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An investigation is made of the behavior of the charge of a small metal particle, tunnel-coupled to 
a massive electrode, as a function of an external electric field. The step-like field dependence of the 
charge due to the Coulomb blockade is shown to be smeared out by quantum fluctuations. A 
relationship established between this and Kondo problems is used to calculate the shape of the 
smeared-out steps in the case of a low-transparency tunnel barrier. 

1. INTRODUCTION 

Studies of tunnel junctions formed by two massive met- 
al electrodes joined by tunnel layers containing a small metal 
particle (granule) have shown that the tunnel current is sup- 
pressed at low longitudinal  voltage^.'^ This effect is ex- 
plained in Ref. 1 as follows: a change in the charge of a metal 
particle by an amount to equal to an electron charge e in the 
course of an elementary tunneling event results in a finite 
change in the electrostatic energy AE a e2/C (here, Cis the 
characteristic capacitance of the granule). Therefore, only 
electrons with sufficiently high energies E > AE can partici- 
pate in the tunneling processes and their number at low tem- 
peratures T < AE is small, which is the reason for suppres- 
sion of the current (known as the Coulomb tunneling 
blockade). 

In contrast to a large number of investigations of the 
manifestation of the Coulomb blockade in the current-vol- 
tage characteristics of tunnel junctions (see, for example, the 
review in Ref. 5),  our aim will be to consider fluctuations of 
the granule charge. The investigated system is shown in Fig. 
1. The charge carried by a granule 1 may change because of 
the tunnel coupling to the bank 0. The role of the electrode 2 
(gate) is to create an electric field around the granule so that 
after allowing for this field the electrostatic energy of the 
system considered as a function of the granule charge Q is 

the charge described by Eq. (2)  exhibits a jump by + eat the 
same values of the voltage. We can easily show that these 
jumps are smoothed out at a nonzeio temperature T. We 
shall show however that because of quantum fluctuations of 
the charge the Q( V) dependence is continuous even at T = 0 
if the transparency of the insulating layer between the gran- 
ule and the bank differs from zero. 

In Sec. 2 we shall calculate the correction to the depend- 
ence (2)  in the first order of perturbation theory in terms of 
this transparency. The results obtained using perturbation 
theory describe satisfactorily the dependence of the charge 
on the gate voltage everywhere with the exception of the 
vicinity of the points (voltages) of charge degeneracy given 
by Eq. (3 ), where the correction diverges logarithmically. 
As pointed out in Ref. 6, the origin of this divergence is the 
same as in the familiar Kondo problem. It is shown in Sec. 3 
that near the charge degeneracy described by Eq. (3)  the 
procedure of calculating the charge g( V) can be reduced 
formally to finding the magnetic moment of an impurity de- 
scribed by the anisotropic Kondo model. This analogy with 
the familiar Kondo model allows us solve completely the 
problem of calculation of the g( V) dependence. We have to 
distinguish two types of tunnel junction: point contacts and 

Here, Vis the voltage applied to the gate 2 (Fig. 2) and the 2 
dimensionless factor 5 is governed by the geometry of the 
system [for details of the derivation of Eq. ( 1 ) see, for exam- 
ple, Ref. 61. We shall limit our task to a calculation of the 
average charge Q of such a granule as a function of Vat zero 
absolute temperature. In fact the& V) dependence was used 
by Averin and Likharev7 to calculate the profile of what are 
known as one-electron voltage oscillations across a tunnel 
junction under a given-current conditions. It was assumed in 

7 
Ref. 7 however that the tunnel coupling is negligible; in this 
case the charge g( V) can be found by minimizing the elec- 
trostatic energy ( 1 ) with allowance for the discrete nature of 
the charge Q = ne: 

6VC 1 
Q ( O ) ( V ) = - ~ [ ~ + ~ ]  (2)  

