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A manyfold increase in the intensity (by a factor of a - ', where a is the dimensionless electron- 
phonon interaction constant obeying a 4 1 ) is predicted for multiphonon resonant Raman 
scattering of light in quasi-two-dimensional electron systems (quantum wells, inversion layers), 
compared with a bulk semiconductor. The amplification threshold is shifted from four-phonon 
scattering (in the bulk) to three-phonon scattering in the two-dimensional case. 

1. INTRODUCTION 

Perfect quasi-two-dimensional electron structures (in- 
version layers, heterostructures, quantum wells) can now be 
formed in semiconductors. This has stimulated major inter- 
est in physical properties of quasi-two-dimensional elec- 
trons. An important place in the current investigations of the 
topic is held by the method of resonant Raman light scatter- 
ing (RRLS) involving optical (LO) phonons.' Such scat- 
tering was first observed in a GaAs/AlGaAs superlattice at 
room temperat~re."~ In the case of a bulk semiconductor 
subjected to illumination with light from the fundamental 
absorption region it is found that the secondary radiation 
(luminescence) spectrum has a series of lines known as the 
phonon replicas and located at frequencies satisfying the 
condition 

where w, is the frequency of the laser (exciting) light; w,, is 
theLO phonon frequency; Nis the number of phonons emit- 
ted in a scattering event or the phonon replica number. This 
is known as multiphonon resonant Raman light scattering 
(MRRLS). The intensity of the phonon replica peaks falls 
slowly on increase in N, so that experiments can reveal dis- 
tant phonon replicas. For example, in the case of In1 the 
phonon replicas had been observed right up to N = 20 (Ref. 
4). 

The weak dependence of the phonon replica peak inten- 
sity on its number can be explained qualitatively as  follow^.^ 
We shall assume that the absorption of light of frequency w, 
creates an electron-hole pair (EHP) . The energy of the elec- 
tron in such a pair is released generating LO phonons and it 
finally annihilates with a hole, emitting the last phonon of 
the cascade and scattered light of frequency w, [see Eq. 
( 1.1 ) 1. A different scattering channel is also possible and in 
this case the creation of an EHP is accompanied by phonon 
emission (indirect creation); then, in real transitions phon- 
ons are emitted and, finally, an EHP annihilates directly. We 
shall consider phonon replicas with numbers N24. The 
emission of phonons results in a real random walk of an 
electron in the bulk and the mean free path is 1 a a; ', where 
a, is the Frohlich electron-phonon coupling constant. In 
the case of direct annihilation (i.e., for equal momenta of an 
electron and a hole) the cross section a, of the MRRLS 
process is proportional to the probability of return of an elec- 
tron to the point of creation of an EHP after the emission of 

N - 1 phonons (for simplicity, we shall assume that the hole 
is heavy and that it remains at the point of creation of the 
EHP). The probability of this process is inversely propor- 
tional to the volume within which an electron random walk 
takes place. The most probable random-walk volume is 
V,,, z 1 a a; 3, SO that the cross section for the appearance 
of Nth  phonon replica is ON>, a a: and the tube of a, is 
independent of N (Refs. 6 and 7). In the case of lower values 
of N, where the above analysis does not apply, we have 
a, a a; (Ref. 5 ) and a, a a: In a; ' (Ref. 8). 

Restrictions on the free motion of an electron lead, as is 
well known, to enhancement of the resonant effects. In a 
strong magnetic field, when the free motion of an electron is 
limited to one dimension, the MRRLS cross section rises 
strongly and we have UN>, -a, (Ref. 9). This enhancement 
of the MRRLS in a magnetic field had been confirmed ex- 
perimentally.1° A magnetic field suppresses the electron- 
phonon interaction in a plane perpendicular to H; this in- 
creases the rate of exciton creation and, consequently, in- 
creases the intensities of the exciton luminescence lines, as 
described in Ref. 11. An electron in a quantum well can 
move freely only in the plane of the well. We can expect the 
reduction in the dimensionality of the system to result in a 
strong manyfold increase in the MRRLS cross section, com- 
pared with the case of similar scattering in a bulk semicon- 
ductor. In this case an electron emits phonons and wanders 
at random in the plane of a well over an area of the order of 
I a a;, i.e., instead of the dependence a, a a:, we can ex- 
pect 

