
Temperature of A atoms during two-frequency cooling 
Yu. V. Rozhdestvenskiiand N. N. Yakobson 

S. I. Vavilov State Optics Institute 
(Submitted 12 December 1990) 
Zh. Eksp. Teor. Fiz. 99,1679-1683 (June 199 1 ) 

The temperature dependence is derived for a mechanism of two-frequency cooling for A atoms 
having nearly zero velocities. The result agrees qualitatively with the temperature dependence 
observed experimentally. The lowest temperature which can be attained by two-frequency 
cooling is calculated. 

Several cooling mechanisms which have recently been 
discussed in the literature might be capable in principle of 
cooling atoms to a temperature well below the one-photon 
limit To = fiy/2k, : 10 - 4  K (Refs. 1-3). For example, cool- 
ing schemes based on the interaction of three-level Vatoms 
and A atoms with standing light waves were studied by Dali- 
bard and Cohen-Tannoudju' and Chang et al., Minogin et 
a/., have studied a two-frequency mechanism for cooling A 
atoms which is based on coherent trapping of population. 

The appearance of these studies stimulated some very 
interesting  experiment^,^ in which the temperatures of the 
cooled atoms were found to be lower than To by a factor of 
nearly 6. An important part of these experiments was a study 
of the temperature dependence of the cold atoms near zero 
velocity associated with changes in the frequency detuning 
of the light waves and in the power of the laser light. The 
temperature dependence seen experimentally is sharply dif- 
ferent from the corresponding prediction based on the well- 
studied model of a two-level atom.5 

A derivation of the corresponding temperature depend- 
ence for the cooling mechanisms proposed in Refs. 1-3 and a 
comparison of the results with experimental data should nat- 
urally provide evidence in favor of one or another of the 
atomic cooling models for describing the experiments of Ref. 
4. 

In the present paper we wish to point out that it is possi- 
ble to derive a temperature dependence which agrees qual- 
itatively with that observed in the experiments by Lett et 

by using a simple model of the interaction of a three- 
level A atom with the field of oppositely directed waves (this 
is a two-frequency cooling mechanism). The resulting 
expression for the temperature is distinguished in a favor- 
able way from the corresponding expression of Ref. 1 in that 
in its very derivation we see the limitations on the laser pow- 
er and the frequency detunings which rule out the attain- 
ment of arbitrarily low temperatures for the cold atoms as 
the laser power is reduced or as the frequency detuning is 
increased. 

To solve this problem, we specify that the optical field 
with which the A atom interacts consists of two oppositely 
directed plane waves with frequencies w m  (m = 1, 2) : 

where em are unit polarization vectors, I k, I = w,  /c are the 
wave vectors, Em are the amplitudes of the light waves, and z 
is the spatial coordinate. 

We assume that the upper level 13) in the A atom decays 
to the lower levels 11) and 12) with respective probabilities 
y1 and y2 (y, # y2 ) (Fig. 1). The transitions 1 1)-13) and 

12)-13) are electric dipole transitions with a dipole matrix 
element d,,, , and the transition ( 1)-12) is dipole-forbidden. 
We also assume that the relaxation of the coherence between 
levels I 1) and 12), i.e., y, , is n ~ n z e r o . ~  For all cases of practi- 
cal importance it is smaller than the widths of the optical 
transitions: y, ( y,,, . Under the condition that the frequency 
detunings are equal, 

where 

we then find an expression for the radiation-pressure force 
acting on the A atom and an expression for the components 
of the momentum diffusion t e n ~ o r . ~  For this purpose we 
solve an equation for the density matrix e l e m e n t ~ p ~  of the A 
atom in the steady state, and we find the population p,, of 
the upper level (3  ) : 

where 
~=4(ku)~+2g~y, /y .  

~=[4(kv)~8Qob(kv)3+4(Q,2+y'+g2) (kv)' 

-4gPQokv+2g2( (y3iy) QOZ+2g2) I-', 
b=(ri-y2)ly. y=yi+ y2. 

Here g = dm Em /2A is the Rabi frequency, which is the same 
for both transitions of the A atom,'' v is the projection of the 
atomic velocity onto the z axis, k z k ,  (m = 1, 2),  and we 
are assuming y, /y 4 1. In the case of a three-level A atom, 
the steady-state level population p,, unambiguously deter- 

FIG. 1 .  Interaction of a A atom with the field of oppositely directed waves 
asin ( 1 ) .  
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mines, at times t% y - ', both the radiation-pressure force F,, 

and the components of the momentum diffusion tensor, 

where small nonadiabatic corrections for the statistics of the 
reradiated photons are being i g n ~ r e d . ~  In the derivation of 
(3)-(5) it was also assumed that the following condition 
holds on the intensities of the light waves: 

According to Ref. 6, this inequality, along with (2), deter- 
mines the necessary condition for the occurrence of coherent 
population trapping. 

Again, we wish to stress that condition (6) is of funda- 
mental importance, since it specifies the light intensities at 
which coherent trapping is even possible. If condition (6) 
does not hold, coherent trapping does not occur in the A 
system, and the two-frequency cooling mechanism which we 
are discussing here correspondingly does not operate. 

