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The contribution of fluctuation-induced nucleation centers (projections and depressions on the 
atomically smooth interface) to the correlation functions of the surface displacements is 
considered. It is shown that for the surface of a three-dimensional crystal the excitations should 
lead to a spatial correlation function which differs from the Ornstein-Zernike one, as in the case of 
the two-dimensional Ising model. Due to a large lifetime, they may also determine the equilibrium 
dynamics of an atomically smooth surface, bringing about a nonexponential decrease of the 
temporal correlations. For the surface of a three-dimensional crystal the corresponding 
autocorrelation function for long times t is proportional to exp( - const. t 

Recently the number of papers dealing both with the Gij=<fifr> (1) 
experimental and theoretical study of the phase transition 
between an atomically smooth state of a crystal surface and a 
rough one has substantially increased (see, e.g., Ref. 1 and 
references therein). Though it seems untimely to speak 
about a full agreement between the theory and experimental 
data, the existence of qualitatively different states of a crys- 
tal surface and of a phase transition between them does not 
raise any doubts. The properties of the rough phase are well 
understood and do not differ, in their essence, from those of a 
liquid-gas interface. As to the atomically smooth state, the 
situation is less definite. 

The present work aims at the study of the contribution 
of fluctuation-induced nucleation centers (projections and 
depressions on an atomically smooth crystal surface) to the 
correlation functions of interface displacements. The idea of 

between surface displacements at sites i and j belonging to 
the nucleation center. The fluctuation nucleation center also 
brings about a contribution proportional top(  1 -p )  to the 
temporal autocorrelation function 

for surface positions i inside the nucleation center. The time 
dependence of this contribution is governed by the dynamics 
of the "collapse" of the nucleation center. 

Let us consider first the spatial correlations and find out 
when one should expect deviations from the Ornstein-Zer- 
nike law4 

( d - 2 ) / 2  
Gij a exp (-rij/g) /rij , 

a dominating role of the fluctuations of this type is related to where r, is the distance between the sites and j, 6 is the 
the following facts: first, such excitations exist only in the correlation length (the characteristic step width), and 

phase (in the rough phase the step energy ro >{. The maximum contribution to Go made by the fluctu- 
zero); as is known,1 the growth under ation nucleation centers is proportional to the Boltzmann 
small supersaturations occurs via formation and propaga- probability of the formation of a nucleation center of size ro. 
tion of two-dimensional nucleation centers; third and last, Its free energy is of orderpr; - (Pis the specific step energy; 
the excitations of this sort (domains of opposite sign) may 

below we consider, for simplicity, the isotropic case and ne- 
determine the character of spin-spin correlations in the or- 

glect the angular dependence of P) . Therefore 
dered phase of the Ising The main idea of the sub- 
sequent discussion is borrowed from Ref. 3, where the au- 
thors have also pointed at a potential importance of 
fluctuations of this sort in any system with spontaneously 
broken discrete symmetry. 

Let us consider a d-dimensional crystal at temperature 
lower than the temperature of transition to the atomically 
smooth state: T <  T R .  To be definite, let us assume that the 
mean position of the crystal surface (f) = 0 coincides with 
the origin. The angle brackets here and below, as always for 
the ordered phase, correspond to thermodynamic averaging 
with a chosen position of the interface. Let us consider two 
sites i and j on a ( d  - 1)-dimensional crystal surface and 
belonging to a fluctuation-induced nucleation center. In the 
cases treated below the probability p of formation of a nu- 
cleation center is small, therefore one can neglect the inter- 
action with other nucleation centers. When the nucleation 
center is formed, the positions of two surface points are shift- 
ed simultaneously. Therefore the corresponding fluctuation 
makes a contribution proportional to p(  1 - p )  z p  to the 
equal-time correlation function 

Gij a exp (-const pr,;-' /T) . (4) 

The comparison of the last two formulas shows that the fluc- 
tuations of the type considered give rise to nonexponential 
correlations in the case of nonphysical space dimensions 
2 < d < 3; for d > 3 they are negligible (their probability is 
too small), and we have the dependence (3)  brought about 
by the fluctuation inhomogeneities of dimension 6; d = 3 is 
the upper critical dimensionality when the nucleation 
centers begin to govern the spatial correlations at large dis- 
tances. It is quite natural to expect ford = 3 a nontrivial pre- 
exponential factor in (3)  different from r; (as in the case 
of the two-dimensional Ising ). 

Unfortunately, in none of the exactly soluble models 
with a transition from the rough phase to the smooth one 
could the correlation function ( 1 ) be calculated for T <  TR 
(see, e.g., Ref. 5 and references therein). At a first glance, 
this statement is at variance with the results of the renormal- 
ization-group analysis.' In fact, the latter predicts that the 
correlation function ( 1 ) for r, %{ exactly corresponds to 
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the Ornstein-Zernike law (3). This conclusion follows from 
the Fourier transform 

calculated to the lowest order in kc( 1 (k is the wave vec- 
tor). If we assume that the correct dependence has the form 

then, in the limit k c 4  1, we return to the renormalization- 
group result 

The contradiction is thus removed. 
Let us show now that the fluctuations concerned mani- 

fest themselves much stronger in the dynamics. As shown in 
Ref. 3, they determine the dynamics only in the absence of 
conservation laws. Therefore we discuss only a purely relax- 
ational case. 

The nucleation center containing the site i contributes 
to the autocorrelation function Ci ( t )  at a time t if its lifetime 
is not smaller than t. The driving force of the "collapse" of a 
nucleation center of radius r )  ,$ is the Laplace pressure fl / r  
(see Ref. 61, therefore the equation of motion of its rear step 
has the form 

wherep is the step mobility. Hence the lifetime of a nuclea- 
tion center of initial radius r is of order ?/p/3, and therefore 
the minimum size of the nucleation center, which contrib- 
utes to Ci (t) ,  is of order (pflt) 'I2. The free energy of the 
nucleation center of radius r is of order fl#- 2, therefore the 
greatest Boltzmann probability, contributing to Ci (t) ,  is 

proportional to exp [ - ( t  / r )  - 2/2], where 

is the correlation time, which diverges as T-+ T, (one can 
make sure of this by comparison with the results of the criti- 
cal dynamics study1 ). Thus, 

Ct ( t )  a exp [- ( t l ~ )  ( d - 2 ) / z ] .  ( 5  

It follows from the last relation that the nucleation centers 
give rise to nonexponential correlations for 2 < d < 4; for 
d > 4 they are negligible, and the ordinary exponential relax- 
ation occurs. The dimensionality d = 4 is the upper critical 
one, when fluctuations of the given type begin to determine 
the autocorrelations at long times. In this case a nontrivial 
preexponential factor in (5)  is to be expected. In the most 
important case of d = 3 we find from the last relation 

One may hope that the dependences found above can be 
observed in light-scattering experiments or in atomic-beam 
diffra~tion,~ when the Fourier-transforms of the correlation 
functions (1) and (2)  are measured directly. 

I am grateful to A. P. Levanyuk for useful discussions. 
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