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New mechanisms for the channeling, collimation, bunching, and modulation of relativistic 
charged-particle beams are described. Some new methods are proposed for amplifying and 
exciting electromagnetic radiation by means of relativistic beams. Some involve Doppler 
frequency conversion. Several phenomena are predicted: parametric resonance in a beam of 
relativistic particles, bunching of particles in an interference field, and the generation of 
harmonics and of sum and difference frequencies in relativistic beams. 

1. INTRODUCTION 

We carry out a theoretical investigation of the interac- 
tion of relativistic charged-particle beams with intense inter- 
ference optical fields. This analysis leads, as we will see, to 
the suggestion of new methods for laser control of the mo- 
tion of relativistic particles. It also reveals some new possi- 
bilities for exciting and amplifying electromagnetic radi- 
ation. The possible occurrence of some fundamentally new 
phenomena is predicted. Examples are parametric reso- 
nance in a beam of relativistic particles, bunching of parti- 
cles in an interference field, and the generation of harmonics 
and of sum and difference frequencies by relativistic chan- 
neled particles. 

The interaction of intense laser pulses with matter has a 
number of features not found in the interaction of moderate- 
intensity pulses. At a field intensity of order W/cm2, for 
example, the energy of the interaction of an electron with a 
wave field reaches a level on the order of the intraatomic 
energy, so conventional perturbation theory has to be aban- 
doned. In fields with intensities on the order of lOI4 W/cm2, 
tunneling becomes the predominant mechanism for the ioni- 
zation of atoms. At field intensities on the order of 1018 
W/cm2, the electron oscillation velocity in the wave ap- 
proaches the velocity of light, so relativistic effects become 
important. 

For high-intensity pulses, an atom thus ceases to be a 
resonant system, since the electron oscillation amplitude in 
the wave becomes larger than the radii of the electron shells 
of the atom. The development of methods for the effective 
nonlinear conversion of ultrastrong laser pulses or for the 
amplification of these pulses thus requires a search for new 
nonlinear or resonant media. It turns out that a free relativis- 
tic electron, interacting with the field of a spatially nonuni- 
form wave, can play the role of such a medium. 

As we know, the interaction of a free electron, atom, or 
microscopic particle with the spatially nonuniform field of 
an intense laser wave leads to the appearance of a pondero- 
motive force. This force is the key to numerous methods for 
controlling the motion of particles'~~ and for bunching parti- 
cles in free-electron  laser^.^ This force has a significant effect 

channel, if the energy of the transverse motion of the elec- 
tron is lower than the height of the potential barrier set up by 
the ponderomotive forces. In this case the electron executes 
bounded periodic oscillations between two neighboring an- 
tinodes of the interference field, and its response differs sub- 
stantially from that in a plane wave. From the quantum- 
mechanical point of view, the explanation is that in a 
channeling regime a particle acquires discrete transverse- 
motion levels.697 A channeled electron is thus equivalent to a 
relativistic atom. It can undergo radiative (spontaneous or 
induced) transitions between transverse-motion levels. The 
scattering of electromagnetic radiation accompanied by a 
change in the vibrational state of electron gives rise to sum 
and difference frequencies in the scattered field, while the 
nonlinearity of the response gives rise to harmonics. 

As the field intensity is raised, forces which depend on 
the phase of the interference field become significant. These 
forces lead to bunching of the electrons in an initially uni- 
form electron beam. This bunching is of considerable inter- 
est for the observation of coherent radiation. In this paper we 
take a theoretical look at these effects. 