It therefore follows that in a quantum well the MRRLS 
cross section should increase by the factor a; (Ref. 12). 
The specific behavior of phonon replicas in a quasi-two-di- 
mensional quantum system is tackled in the present paper by 
developing a theory of the MRRLS by quasi-two-dimension- 
a1 electron systems in the specific case of a quantum well. 
Our calculations are based on a general expression for the 
differential cross section representing the scattering by a 
quasi-two-dimensional system, such as a quantum well or an 
inversion layer in an MIS structure.13 The intermediate 
states in the scattering process are EHPs. The exciton states, 
which can also act as intermediate states, make a much 
smaller contribution (see Ref. 14 and the literature cited 
there ) . 
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2. MODEL OF A QUANTUM WELL AND PRINCIPAL 
RELATIONSHIPS 

Our theory will be developed for a quantum well with 
infinitely high potential barriers subject to the condition 

where d is the width of the quantum well. The motion of 
electrons and holes then becomes quantized at right-angles 
to the wall plane. It is assumed that the wall is bounded by 
the planes z = 0 and z = d. The energies of an electron ( e )  
and a hole (h )  are described by the following expressions: 

where me,,, is the effective mass of an electron (hole); k,,,, 
is the two-dimensional vector k = (k,, k,, 0); n,,,, are the 
quantum numbers of size quantization. The wave functions 
+be,,, of an electron and a hole are 

h h ) =  (2/Sod)' exp ( ik ,,,,, r )  sin (nn ,(h, .z/d), (2.3) 

where r is a two-dimensional vector in the well plane; So is 
the normalization area. 

The general expression for the differential cross section 
for the scattering by a quasi-two-dimensional electron sys- 
tem13 is 

Second-rank tensors Go and JYPY are governed by the geo- 
metries of the scattered and incident waves, respectively; Ct 
is a solid angle. The fourth-rank scattering vector 
SBYB,r, =S depends on the properties of the scattering re- 
gion and is related to a product of the current commuta- 
tors15 

d r ~  ( -r )  exp ( -~ , r ) l !  d r f8  (-r ' )  

where 

and 

is a component of the current density operator; cis the veloc- 
ity of light in vacuum; (... ) , denotes the Heisenberg repre- 
sentation; the operators a,+, and a; represent electrons in 
the conduction band; c;+ and c, represent holes in the va- 

lence band. In Eq. (2.5) the angular brackets (...) denote 
averaging over the ground state of the electron system (at 
zero absolute temperature). The theory is linear in respect of 
the exciting light intensity. 

In the MRRLS the optical transitions are of the inter- 
band type, since the frequencies w ,  and w, lie in the funda- 
mental absorption region. Therefore, in the effective mass 
approximation using the dipole approximation, we find that 

. nn' t? 

la = - mo pasn,n,,  6n ,nr=6ne,nh6r  e , -kh,  

where mo is the mass of a free electron; pa is the projection of 
the interband matrix element of the momentum calculated 
using the Bloch modulating factors. 

In a heterostructure there are not only bulk phonons, 
but also surface phonons (vibrations of the boundaries se- 
parating the layers) and slab phonons, which propagate in a 
given layer and are quantized for the motion across the layer. 
The interaction of electrons with different types of phonons 
is reflected in the characteristics of the MRRLS spectra, par- 
ticularly the values of the secondary radiation frequencies 
a,. Moreover, some role may be played also by the mutual 
influence of bulk and quantized phonons. Combinations of 
different types of phonons also participate in the MRRLS 
processes. An analysis of the characteristics of the phonon 
spectrum and of the electron-phonon interaction listed 
above is outside the scope of the present treatment: we shall 
confine ourselves to an allowance for the interaction of elec- 
trons with just the bulk LO phonons. We shall use the experi- 
mental data demonstrating the dominant role of the bulk LO 
phonons in the RRLS processes that occur in superlattices 
made of hetero~tructures.'~ 

The Hamiltonian of the electron-phonon interaction is 

where bQ and b a+ are the phonon operators. The following 
notation is used in Eq. (2.8): 

Q = (q, qz ); q and w,, are the two-dimensional wave vec- 
tor and the frequency of a phonon; Vo is the normalization 
volume. The operator representing the interaction of holes 
with phonons is derived from Eq. (2.8) by the substitution 
a t  a ,  -ci+ ci, and we have 

The functions J,,. - (Q) =Jniki,n, k, are given by the ex- 

pressions 

In addition to the Frohlich interaction of Eq. (2.8), we shall 
consider a model interaction, in which C, is independent of 
the wave vector Q (Ref. 6), i.e., 

The tensor S can be represented by a sum of the contri- 
butions made by different phonon replicas: 
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The resonance frequencies at which phonon replicas with 
different values of N are observed are not all identical, as is 
clear from Eq. ( 1.1 ) . In the calculation of S 'N' it is conven- 
ient to use a diagram technique developed in Refs. 17 and 18 
for the MRRLS in a bulk semiconductor. In the case of a 
quasi-two-dimensional system considered here the rules for 
constructing such diagrams are as follows. 

