
the following Maxwell's equations: 

The dispersion equations in this case have the form 

where E + = 1 + 471-a + . For the wave vectors it is neces- 
sary, in order to satisfy the condition of wave synchronism, 
that we have k . - k - = k, + - k, - . We seek the solu- 
tion of Eq. (27) in the form 

An approximate solution of Eq. (27) linear in a and fl has 
the form 

x,,,= (a++a-+Ak*5)/2, 
(28) 

g=  ( (a+-a--Ak)Z+p+f,-)'h, 

where E = - 2?riwa/c. The solution of Eq. (27) with the 
boundary conditions E * (0) = E +, and IE +, I = I E - , 1 
= 2 - 'l2E0 has the form 

,=j -- 
'+' [ e i x , z + e i x 2 z  + + a- -Ak+g+  E+ (z)= - ( e i + z - e i ~ 2 z , ]  , 
2 f 

Combining these expressions, we find the field vector of the 
total field: 

a---a+-Ak+f,--fi+ Axz ?I + X  
+ e, sin - ]exp [ i  (-0 + - 2 ) z  1, 

r, 2 C 2 

where Ax = xl - x2 and ex and e,, are the unit polarization 
vectors. 

It is clear from expression (30) that the polarization 
structure of the probe signal is changed: it is now elliptically 
polarized. This is because the FWM coupling constant is 
large, P-a,  and also because the kinetic coefficients are 
asymmetric, an effect which is caused by the magnetic field 
even for V = 7. 

In conclusion we note that for FWM in a stationary 
magnetic field we did not take collisions of the atoms with 
each other into account, nor with the buffer gas (if there is 
one in the system). Formally, as in the previous case for 
FWM in a stationary electric field (i.e., phenomenologically 
speaking), taking interactions into account is not a source of 
difficulty. However, by virtue of the idealized nature of the 
given problem, the value of this procedure is not great. As 
should be clear, it would be necessary to do this in conjunc- 
tion with another problem-the consideration of real multi- 
level atomic subsystems, which is a nontrivial task and re- 
quires separate attention. Besides, in the present work we 
have also not taken account of the thermal motion of the 
atoms, which, for example, as was noted above, can have a 
considerable effect on the magnitude of the rotation angle of 
the polarization plane of the pump wave. In Ref. 8 it was 
shown that the thermal motion of the atoms can strongly 
modify not only the absolute values of the kinetic coeffi- 
cients, but also the line shapes. Therefore this simple (from a 
physical point of view) kinematic effect is of significant in- 
terest and requires additional attention. 

In conclusion the author expresses his deep apprecia- 
tion to A. N. Starostin for his support in this work and help- 
ful discussions. 
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present work. 
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