2. RELATIVISTIC ELECTRON IN AN INTERFERENCE FIELD 

We consider the motion of a relativistic electron 
through an interference electromagnetic field. For definite- 
ness we will be discussing electron beams, but this approach 
does not limit the generality of the discussion, since it is an 
elementary matter to make the switch to any other charged 
particle. We first consider the case in which the interference 
field is a transverse electric field. In this case the electric and 
magnetic fields can be written (Fig. 1) 

E=Re {E, exp (ix,x+ ixliz-iot) +E, exp (-ix,~-l-ix!~z- iot))  

=Eo cos(11,x) cos (1111~-ot), 
(1)  

H=HL cos ( Z ~ X )  cos (x,,z-ot) 

-HI, sin (xLx) sin (x, ,z-ot) ,  

where 

on the atomic ionization spectra4 and is in fact capable of 
XI=% sin 0, z l l=x cos 0, x=o/c,  E,jjE,jje,, causing self-organization proce~ses.~ Under certain condi- 

tions, the ponderomotive force can also cause substantial E0=2E,. H,=BH,,=-E, cos 0, Hl,=2H,,=Eo sin 0. 
changes in the way an electron interacts with an electromag- 
netic wave. For example, an electron propagating along the A relativistic electron enters the region of the interfer- 
line of nodes of an interference field can be captured into a ence field along the z axis, which is also the propagation 
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FIG. 1. a-Relative orientations of the wave vectors of the interfering 
waves (k, , k, ), ofthe electron velocity (v ,  IvI z c ) ,  and of the wave vector 
(k )  of the wave emitted by the electron, along with the positions of the 
nodes and antinodes of the interference field (the dashed lines); b--the 
intensity of the interference field (the ponderomotive potential) as a func- 
tion of the transverse coordinate x. 

direction of an interference field with a phase velocity 
up, = w/x,, . The equations of motion of the electron are 

d Y 
- ( m i ) = e E o  - sin 0  s in(xLx)sin ( x l 1 z - a t ) ,  
dt c 

d i 
- (mY) =-eEo (1 - - cos 0 ) c o s  (x,x)cas ( x I z - o t )  
dt c 

x 
-eEo - sin 0  sin ( x l x )  sin ( x l l z - a t ) ,  

(2) 
C 

d  Y 
- (mi )=-eE,  -cos 0  cos (xLx)cos ( x l i z - w t ) .  
dt C 

We assume in a first approximation that the coordinate z on 
the right sides of Eqs. (2 )  is given by 

z = i o + ~ o t .  ( 3 )  

We also assume that the velocity of the transverse motion is 
much lower than the velocity of the longitudinal motion: 
I X I (  vo, IyI ( uo . The first two equations then become 

Y .  mx=eEo - sin 0  sin ( x L x ) s i n [ x l l z o - w  ( I - P  cos 0 ) t ] ,  
C 

my=-eEo( l -p  cos O ) c o s ( x L x ) c o s [ x l l z o - o  ( I - @  cos 0 ) t l  
i 

- eE0-sin 0  sin ( x l x ) s i n [ x l l z o - o ( 1 - p  cos 0 ) t ] ,  
P 

(4)  

where B = v,/c. 

3. ELECTRON CHANNELING 

We integrate the second of Eqs. (4) over time once, 
obtaining 

Substituting (5)  into the first equation of system (4), we 
find 

e2E02 
mf  = - sin 8 sin (2xLx)  

4mwc 

Of the two terms on the right side of Eq. (6), one does not 
depend on the time, while the other oscillates at the doubled 
frequency. If we omit the latter term, the equation which 
remains becomes the equation of the oscillations of a math- 
ematical pendulum after the substitution ( = xlx - ~ / 2 :  

where 

&=eE, sin 0/2"1mc. ( 8 )  

It follows from (6) and (7) that a force acts on the electron 
along the x axis, in the direction perpendicular to the field 
polarization vector. This force tends to displace the electron 
into a region of minimum intensity of the interference field, 
i.e., to the field nodes xlx, = ~ ( 2 n  + 1)/2. The potential 
well created by these forces is (Fig. lb) 

1 + cos (2x,x) 
U ( x )  =Uo 

2  7 

where 

We see from (7) that the electrons whose transverse-motion 
energy is below the height Uo of the potential well execute 
harmonic oscillations between the two nearest antinodes of 
the interference field: 

where 7 is the angle between thez axis and the momentum of 
the particle. One can introduce a critical channeling angle 

We will estimate U, in order of magnitude. Assuming 
R = 1 pm, and expressing Eo in terms of the intensity I ,  we 
find 

i.e., U o = l  eV at y=(1-f12)-1 '2=102 and 1=1015 
W/cm2. We see that the barrier height can reach several 
electron volts even in moderate fields. 