1. An ordering contour C (dash-dot line in all the fig- 
ures) consists of two regions located to the left (C, ) and 
right (C, ) of a section f (final state). 

2. The electron lines pass above the contour C and the 
hole lines below it. These lines are continuous in our figures. 

3. The wavy lines represent phonons and the dashed 
lines represent the exciting and scattered light. These lines 
do not correspond to any specific objects. 

4. The lines joining the vertices inside the regions C, 
and C, are called inner and the lines connecting the vertices 
in different parts are called outer. 

5. In the MRRLS all the electron and hole lines are 
inner. The inner electron (hole) lines in the region C, corre- 
spond to an electron (hole) retarded Green function 
iG, (n, o) [iGh (n, O )  1, whereas in the region C2 they cor- 
respond to the electron (hole) advanced Green function iG 
(n, o) [ - iGh (n, a) 1. 

6. The open circles denote the vertices of the electron- 
phonon interaction. In the region C, each vertex y corre- 
sponds to a factor (e/m, )pYSpp,, where p and p' are the 
quantum numbers of the electron and hole lines entering or 
leaving a vertex. In the region C2 the vertices correspond to 
complex-conjugate quantities. 

7. The filled circles represent the vertices of the elec- 
tron-LO-phonon interaction. If in the region C, an electron 
line p enters a vertex, whereas an electron line Y and a 
phonon line Q leave the vertex, this vertex corresponds to a 
factor ( - i/+i) ( C  'o ) *JVp ( - Q ), whereas in the region C, 
it corresponds to a factor (i/+i) C J,,, (Q), where m and n 
apply to the electron lines entering and leaving a vertex, re- 
spectively. In the case of the hole lines the quantity C b  is 
replaced with Ch, = - C',. 

8. The summation is carried out over the quantum 
numbers of the electron and hole lines, and also over the 
phonon wave vectors. 

9. The integration is carried out with respect to the fre- 
quencies w, or from - cu to cu with the weight ( 2 ~ )  - I .  

10. The section f corresponds to a factor 
S(o,  - w, - No,, ), where N is the number of the phonon 
lines that cross the sectionf, i.e., the number of phonon repli- 
cas. 

11. Each graph is multiplied by (o,/o, )c -4+i - ,. 
These rules for the calculation of the contributions 

made to the tensor S by different phonon replicas are valid at 
T = 0, when the conduction band is empty, the valence band 
is filled, the optical phonons are not excited, and the elec- 
tron-phonon interaction involves spontaneous phonon 
emission. The dispersion of the LO phonons is ignored and 
the momentum of a photon participating in an interband 
transition is neglected. The electron and hole Green func- 
tions are 

G,(n, o )  = (o-one+iyne)-', Gh(n, o )  =(a-o,"f i'f,,h)-', 

c,(n, o)=G/(n, o), eh(n ,  o)=Gh*(n, o ) .  (2.15) 

The Green functions contain the quantities y', and yf: which 
represent the reciprocals of the lifetimes of the electron and 
hole states in the case of different scattering mechanisms. In 
particular, such a mechanism can be the interaction with the 
LO phonons. We shall not calculate y', and yh,, but assume 
them to be constant, independent of the continuous quan- 
tum numbers, and satisfying the inequalities 

rne, y n h < ~ ~ o .  (2.16) 

In our estimates we shall use the obvious condition 4, a a, 
and yf: a a,, (because of the proportionality to A in the mod- 
el interaction). All the reported calculations were carried 
out in the approximation of a heavy hole, when the following 
inequalities apply: 

3. SECOND PHONON REPLICA 

We shall consider graphs with two outer phonon lines 
which apply to the second phonon replica ( N  = 2) in 
MRRLS (in the dipole approximation the first phonon re- 
plica is missing). We shall avoid cumbersome figures by in- 
cluding not the whole graph, but only its elements corre- 
sponding to the regions C, and C,. Obviously, in the case of 
the second phonon replica there are three-elements which 
when connected give all the graphs. We shall denote these 
elements by a, b, c (Fig. 1 ). There is a total of nine connec- 
tions (aa, ab, ac, ba, bb, bc, ca, cb, and cc) which correspond 
to nine types of graphs. Two outer phonon lines in each 
graph either do not intersect (diagrams a ,  a , ,  a ,  b, , etc.) or 
they do intersect (graphs a,a,, etc.), as demonstrated in 
Fig. 2. 

