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We derive the electromagnetic and gravitational spectra radiated by a moving particle of mass m 
and charge e in the field of an elliptically polarized monochromatic electromagnetic plane wave. 
It is shown that these spectra are proportional to each other no matter what the charge velocity, 
and independent of the frequency of the radiation. The proportionality factor is (4?TGm2/e2)~ 
cot2 ( 6  /2), where y, is,the effective Lorentz factor of the particle and 6 is the angle between the 
radiation wave vector and direction of propagation of the plane wave. 

1. INTRODUCTION 

The source of gravitational radiation emitted by a given 
system is its energy-momentum tensor. The energy-momen- 
tum tensor of a charged particle moving in an electromag- 
netic wave is composed of the local particle tensor t,, and a 
nonlocal energy-momentum tensor 6,, due to the external 
field and self-field of the particle. The existence of a nonlocal 
source 6,, makes gravitational radiation quite different 
from electromagnetic radiation, for which the source (a  cur- 
rent density) is a local one. In the general theory of relativi- 
ty, the energy-momentum tensor of a gravitational field (a  
pseudotensor) is not well-defined, but that does not prevent 
one from calculating the gravitational radiation emitted by 
gravitating systems. It would seem that a detailed compari- 
son of gravitational radiation from nongravitating and 
gravitating systems ought to improve our understanding of 
the latter, and for that reason alone, gravitational radiation 
from electromagnetic systems should be of interest. In addi- 
tion, however, there have been recent suggestions as to how 
the gravitational radiation from electromagnetic systems 
might be generated (and detected) here on earth.' Detailed 
study of the gravitational radiation from electromagnetic 
systems is also prerequisite to a comparison of the strength 
of the signals emitted by possible terrestrial and cosmic 
 source^.^ 

In the same vein, a study of the gravitational radiation 
from electromagnetic systems has revealed the intriguing 
fact that the two types of spectra emitted by a charge moving 
in a linearly or circularly polarized monochromatic plane 
wave are proportional, and it has been conjectured that the 
proportionality continues to hold for a more general plane 
wave as well.3 Confirmation of that suggestion would be 
highly significant, as it would provide a basis for under- 
standing the proportionality of the gravitational and electro- 
magnetic spectra emitted by an ultrarelativistic particle 
moving in an arbitrary field-in the rest frame of such a 
particle, any external field can be approximated by a plane 
wave. 

In the present paper, we demonstrate that the two types 
of spectra radiated by a charge in the field of an elliptically 
polarized monochromatic plane wave are indeed propor- 
tional. In contrast to the situation for the special cases of 
linear and circular polarization, the charge does not follow a 
planar trajectory in the frame in which it is at rest on the 
average. 

The spectrum of classical gravitational radiation is giv- 
en by4 

where T,, (q) = t,, (q) + 6,, (q) is the Fourier transform 
of the system's conserved energy-momentum tensor. 

The classical power spectrum of electromagnetic radi- 
ation from a charge is given by (see Ref. 5, $66; here we 
employ Heaviside-Lorentz units) 

where the j, (q) are the Fourier components of the charge 
density, determined from the particle trajectory: 

here x, (r) and T,, (7) are the particle's position and mo- 
mentum, and r is the proper time. 

We shall show that just as in the special cases examined 
in Ref. 3, 

The parameter l? is independent of the frequency, but it de- 
pends on the direction of the radiation wave vector q and on 
the mean squared value of the plane-wave potential (see Eq. 
(11) below): 

Here 6 is the angle between q and the direction of plane-wave 
propagation, y, is the effective Lorentz factor, and m,, is 
the charge's effective mass, which equals its mean kinetic 
energy in the system in which it is at rest on the average. 

As noted in Ref. 6, Eqs. ( 1 ) and (2)  imply that r2 is an 
invariant characteristic of the system, and in Section 4 be- 
low, we provide an invariant expression for r2 in the present 
case. The factor r characterizes the rate of conversion of 
virtual photons of the charge's self-field and photons of the 
external field into gravitons, and it contains information on 
the field that holds the particle in orbit. 