4. RADIATION EMITTED BY CHANNELED PARTICLES 

The oscillations of the particles in the potential (9) give 
rise to electromagnetic radiation which is polarized along 
the x axis and whose frequency is determined by the Doppler 
law 

Q 
Y =. 

I - p  cos cp 

where q, is the angle between the photon emission direction 
and the velocity of the particle. In our case, the velocity of 
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the particle is along the z axis. Since the potential (9) is not 
harmonic, we find that harmonics n n  are excited. When the 
second term on the right side of (6) is taken into account, 
electromagnetic radiation at the sum and difference frequen- 
cies also appears in the spectrum: 

2 0  (1-8 cos 0 ) k n Q  
V2n = , 

1-8 cos u, 

It follows from Eq. (3) that radiation also appears at new 
frequencies with a polarization which is the same as that of 
the interference field. This radiation has a frequency 

o ( 1 - 8  cos 0 ) k n Q  
v1n = 

I- jcoscp (15) 

5. PARAMETRIC RESONANCE 

The most interesting case is that in which the frequency 
R satisfies the parametric-resonance condition: 

Q = o  (1- j  cos 0 ) .  

An approximate solution of the equation 

j t + Q Z { 1 - ~ ~ ~ [ 2 ( x I I ~ O - ~ ( I - ~  cos 0 ) t )  l)x=O 

can be written as follows in this case: 

vo vat 
x ( t )  -s in Qt + --. cos ( x l , z o - a t ) .  Q 4 

The amplitude of the stimulated oscillations increases lin- 
early in time. The amplitude of the vector potential of the 
radiation field with polarization along the x axis in the far 
zone is given by the expression8 

= %z voi e x p [ i ( o  cos 0-v cos rp)zoi /c lS(Q-v(1-B cos q)), 

We recall that this estimate refers to the case2 = 1 pm. With 
increasing A, the intensity required falls off quadratically. 

6. COLLlMATlON OF ELECTRON BEAMS 

We consider conditions far from those for a parametric 
resonance, ( 16). The motion of the electron is described in a 
first approximation by Eq. (7)  in this case. In this equation, 
however, we have not taken account of the radiative-friction 
force which arises from the emission of electromagnetic ra- 
diation at a frequency R by the electron. When the term 2yx, 
which corresponds to this force, is taken into account, the 
solution of Eq. (7) for the case of small oscillations is 

uo 
x = ~ ~ e - ~ '  GOS Qt  -I- - e-Tt sin Qt f 

n (2nS-1) 
Q 2 % ~  

The amplitude of the electron oscillations and the velocity of 
the transverse motion thus decrease as time elapses. At yt% 1 
we find xz77(2n + 1)/2x,, and the velocity of the trans- 
verse motion approaches zero. 

Note that under the condition R < w ( 1 - 0 cos 8) the 
amplitude of the high-frequency oscillations which stem 
from the second term in (6) is lower than the amplitude of 
the oscillations at the frequency R. The amplitude of the 
high-frequency oscillations is determined, according to the 
equation 

. eZEoa 
5=- sin 0  c o s [ 2 0  (1-8 cos 0 ) t ] ,  

4 m 2 0 c  

by the expression 

Consequently, 

( 18) In turn, the velocity of the high-frequency oscillations is giv- 
en by 

where ri is the radius vector of particle i. At q, = 8 we thus 
have a coherent growth of the field amplitude at the frequen- Q 

vo(2w)=vo(Q)  0 ( l - , 8 c o s  @ ) " .  cy of the waves which create the interference field: 

We thus have v,(2w)<u0(R) under the condition 
v =  ~ 4 ~ ( 1  - 0 ~ 0 s  6 ) .  