We shall first show that the graphs of one type (a ,a ,  
and a, a,, etc.) are equal. Summing with the aid of the S 
symbols and integrating with respect to o and w', we obtain 
the contribution of the graph a,  a, (Fig. 2a) to the tensor 
~ ' 2 ' :  

The function I z$;(q) is defined as follows: 
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The graph a2a2 (Fig. 2b) differs from a ,  a ,  by one function 
Z(q) : instead of Z :I:;, we now have I :$; (9). It follows from 
the definitions given by Eqs. (3.4) and (2.12) that the func- 
tion Z(q) is symmetric under index transposition: 

which yields also the equality S A::l = S A::2. Similar equali- 
ties apply also to the other graphs. In the graphs ac, bc, ca, 
and cb the number of the constants C 2, is odd, in contrast to 
the graphs aa, bb, ab, ba, and cc, in which case the number is 
even. Therefore, these two groups of graphs differ in respect 
of the sign. Allowing for this circumstance, we can easily 
prove that 

(2)  (2)  se'.2'=4s,:', S,, =s,. =-2s@' a4 1 

(2) ( 2 )  

(3.6) 
s,, =-2S, , s::' =-2s::' , 

which leads to the condition of mutual canceling of graphs: 

Therefore, all the second-order graphs reduce to the 
following sum: 

FIG. 1 .  Elements of graphs corresponding to the second 
phonon replica. 

In the approximation of a heavy hole all these graphs 
contain monotypic products of the electron wave functions 

In terms of the new notation, S '2' can be reduced to 

n n n n  ~ v n m  9 

According to the definition given by Eq. (3.9), the 
function I (q)  for the Frohlich electron-phonon interaction 
assumes the following form after integration with respect to 
the transverse phonon momentum q, : 

FIG. 2. Example of a comparison of graphs for the second phonon replica 
carried out using the element a: A is the a ,a ,  graph and B is the a,a2 
graph. The indices of the electron states in the graphs a, a,  and a,a, are 
identical. The Green functions 1-6 in the graph a la ,  correspond to the 
following quantities: 1 )  p, w; 2 )  v,,, o - a,,; 3 )  v', o - 2wL0; 4 )  n', 
of - 2oL0; 5 )  m, of - 2oL0; 6)  n, o ' .  

nmz' 
X Jdz '  sin(T)sin ($)sxp(-qlz-z ' l ) .  (3.10) 

0 

A dependence of the q- ' type leads to a divergence of each 
graph for low values of q, although-as can be seen from Eq. 
(3.9)-the quantity S '2' itself is finite in this limit. The fi- 
nite nature of S '2' is ensured by inclusion of graphs of the ab- 
cc type, in which holes also generate phonons. We shall con- 
sider only the case when an electron generating phonons 
remains in the same size-quantization band. The terms 
which are not diagonal in respect of the band indices make a 
smaller contribution, as shown in Ref. 19. It follows from 
Eq. (3.10) thatI3 
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8 
n -p  3 (an) ' 

F ( ) - [ (qd)'+ (2nn)2~-1 [T qd + - 
4 (nn) ' 1-exp (-qd) --- I (qd) ' (qd)'+ (2nn)' ' n=l,2 ... (3.12) 

If q+O, then F(q)+q-I; if q - a ,  we obtain F ( q ) ~ q - ~ ,  
which ensures convergence of the integrals at high values of 
q. In the model interaction case,6 we have 

Since I is independent of q, the graphs converge at low val- 
ues of q. 

In the adopted approximation, we find that I is inde- 
pendent of the discrete quantum number n. According to 
Eqs. (3.11) and (3.12), the scattering tensor of Eq. (3.9) 
becomes 

Al(n, q)=A,(n,=n, n,=n, q), A2(n, O)=A,(n, 0) .  