[the 'quare brackets in Eq. (2 )  an integer]. In view FIG. 1. Metal particle (granule) 1 in the field of two massive electrodes 0 
of the energy degeneracy described by Eq. (2)  in respect of (bank) and 2 (gate). It is assumed that tunneling of electrons is possible 
the value of Q, which appears at V = V, , where only between the granule and the lower electrode. 
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FIG. 2. General form of the solutions of the system of equa- 
tions (49), (50) obtained for different values of 
Z, (0) = vJo. All the solutions are in the form of arcs of the 
hyperbolas (57) and they terminate at the point 
Z, = Z, = 1/N. The solution 1 corresponds to the limiting 
case of the isotropic Kondo model J, = J,. 

wide junctions. It is shown in Sec. 4 that in the case of a point Eq. (2)  1. The results can then be generalized to any value of 
contact, in which the transparency of the insulating layer q, employing the obvious relationship 
differs from zero only in a narrow region with transverse 
dimensions of the order of the Fermi wavelength A,, the Q ( V  + $ )=Q (V) -e. (8) 

problem reduces to the exact solution of the Kondo prob- 
lems-'' obtained by the Bethe method. The opposite limiting Substituting in Eq. (6)  the wave function of the ground state 
case of a wide contact can be investigated by the renormal- I *) in the form of a perturbation-theory series, we obtain 
ization group method. The results are summarized in Sec. 5  
and the feasibility of verifying them experimentally is con- 
sidered. 

2. PERTURBATION THEORY - 0 (8,) 0 (-8,) - -1 (ek-e,+e2/2C-ecp) ' (9) 
We shall calculate the D( V )  dependence, allowing for 

the tunneling of electrons between the granule and the bank 
It  is convenient to replace the matrix elements tkp with a and writing down the Hamiltonian of the system in the form 
dimensionless parameter 

Here, a, and a, are the electron annihilation operators in the 
bank and in the granule; the corresponding energies E,  and 
E, are measured from the Fermi level and occupy a band 
- W <  E ~ ,  E, < W; tkp and t ;p are the matrix elements that 

describe the tunneling of electrons from the granule to the 
bank and vice versa. The Coulomb energy is written in the 
simplest form of Eq. ( 1 ) and the gate voltage Vis allowed for 
by introducing a parameter q,= f V. The granule charge op- 
erator is 

We shall calculate the average charge of the granule 

in the ground state IY) of the Hamiltonian (4) .  The second 
term in Eq. (5) ,  which includes the Heaviside function 
B ( x ) ,  shifts the origin of the charge scale in such a way that - 
Q(p = 0) = 0. As a first step, we shall include the tunnel 
Hamiltonian H ,  using perturbation theory and find the sec- 
ond-order correction to the charge (2) .  We shall confine 
ourselves to the values of q, in the range 

which corresponds to the unperturbed value a 'O' = 0 [see 

which represents the conductance G= G,g, of the tunnel lay- 
er, reduced to the universal value G, =2?rez/fi. Calculation 
of the sum in Eq. (9)  gives 

e/2C-cp 
Q(2)=eg ln-. 

e/2C+cp 

The physical meaning of the correction described by 
Eqs. (9)  and (1 1 )  is that the perturbation H, gives rise to 
the following two types of virtual transitions: 1 ) the transfer 
of an electron from the bank to the granule, increasing the 
charge of the granule from Q = 0 to Q = e; 2)  the transfer of 
an electron from the granule to the bank, reducing the gran- 
ule charge from Q = 0 to Q = - e. 

Since these two types of transition produce opposite 
changes of the charge, some of the contributions to Eq. (9)  
corresponding to high energies E >  e2/C of virtual states 
cancel out. The correction ( 1 1 ) which then remains is due to 
the fact that if q, #O, then one of the possible types of virtual 
transition is related to a smaller increase in the electrostatic 
energy of the system. 