When the radiative damping in the course of the oscilla- 
tions of the electron in the interference field is taken into 

Let us estimate the characteristic field intensity which account, substantial suppression of the amplitude of the 
would be required to satisfy the condition for parametric transverse oscillations thus occurs, and the electron beam 
resonance, ( 16). Since undergoes (angular) collimation. 

we find, using ( 12), 

7. ELECTRON BUNCHING IN A RELATIVISTIC BEAM 

In Sec. 2 we wrote out equations for the case of a trans- 
verse electric field, in which the polarization vectors of the 
interfering waves are perpendicular to the plane of the wave 

( 19) vectors of these waves. We now write equations for the case 
of a transverse magnetic field: 
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d - (mi) =eEo sin 0 sin (x,x) sin (xnz-ot) 
dt 

We have assumed that the wave vectors and the polarization 
vectors of the waves lie in the xz plane. Again using the ap- 
proximation (3) ,  we find the following equation for the co- 
ordinate x. 

mx=-eE,(cos 0-P)cos(xLx)cos [xllz,-o(1-p cos 0)t].  

(24) 

For the variable 5, Eq. (24) can be rewritten as 

Q2 sing ~os [x ,~s , - a (~ -P  cos B)t]=O, (25) 

where 

Q2=eEoJcos 8-p(xllm. (26) 

As we mentioned in the preceding section, under the condi- 
tion R-4 w( 1 - p cos 8) the amplitude of the high-frequen- 
cy oscillations is much lower than the amplitude of the oscil- 
lations in the interference potential. We thus seek a solution 
of (25) in the form g(t)  = g,, ( t )  + Sf, where f, ( t )  is the 
slowly varying coordinate of the center of gravity of the 
high-frequency oscillations Sg(t). Writing Eo(x)  
= Eo cos (x,x) as an expansion in a Fourier series, 

we can show without difficulty that the coordinate of the 
center of gravity of the high-frequency oscillations obeys the 
equation 

where 

e2E02 ( cos 0-@ ) 
U(x)=--- c0sZ (%AX). 

4m02 1-@ cos0 

The particle is thus in a potential well in the case 
R <o ( 1 - p cos 8) ,  as it was in the case of transverse oscil- 
lations. The only new feature is that both the high-frequency 
oscillations and the oscillations of their center of gravity oc- 
cur along the same axis. The amplitude of the high-frequen- 
cy oscillations is much lower than the amplitude of the oscil- 
lations in the channel. 

We now consider the opposite limit, R > o  
X(1  -PcosO). At times t<n-/[w(l -pcos8 ) ] ,  Eq. 
(25) can be rewritten as 

~+Q%os(xllzo) sin E=0. (30) 

Consequently, while the stable equilibrium points on the in- 
tervals - n-/2 + 2n-N < xllzo < n-/2 + 2n-N are the points 
x, = x, - ' ( r / 2  + 2n-M), where N, and M are integers, 
those on the intervals n-/2 + 2n-N < x, ,  zo < 3 ~ / 2  + 2n-N are 

the points x, = x, - ' (3n-/2 + 2n-M) . Bunching of electrons 
thus occurs in an originally uniform electron beam. For 
84 1, the period of the modulation along the z axis is essen- 
tially the same as the wavelength A. 

Let us find the threshold field, which forms the bound- 
ary between these two regimes. From (26) we have 

mo"1-p cos 0)' 
Ethr = 

ex, 1 cos 0-P 1 ' 

In particular, in the case y8> 1 we find the following esti- 
mate of the threshold intensity: 

Comparing with (19), we see that this quantity is the same 
as the field which is required for achieving parametric reso- 
nance. As in ( 191, in the case y8 < 1 we need to replace ye in 
(32) by (ye)  - I .  