In the approximation of the model interaction the graphs 
a,  a, and a2a2 make the contribution [see Eq. (3.1 ) 1 : 

Integrating with respect to the two-aimensional vector k in 
Eq. (3.8), we obtain the exact expression for the function 
A,(n, q): 

(3.17) 

A,, is found from A,, by the substitutions z, +z2 and 
P2 -'Po ; 

We shall represent A,, and A,, in the form 

(3.19) 
where f, and f2 are smooth logarithmic functions. It is clear 
from Eqs. (3.18) and (3.19) that if the frequency w,  satisfies 
the condition 

01=08+n20e+20Lo, we=n21i/2med2, (3.20) 

then Re p i  -0 and a factor In A appears in Eq. (3.15), i.e., 

If the resonance condition of Eq. (3.20) is not obeyed, then 
lnp: is not a large quantity and we have 

IS,::! +s,::: a A2. (3.22) 

Therefore, logarithmic enhancement of the intensity of the 
second phonon replica occurs at a resonance. This enhance- 
ment is due to the fact that a range of the momenta in the 
vicinity of a minimum of the two-dimensional band, where 
the density of states diverges logarithmically, participates in 
electron transitions. 

Graphs ab, ba, and bb considered in the heavy hole ap- 
proximation diverge for the model interaction in the range of 
large phonon momenta. Their convergence is achieved by 
including the hole energy in Gh and g,,. It is sufficient to 
retain the term fi2q2/2mh, because then the graphs in ques- 
tion depend on the coupling constant A in the same way as in 
Eq. (3.21). 

In the case of the Frohlich interaction, S '2' includes, 
according to Eq. (3.17), the functions 

Using Eq. (3.19), we can rewrite S "' in the form 

If the resonance condition of Eq. (3.20) is satisfied, then 
S'2' a (ao In a, 1'. Therefore, both types of interaction 
give rise to the same dependence on the coupling constant. 

We shall conclude this section by noting that our results 
are based on the assumption that throughout the size-quan- 
tization band the broadening of the electron states is gov- 
erned by the constant y, -a,, i.e., it is governed by the spon- 
taneous emission of an LO phonon. However, in the first 
band in the vicinity of its minimum the emission of LO phon- 
ons is forbidden and the broadening is governed by other 
scattering mechanisms (for example, the scattering by im- 
purities). In contrast to the three-dimensional case,' this 
results in enhancement of the contribution made to the 
phonon replica peak by the first band, since the constant 
y ' < y, occurs in the logarithm. 

4. HIGHER-ORDER PHONON REPLICAS 

We shall consider briefly the graphs corresponding to 
phonon replicas with N)3, which are accompanied by the 
emission of three or more phonons. The total number of 

908 Sov. Phys. JETP 72 (5), May 1991 Korovin etal. 908 



graphs describing phonon replicas with the number N is 
( N  + 1 ) 'N!, where ( N  + 1 ) ' is equal to the number of dif- 
ferent types of graphs and N! is the number of different com- 
binations of the outer phonon lines of a given type (ranging 
from "ladder" to "fan"). The four elements of which the 
graphs are composed in the N = 3 case are shown in Fig. 3. 
There is a total of 16 types of graphs. Out of these there are 
eight types with an odd number of the whole lines and they 
are negative, so that mutual canceling of the graphs takes 
place. None of the graphs show divergence at low momenta 
in the case of the Frohlich interaction. We shall consider in 
greater detail two graphs of the aa type: a "ladder" graph 
a, a, and a "fan" graph (Fig. 4). They correspond (the sum 
with respect to n is not included) 

FIG. 3. Elements of graphs for the third phonon replica; 
Figs. 3a-3d correspond to the elements a-d. 

We shall now analyze the model interaction when I (q)  is 
independent of the phonon momentum [I(q) a A].  After 
substitution of the variables 

Eq. (4.1 ) becomes 

X (n, ko+p, os) . (4.7) 

The fan graph of Eq. (4.2) contains not the functions 
Yn (mi, mi, PI, but 

The substitution of the variables described by Eq. (4.4) re- 
duces the problem to calculation of the integrals already en- 
countered in Sec. 3. Expanding the function Z(n,p)  into the 
simplest fractions, we can describe it in the form of a sum of 
the functions (4.6) : 

A 

FIG. 4. Graphs for the third phonon replica: A is the 
graph a,a, (of the ladder type) and B is the graph a,a, 
(of the fan type). 