2. ELECTROMAGNETIC RADIATION FROM A MOVING 
CHARGE IN THE FIELD OF AN ELLIPTICALLY POLARIZED 
ELECTROMAGNETIC PLANE WAVE 

We describe the field of an electromagnetic plane wave 
in terms of the Cpotential A, =A,  (p), which depends on 
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the coordinates through the invariant quantity p = kx, 
where the four-vector k,, the wave vector, has zero length: 
k = 0. In the Lorentz gauge, the potentials of the field and 
wave vector satisfy kA = 0. 

In order to find the Fourier components of the four- 
dimensional current vector (3),  which enter into the expres- 
sion for the electromagnetic spectrum, it is necessary to de- 
termine the trajectory of the particle in the force field. For a 
plane wave described by the potential A, (p) ,  with p = kx, 
the solution of the equations of motion, 

where T is the proper time. The four-vector p, is a constant 
of the motion that is equal to the momentum ?r, in the ab- 
sence of a field. For a suitable choice of the origin of time, the 
constant p0 vanishes. 

In considering motion in a periodic field, it is conven- 
ient to introduce the mean four-momentum or quasi-four- 
momentum 

- 

whose square is 2 = - (m2 + e 2 1  ,) = - m i .  The particle 
trajectory is thus given by 

Consider now the field of an elliptically polarized, mo- 
nochromatic plane wave. The field potential A, (p) takes 
the form 

A,=a,' cos (kx)+a,2 sin (kx), 
(11) 

We choose the direction of wave propagation to be the 3- 
axis. Then k, = k, = 0, k, = k O = w, and in a gauge in 
which A, = 0 and A(p)  lies in the 1-2 plane, the potential is 

A,=a, cos (kx), A2=a2 sin (kx). (12) 

In a coordinate system in which the charge is at rest, the 
trajectory may be described by a set of parametric equations: 

where 

and 

is the charge's effective mass, which equals its mean kinetic 
energy in this frame. 

We see then that the space curve traced out by the 
charge is a curvilinear trajectory whose projection on the 1- 
3 and 2-3 planes containing the wave vector k is a figure 
eight, while its projection on the transverse 1-2 plane is an 
ellipse. 

The Fourier components of the current density j, (q) 
may be expressed in terms of a function of the form 

J drp exp(-iqx(r) 1 ( I ,  sin rp, cos rp, cos2rp). 
- m (15) 

In the rest frame, 

a s i n  rp-p cos cp-y sin 2rp - w 

where 

q0 = 1 ql is the frequency of the radiation, and q - = qO - 9, .  
The integrals in ( 15) can be written in the form of sums 

where the functions A, (sapy) and B, (sapy) are defined by 

A ,  (sapy) = 2 3 drp cosn cp exp[i ( a  sin (F 
2n -z 

-p cos rp-y sin 2q-scp) 1 ,  
II 

(19) 
1 

B, (sah) = - drp sin rp cosn rp exp [ i ( a  sin rp 
k - n  

-p cos rp-y sin 2cp-scp)] 

Forming the invariant squared magnitude of the Four- 
ier components of the current density, li, (q) 1 ,, we obtain 
the electromagnetic spectrum: 

Here 

and t denotes the radiation time, which results from the ap- 
pearance of the double sum 

in calculating (20). 
It is not difficult to show that in the special cases in 

which a ,  =a ,  or a, = 0, Eq. (20) reduces to the well- 
known results for the electromagnetic spectrum of a charge 
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in the field of a circularly or linearly polarized wave, respec- 
tively, as given, for example in Ref. 7. 

3. GRAVITATIONAL RADIATION FROM A MOVING CHARGE 
IN THE FIELD OF AN ELLIPTICALLY POLARIZED PLANE 
WAVE 

To obtain an expression for the gravitational radiation 
spectrum of a charge in the present case, we need to deter- 
mine the Fourier components of the conserved total energy- 
momentum tensor for the system, T,, = t,, + O,,, which is 
composed of the energy-momentum tensor of a material ob- 
ject (t,, ) and that of the self and external electromagnetic 
fields (O,, 1. The two latter tensors are the local and nonlo- 
cal sources of gravitational radiation, respectively. 