8. AXIALCHANNELING IN NONDIFFRACTING LIGHT BEAMS 

Cylindrical waves fall in the special category of fields 
for which a complete solution of the vector wave equation 
can be written out analyti~ally.~ The wave field is written in 
this case as the sum of two components, each of which can be 
expressed in terms of a function which is a solution of a 
scalar wave equation. The following qualify as these compo- 
nents: 

a )  a transverse electric wave, 

1 a 
E, = - --rot 11,, He= rot rot II,; 

c d t  
(33a) 

b) a transverse magnetic wave, 

Here rI = {O, 0, $1 is the Hertz vector, whose only nonvan- 
ishing projection is along the z axis. This projection satisfies 
the scalar wave equation 

Inside a uniform cylindrical region, the solution of this equa- 
tion can be written in the following form (for example) : 

Here 

p= (x2+y2)'", cp=arctg(y/x), 
(36) 

and J,, (x)  is the Bessel function. We restrict the analysis to 
the axisymmetric case for simplicity. In this case we have1) 

g(r,  t)=Jo(x,p)exp[i(xilz-at) I .  (37) 

Using (33a), we can write the electric and magnetic fields in 
a transverse electric wave as 

E,=O, ~ , = ~ ~ x ~ , x , J , ( x , p )  sin @, 

E,=-AoxxlJ,(xLp)~in @, H,=O, (38) 

E,=O, H,=Ao.~.~~Jo(x,p) cos @ I  
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where = xllz - wt, and A, is a normalization constant 
which can be expressed in terms of (for example) the energy 
of a pulse: 

Here we have V, = Scrp, S = ITR is the cross-sectional 
area, and .r, is the pulse length. Substituting (38) into (39), 
we find 

8 = A o 2 ~ ~ p x 2 ( ~ I R ) z  [ I O ( x I R )  - I 2 ( x I R )  ] 2 / 8 ~ A 0 2 ~ ~ p ~ Z x I R / n .  

The amplitude A, can also be related to the pulse height: 

The equations of motion of a relativistic electron in the 
electromagnetic field (38) are 

PV m (p-pipZ)=-eAo - xL2Jo (x,p)  cos ( x l l z - a t ) ,  
C 

d pip 
- ( m i )  =eAo - xl lxlJ1 ( x l p ) s i n  ( x l l z - o t ) .  
d t  c 

Again using the approximation (3),  we can rewrite the first 
two equations in (41 ) as 

P 
+--~LJO ( x l p ) c o s [ x l p o - o  (1-fi cos 0 ) t ] } .  

C (42) 

Integrating the second equation in (42) over time once, we 
find 

Substituting this expression into the first equation of system 
(421, we find the following equation for p: 

(44) 

For small oscillations we thus find the equation 

i+Qzp=0, (45 

where 

Equation (44) is essentially the same as Eq. ( 6 ) ,  so 
everything that we said in Secs. 3-6 also applies to the case of 
axial channeling. In particular, we find the following expres- 
sion for the critical angle for axial channeling from (44) and 
(46): 

Pmax e 
'lo=-=- c m o c  

wherep, is the first zero of the function J ;  (x,p). Compar- 
ing (47) with ( 11 ), we see that expressions ( 11) and (47) 
differ by a factor of ( x , R )  We need to recall, however, 
that pulses of different energies are required for producing 
beams of the same intensity in the cases of plane and cylin- 
drical geometries. 

Electron bunching can also occur in cylindrical beams. 
Here we would need to make use of a transverse magnetic 
cylindrical wave (as in Sec. 7). 

9. INTERACTION WITH SURFACE WAVES 

We showed above that the condition f l 2 w  
X ( 1 - /3 cos 8,,, ) must be satisfied in order to observe pa- 
rametric resonance and particle bunching. Since R increases 
with increasing intensity, we would need intense laser 
beams. However, it is possible to satisfy this inequality even 
at moderate beam intensities if we reduce the right side of the 
inequality. In particular, under the condition 

I-p cos 8 = I - f i x i l / x = O ,  (48) 

it is possible to substantially relax the requirements on the 
intensity. The conditionfl cos 8 = 1 means that the velocity 
of the particle is equal to the phase velocity of the wave. For 
motion in a dense medium, the particle velocity may exceed 
the phase velocity of the wave, as we know, but the mean free 
path of the electron would be substantially shorter. By leav- 
ing the electron beam in air, we can thus arrange a situation 
in which only the electromagnetic wave is obliged to propa- 
gate through a medium. 