The small parameter is g and it allows us to use an ex- 
pansion of G(q,) as a perturbation-theory series. We shall 
assume that everywhere we have g 4  1. Then, Eq. ( 1 1  ) de- 
scribes correctly the dependence a(q,) in a large part of the 
interval defined in Eq. (7) .  However, in the vicinity of the 
points q, = * e/2C the smallness of the parameterg is com- 
pensated by a large logarithmic factor. Therefore, in calcula- 
tion of g(q,) near the ends of the interval (7)  we have to 
allow for the next orders of the perturbation-theory series. 
We shall consider specifically the vicinity of the point 
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g, = - e/2C, i.e., we shall assume that 

where U<e/C. For this selection of g, the electrostatic ener- 
gies of the states with Q = 0 and Q = e, given by Eq. ( 1 ), are 
close: E(0)  = 0 and E(e)  = eU, whereas the energies of the 
remaining charge states of the granule are 
E(Q) > e2/C)eU. We have seen already that transitions to 
states with energies E > e2/C make no contribution to the 
average - charge. Therefore, in a study of the behavior of 
Q(q )  near the point g, = - e/2C we can simplify the Ham- 
iltonian (4)  by removing from it the states of the granule 
whose charge differs from Q = 0 or Q = e, and at the same 
time limiting the width of the band to e2/C. The arbitrary 
nature of this truncation procedure does not affect signifi- 
cantly the value of G(g,), which depends logarithmically on 
e2/C. The Hamiltonian of the system formed in this way is 

h A 

Here, Po and PI are the operators representing projections, 
in the eigenstate subspace, of the operator Q, which corre- 
spond to the values Q = 0 and Q = e, respectively. The ener- 
gies ek and ep lie in the interval 

Using the Hamiltonians ( 13 ) and ( 14) we can calculate 
the charge g(p) in the fourth order of perturbation theory 
using the parameter tkp. It is then found that the dependence 
of the correction g '4' on the matrix element tkp is not limit- 
ed to their dimensionless combination ( lo), as found in the 
case of the second-order correction '2'. This means that in 
calculation of the g ( p )  dependence near the ends of the 
interval (7)  it is generally insufficient to know the conduc- 
tance of the tunnel layer separating the granule from the 
bank; we need more information on its structure. However, 
we can consider two limiting cases when g ( p )  is expressed 
solely in terms of the parameter g. 

I. Point contact. We shall assume that the transparency 
of the tunnel layer differs from zero only in a region whose 
transverse dimensions do not exceed A,. Then, a matrix ele- 
ment of the tunnel Hamiltonian, written down in the coordi- 
nate representation, is t(r,rl) = t6(r)6(r1). (Here, r and r' 
are the radius vectors of a point in the bank and in the gran- 
ule, respectively. ) Adopting the momentum representation, 
we find that tkp =t, i.e., the matrix element is independent of 
the momenta k andp. The parameter g is related to t by 

where vo and v, are the densities of states in the bank and in 
the granule. The fourth-order correction to the granule 
charge, found with logarithmic precision, is described by the 
following expression in the case of a point contact: 

4 e 
Qc4' (U) = - eg2 InS -. 

3 CU 

2. Wide junction. We shall assume that the surfaces of 
the insulating layer (spacer) separating the granule from the 
bank are smooth and parallel and that the area of the spacer 
A is large: A)A :. Then, the tunneling process should con- 
serve the components of the electron momentum parallel to 
the spacer. Bearing in mind this conservation law, we can 
write down the Hamiltonian of the system as follows: 

The index m labels the conserved transverse components of 
the momentum and assumes values from 1 to N, where N) 1 
(we can show that N-A /A g ) .  In the case of a wide contact 
the parameter g is 

where yo and v, are the densities of states with a definite 
index m. The expression for the fourth-order correction to 
the granule charge, obtained with the aid of the Hamiltonian 
(17) in the limit N-+ a, is 

e 
Q'" (U) =-2eg2 ln2 - 

CU ' 

- The above expressions ( 16) and ( 19) for the correction 
Q (4)  do not, naturally, solve the problem of the behavior of - 
Q(p)  near the ends ofthe interval (7). They simply indicate 
that the nature of this function depends strongly on the junc- 
tion area. 