The well known form for the energy-momentum tensor 
of the electromagnetic field is 

where the field-strength tensor F& is the sum of the self-field 
( fa8 ) and external field (paB ) tensors: 

We then find that the Fourier transform O,, ( q )  can be ex- 
pressed in terms of the Fourier components of the tensors 
P ~ B  and fa8 : 

where we have discarded the quadratic terms pp ,  which are 
not a source of gravitational radiation, and quadratic combi- 
nationsfi since we neglect the effect of the charge self-field 
on the charge itself. 

In accordance with the definition ( 1 1 ) for the potential 
associated with an elliptically polarized plane electromag- 
netic wave, we write the field tensor pap ( x )  in the form 

(i) 
Vae ( x )  =-(pap sin ( k x )  -I-&' cos ( k s )  , 

cpks()= kaa:-keaai, aaiaja= ( a i )  )bjj, kaaia=k2=0. 
( 2 6 )  

The Fourier components of the field thereupon take the form 

On the other hand, we may express the Fourier trans- 
form faB ( q )  of the charge's self-field in terms of the current 
components, 

which can in turn be obtained with ( 3 ) ,  making use of the 
trajectory ( 13): 

jz  ( q )  =-.a2 x 2 n 6  ( q O - s w ) ~ o  ( s a ~ y ) ,  

( 2 9 )  

The functions A, ( s a p y )  and B, (sa&) have been defined in 
( 1 9 ) .  

The delta function in the expression for pd (q) makes it 
easy to carry out the integration in ( 2 5 )  and obtain the Four- 
ier components O,, ( q )  as a function of the current-density 
components j, ( q  + k )  . As a result, 

ia, Q I  . + -[- 4 ( i , - i i )+ -  ( ~ - - j - ) ] ,  
q- 

1 al 
0 i3 (q )=8 i0 (q )=  --[ (qO-k0)j3 

4 (I- 

ai 
03, ( q )  =OaO ( q )  =OO0 ( q )  = - [q i  ( j 0 + j 3 +  j 0 + j 3 )  

4q- 

For the sake of brevity, we have not written out the argu- 
ments of the functions j, , but have instead used the conven- 
tion that the first of each pair of terms with the same indices 
is a function of q - k ,  and the second is a function of q + k.  

Notice that the components j, (q + k )  are also given by 
( 2 9 ) ,  but with A,  ( s a p y )  and B, ( s a p y )  replaced by 
A, ( S  + 1,aOy) and B, ( s  + 1,aPy).  

The Fourier components of the energy-momentum ten- 
sor t,, of a point charge can be obtained from4 

rn 

t.. ( q )  =m 1 dr i , ( r ) i ( r ) e a p ( - i q x ( ~ ) ) ,  
- m 

( 3 1 )  

and can be expressed in terms of A, ( s a f i )  and B, (sa&). 
Then t,, ( q )  takes the form 
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t,, (q)=6zzm. z 2n8 (q"so) (-&-A,), 
8 

t." (q) =-Elm. z 2 n 8 ( q " s o )  

We can now form the invariant product 
T:, Tp" - 1/2 1 T: 12, which yields the gravitational radi- 
ation spectrum. Since 8: = 0, the spectrum consists of sev- 
eral terms: 

In doing the calculations, the following relations 
between A, (sapy) and B, (sapy) are required: 

and 
(s-~y)~o(~)-di(~)+4yAz(s)-PBo(s)=0, 

i [  (s-2y)  An+, ( s )  - a ~ n + z ( s ) f  ~ Y A ~ + , ( S )  

i [ (s-27)  B ,  ( s )  -aB,+, ( s )  +4yBn+z ( s )  

- B ( A n ( ~ ) - A n + z ( s ) ) ]  - (n+ l )A ,+ , ( s )+nA, - I  ( s )  =O.  