Let us consider the case in which an electron beam is 
directed along the surface of a medium in which an electro- 
magnetic wave is in waveguide propagation. We assume that 
the angle of incidence on the interface is just slightly greater 
than the angle of total internal reflection. The electron beam 
then interacts with a nonuniform wave of the form 

E=Eoe-r" cos ( x l l z - o t ) ,  (49) 

where 

and kll is the projection of the wave vector of the wave in the 
medium onto the interface. Since the refractive index of the 
medium satisfies n > 1, the projection kll may be greater than 
the magnitude of the wave vector in vacuum, x = w/c.  Con- 
sider the case in which the polarization vector of the wave in 
the medium lies in plane of incidence. The equation for 
transverse oscillations of an electron moving at a relativistic 
velocity along the surface of the medium is 

mx=-eEo(cos O-p)e-'" cos [ x l l v t o + o  ( I - f i  cos 8 ) t ]  

(50)  
Here we have assumed that the coordinate of electron i is 
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given by zi = v(t - toi ) in a first approximation, where tOi is 
the time at which the electron intersects the boundary of the 
medium. Choosing the angle of incidence of the wave in the 
medium in accordance with 

we can put Eq. (50) in the form 

We see from this result that particles for which the condition 
cos (xl l  vt0 ) > 0 holds touch the surface of the medium and 
are lost from the beam. The particles for which the condition 
cos(xll vt, ) < 0 holds, in contrast, move above the surface of 
the medium if the force due to the potential 

is greater than the electrical image force. We can thus modu- 
late the density of a relativistic electron beam with a period 
A = 2r/xIl close to the wavelength in vacuum, A = 2r/x. 

By choosing the angle of incidence to be close to the 
value in (5 1 ), we can substantially lower the threshold in- 
tensities required for observing the parametric resonance. In 
this case the electron beam can move through a planar or 
cylindrical channel which is the central part of the wave- 
guide structure for the wave which interacts with the beam. 

CONCLUSION 

This study has shown that the interactions of relativis- 
tic beams with intense interference fields open up wide op- 
portunities for controlling electron beams. These interac- 
tions present some new possibilities for collimation, 
channeling, bunching, and modulation of electron beams. 
Some new mechanisms for the excitation and amplification 
of electromagnetic radiation arise; some of these mecha- 
nisms make use of Doppler frequency up-conversion. In the 
case of parametric resonance, for example, we see from ( 18) 
that we could substantially raise the frequency of the electro- 
magnetic radiation. With q, = 0, for example, we find from 
(18) 

0 (1-p cos 0)  
y=- - =! o [ l + ( y 0 ) ' ] .  

1-B 

With 6 = 10- ' rad and y = 10' we thus find v z w .  lo2. In 
other words, for forward emission we find a frequency in- 
crease by two orders of magnitude in comparison with the 
frequency of the applied electromagnetic radiation. 

Our numerical estimates show that pulses of moderate 
intensity would be required for the observation of the effects 
discussed above. We should point out that channeling in in- 
terference fields has a significant advantage over channeling 
in a crystal, because there is absolutely no mechanism which 
would operate to dechannel the electrons. The distance over 
which the electron beam will interact with the electromag- 
netic pulse is determined by the process by which the veloc- 
ities of the beam and the pulse become mismatched and by 
the dimensions of the interference region. At moderate in- 
tensities, this interaction distance might be on the order of a 
meter. There are thus grounds for expecting that these mech- 
anisms for controlling relativistic electron beams and for ex- 
citing coherent radiation will soon find practical applica- 
tions. 

"See Ref. 10 regarding experimental observation of nondiffracting 
beams. 
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