According to Ref. 5, expressions (4) and (5) for the 
radiation-pressure force and for the velocity diffusion com- 
pletely determine the behavior of the A atom in field ( 1 ). 
Correspondingly, the temperature of the atoms near zero 
velocity (vzO) can be estimated by the method of Ref. 5: 

where k,  is the Boltzmann constant, 9, is thez component 
of the velocity-diffusion tensor ( 5 ) ,  calculated for zero ve- 
locity ( v z  O), and /3 is a dynamic friction coefficient. This 
coefficient arises from an expansion of the force (4) near a 
velocity v z 0: 

According to (7) and (8), the temperature of the cold atoms 
near v z O  is then 

where, as before, To = +iy/2kB. 
Expression (9) gives the temperature of the A atoms 

interacting with field ( 1 ) near zero velocity as a function of 
both the frequency detuning and the laser power. It can be 
seen in particular from (9) that the temperature of the atoms 
can become arbitrarily high as the detuning no decreases. 
This situation corresponds to a vanishing value of the dy- 
namic friction coefficient /3 in (8) under the condition 
Iflo I = 0. In other words, only diffusive heating of the A 
atoms occurs in this case, and the force in (4) does not cool 
atoms whose velocities are close to zero.6 Cooling of the 
atoms can occur only at detunings 0, < 0 in the case b > 0 or 
no >Oin the case b<0.  

If the detuning I Ro I is large, the atomic temperature in 
(8) increases linearly, as it would for a two-level atom.5 At 
the same time, there is a fairly broad range of I no I in which 

FIG. 2. Temperature of the cooled atoms near zero velocity according to 
(9).  a: As the magnitude of the frequency detuning of the light waves, 
lfloI,isvariedatG=2$/J=0,2,and(1) y , /y= 10-2and(2) lo-, .  
Dot-dashed line-Extrapolation of the data from Ref. 4. b: As the power 
ofthelaserlightisvaried. 1,l'-lfl,I =4yand(1) y,/y= 10W2and(1') 
10W3; 2,2'-lfloI = 6y (2) and y,/y = and (2') low3. 

the temperatures in (8) are well below the single-photon 
limit To. 

Figure 2a shows the temperature of the A atoms accord- 
ing to (9) as a function of the frequency detuning IRo I. The 
dot-dashed line is an extrapolation of the experimental data 
of Lett et aL4 We see a surprisingly good qualitative agree- 
ment between the behavior of the temperature of the cold 
atoms as described by (9)  as a function of the detuning, on 
the one hand, and the experimental results, on the other. In 
addition, as we have already mentioned, we would expect an 
increase in the temperature of the atoms with increasing 
Iflo I on the basis of (9).  

For the minimum value of the temperature in (9) we 
typically find 

This value is reached at a detuning 
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With the parameter values y = 10 MHz and b = 0.4, for ex- 
ample, which correspond to curve 2 in Fig. 2a, we find 
T,, =2.1OP2 T , ~ 4 . 1 0 - ~  K from ( lo) ,  and from (11) 
we find a frequency detuning 6, z 14y. In this case expres- 
sion ( 10) predicts a temperature slightly higher than in the 
case of an exact resonance ( I a, I = 0) [compare expression 
( 10) above with expression (3 )  in Ref. 61. 

How does the temperature (9) of the cold atoms near 
zero velocity depend on the laser power? In the experiments 
by Lett et al., the temperature was observed to fall off linear- 
ly with decreasing laser power. The slope of the line was 
determined primarily by the frequency detuning of the light 
waves. Again in the case (9) ,  the temperature is a linear 
function of the power, and the slope of the line is determined 
by the frequency detuning and by the relaxation y3 (Fig. 
2b). It is important that condition (6)  on the intensities of 
the light waves hold at all times, since otherwise the two- 
frequency cooling mechanism would not operate. For sodi- 
um atoms with a saturation intensity I,,, = 10 mW/cm2, for 
example, condition (6)  means that the mechanism of two- 
frequency cooling would be observed at intensities 
I)I,,, y,/y) 10W2 mW/cm2 with y3/y = 10W3. A coher- 
ence relaxation y3 might stem from a variety of physical 
factors. The most important point here, however, is that the 
light waves have a spectrum of finite width.' In such a case, 

the effects described above will always occur. 
Again, we wish to stress that we are not claiming that 

we have offered an exhaustive description of such a complex 
experimental situation as that in Ref. 4. Nevertheless, a 
qualitative comparison of the results on the temperature de- 
pendence, on the one hand, and the simplicity and clarity of 
the mechanism of two-frequency cooling based on a coher- 
ent trapping of population, on the other, can serve as argu- 
ments in favor of the operation of this mechanism in this 
situation and in other situations of this sort. 

"Since we have y,  +y,, the matrix elements of the dipole transitions 
Im) - 13) are not equal to each other. However, all that is necessary 
here is that the Rabi frequencies of the exciting waves be equal. 
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