The first of these equations can be derived directly from the 
definitions in ( 19); the remainder follow from the periodic- 
ity of the functions 

F(cp) = { I ,  cos cp ,  sin cp) 

X exp [ i (a  sin c p - P  cos cp-y sin 29-scp) 1,  (36) 

for which 
II 

According to Eq. ( I ) ,  then, the spectrum of gravita- 
tional radiation emitted by a charge is given by 

Comparing this result with Eq. (20), we see that the gravita- 
tional spectrum differs from the electromagnetic spectrum 
by a proportionality factor 4 ~ G m ~ I ' ~ / e ~ ,  where r is given by 
Eq. (5).  

Note that the system's total energy-momentum tensor 
T,, = 8,, + t,,, with O,, and t,, defined in (30) and (32), 
satisfies the conservation law 

In the special cases of linear and circular polarization, 
Eq. (37) goes into the results found in Refs. 6 and 8. 

4. DISCUSSION AND CONCLUSION 

For a charged particle in motion in the field of an arbi- 
trarily polarized monochromatic electromagnetic plane 
wave, the gravitational and electromagnetic spectra are pro- 
portional to one another, no matter what the particle veloc- 
ity. The proportionality results from the combined effect of 
local and nonlocal mechanisms for emitting gravitational 
radiation. The proportionality factor 4 ~ G m ~ I ' ~ / e ~  is inde- 
pendent of the frequency of the radiation, but it does depend 
on the angle between the gravitational radiation wave vector 
and that of the plane wave, as well as the parameters of the 
latter. Since the electromagnetic spectrum is completely de- 
termined by the charge trajectory, all information about the 
nonlocal mechanism of gravitational radiation resides in the 
coefficient r 2 ,  which in the present case is given by Eq. ( 5 ) . 

We may write (5) in the form 

This equation does not depend on the wave polarization, and 
is invariant under rotations of the vector q about the 3-axis. 

For circular polarization, the fact that this expression is 
independent of the azimuthal angle of q is related to the axial 
symmetry of the emission process. For linear polarization, 
all of the azimuthal asymmetry of the radiation is concen- 
trated in the factor I j, ( q )  1 ', while the factor T2 remains 
symmetric. 

Let us now derive the invariant expression for r 2 .  Inas- 
much as (39) does not depend on the amplitude of the exter- 
nal field, we may use either of the constant tensors cp $, 
i = 1, 2; see (26). Settling upon the first, we have 
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where q, $)* = &~,~~,q, is the tensor dual to q, $, and 
Fg is the quasi-four-momentum (9). Expanding (40) in a 
systemin which F = 0, we obtain agreement with (39). Note 
also that q, 2;' differs from q, $2 solely by a constant factor. 

In the ultrarelativistic limit, the radiation wave vector q 
makes a small angle of order y - ' with the velocity vector of 
the charge, and the gravitational radiation is emitted almost 
tangent to the trajectory. 

For the motion we are considering here, the charge's 
velocity vector makes an angle 9 with the wave vector k of 
the plane wave that lies in the range 

where gmax = max [6, ,g2 ] and gmin = mi. [El ,g2 1. C, and 
g2 have been defined in ( 14), and they depend on the ampli- 
tudes a ,  and a, of the plane wave. 

In the ultrarelativistic limit, when (x2 + y2)/2) 1 
holds (see (2 1 ); in other words, when the effective velocity 
U* = [ (6: + 6 : 1/21 "' approaches unity), the range of ef- 
fective emission angles is also given by (41), i.e., by 6, and 

g2 or a ,  and a,. If the latter two values are equal-that is, if 
the wave is circularly polarized-then if,,, and amin reduce 
to 1~/2, since the charge will then circle in a plane perpendic- 
ular to k. If one amplitude is zero, then we are dealing with 
linear polarization, i n d  the range of angles between the ve- 
locity vector and k in the ultrarelativistic limit is a maximum 
(2  cot - ' 21 '2<8<~) .  This will also be the range of effective 
emission angles 8. For an arbitrary ratio between a ,  and a,, 
the range of effective emission angles will lie somewhere be- 
tween these limiting values. 
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