909 Sov. Phys. JETP 72 (5),  May 1991 Korovin eta/. 909 



Integration of Eq. (4.6) gives 

(p is the integration variable). 
Equation (4.5) contains terms with a product of three 

functions Yn characterized by identical o ,  . These terms cor- 
respond to the channels of direct creation and direct annihil- 
ation of an EHP. Since the polynomials zO in the functions 
Yn (w,, w,, p )  are transformed into 

it follows that the sum (4.5) is dominated by the terms 
p a  yA'2 and that a factor y; ' a A - ' (A is the coupling con- 
stant) appears in this sum, i.e., S$, a A '. In the case of the 
other two terms the range of large values isp) yA'2 and their 
contribution are described by S:::, a A 3. In the fan graph, as 
can be seen from Eq. (4.8), there is only one function Y,, 
with coincident frequencies and, therefore, S::i2 a A  '. It 
therefore follows that in the case of a phonon replica with 
N = 3 the largest contribution is made by the ladder-type 
graphs. 

Generalization to higher-order phonon replicas is self- 
evident. An increase in the order of a phonon replica by unity 
gives rise to an additional function Y(w,, a , ,  p )  in the inte- 
gral and this makes an additional contribution of y; '. Con- 
sequently, the extra degree of the coupling constant in the 
numerator is compensated by a factor yn a A in the denomi- 
nator. Therefore, all the phonon replicas beginning from 
N = 2 are, with an accuracy to within logarithmic multipli- 
ers, proportional to the square of the coupling constant. The 
greatest contribution comes from a ladder-type graph and it 
corresponds to 

This expression is equal to that given in Ref. 12, but with 
different notation. Since for N -  2 the functions 
Y(wj, wj, p)  make a contribution proportional to 
~ n -  (N- ') , we have SAz =A2. If the frequency wi ap- 
proaches o, + n2w, + Nw,,, then the function 
Yn (w,, WN, p )  in Z ( n ,  p )  gives rise to a factor In A. There- 
fore, as in the N = 2 case, the intensity of the phonon replica 
peak should rise logarithmically. Graphs of the ad and dd 
type (Fig. 3) make small contributions, since they do not 
allow for resonances (the appearance of N functions Yn with 
identical frequencies). Therefore, these contributions are 
proportional to a higher degree of the coupling constant. 

In this section we considered only the model interac- 
tion. The Frohlich interaction does not alter qualitatively 

the conclusions reached above, since a phonon replica with 
N>3 does not give rise to divergence of the graphs at low 
photon momenta. Therefore, there is no need to include all 
the graphs, as had been done in Sec. 3 in the case of the 
pcond phonon replica. 

5. DISCUSSION OF RESULTS 

We shall now consider briefly the main results of our 
investigation. The fact that the phonon replicas depend on 
the coupling constant with the same power exponent, which 
is true beginning from a certain number, had been proved 
earlier for the scattering in a bulk semiconductor in the ab- 
sence and presence of a strong magnetic field. The main re- 
sult of the above theory is identification of the specific behav- 
ior of phonon replicas in a quasi-two-dimensional quantum 
well. This is due to, firstly, a reduction in the dimensionality 
of the region where an electron "wanders" generating phon- 
ons (plane instead of volume) and, secondly, due to a loga- 
rithmic singularity of the density of states in a two-dimen- 
sional size-quantization band. The first circumstance has the 
effect that an increase in the degree of the coupling constant 
ceases beginning from the third phonon replica, which is 
proportional to the a: (in the bulk case this begins from the 
fourth phonon replica, which is proportional to a: ) . There- 
fore, the theory predicts a strong increase in the specific (per 
unit volume of the scattering region) intensity of phonon 
replicas in the case of the Raman light scattering in a quan- 
tum well, compared with the scattering in a bulk sample. In 
the case of GaAs, which is characterized by a, 2 X 10 - 2, 
such an increase in the intensity can be by a factor of many 
tens of times. Since the first phonon replica is weak (it is 
absent in the dipole approximation), it follows that the in- 
tensities of all the phonon replicas (Na2)  should depend 
with the logarithmic precision in the same way on the elec- 
tron-phonon coupling constant. This should make it possi- 
ble to detect experimentally the distant phonon replicas. 

A logarithmic singularity of the density of states gives 
rise to a factor ln2ao (for N = 2) and lna, (for N>3) in the 
expression for the intensity of a phonon replica, if the fre- 
quency of the exciting light wl approaches 
w, + n2w, + Nw,,. The frequencies 13, and w, are in this 
theory related closely to the condition 13, = w, + Nw,,, i.e., 
the phonon replica peaks are infinitesimally narrow. This is 
a consequence of our neglect of the phonon dispersion. 
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