3. RELATIONSHIP TO THE KONDO PROBLEM 

We shall now establish a useful analogy between the 
problem discussed here and the Kondo problem. We shall do 
this by rewriting the Hamiltonian ( 13) for the case of a point 
contact (tkp = t )  in the form 

H=Ho+V, Ho = ~ e k a m + a k . ( P O + ~ , )  +cupi,  (20) 
k,n 

Here, the index a indicates the position of an electron: a = 1 
applies to an electron inside the granule and a = 0 repre- 
sents an electron in the bank. We shall be interested in the 
ground-state energy E( U) of the Hamiltonian described by 
Eqs. (20) and (21 1. This is sufficient for calculation of the 
average charge of the granulein its ground state, so that the 
obvious equality dH/dU = eP, yields 

We shall represent E( U) as a vllouin-Wigner series and 
regard the tunnel Hamiltonian Vas a perturbation: 

Here, I@) is the ground state of the Hamiltonian Ĥ, where 
Q = 0. We can see from Eq. (21 ) that the operator Vconsists 
of two parts: the first acts on the states with Q = 0 and trans- 
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forms them to the states with Q = e, whereas the second 
induces transitions from Q = e to Q = 0. Then, if the first 
term in Eq. (21 ) acts on the state with Q = e (or the second 
term on the state with Q = O), the result is nil. The existence 
of such selection rules can be allowed for in a different way. 
We can attribute to each state of the system an additional 
index 0 (which can have two values: 0 = O p d  P =  1 ), so 
that the eigenstates of the charge operators  corre~pond to 
0 = Q /e. Then, the projection operators Po and PI in the 
Hamiltonian of Eqs. (20) and (21 ) can be replaced with 

2 X 2 matrices acting in the space of the vectors \V 0 = [::I: 

We can easily verify that the perturbation-theory series of 
Eq. (23), written down for the two Hamiltonians described 
by Eqs. (20), (21) and (24), (25), are identical, i.e., the 
ground-state energies are the same for the two Hamilto- 
nians." If we consider p as the abstract spin index (for the 
spin S = 1/2), we can describe the matrices in Eqs. (24) and 
(25) in terms of the components of the corresponding spin 
operator S: 

where S * = Sx f isy. We shall rewrite Eq. (26) in a more 
symmetric form using the Pauli matrices uLa, : 

Therefore, the ground-state energy of the system E ( U )  is 
expressed in terms of the ground-state energy of the Hamil- 
tonian of the anisotropic Kondo model: 

using the relationship 

E ( U )  ='/,eU+EK (h ,  10) I h=eCJ/Z, lo=t (29) 

In the Kondo problem the Hamiltonians similar to that 
given by Eq. (28) describe a localized impurity spin S which 
is located in a metal matrix and interacts in the exchange 
manner with conduction electrons. The parameter J, is the 
anisotropic exchange constant and h describes an external 
magnetic field applied along the z axis. Using Eq. (22) and 
the corresponding relationship 

for the Hamiltonian (28), we find from Eq. (29) that 

In this way the calculation of the granule charge near the 
ends of the interval (7) reduces to the determination of the 
average spin of an impurity in the anisotropic Kondo model 
of Eq. (28). The following comments should be made. 

1. In going over from the Hamiltonian of Eq. ( 13) to 
that described by Eqs. (20) and (21 ), we are assuming that 
the spectra and, consequently, the densities of states of elec- 
trons in the granule and in the bank are identical. This does 
not affect the results of the present investigation expressed in 
terms of the parameter g, because the densities of states oc- 
cur in all the macroscopic quantities in the form of the com- 
bination given by Eq. ( 15 ) . 

2. The discussion given in this section can be general- 
ized directly to the case of a wide junction [Eq. ( 17) ]. The 
granule charge can also be represented in the form of Eq. 
(30), but the average spin p of an impurity should now be 
calculated for the multichannel anisotropic Kondo model: 

where the "color" m assumes the values m = 1,2;. ., N. 
3. The "spin" indices a and 0 introduced by us, as well 

as the operators a and S, are auxiliary and in no way related 
to the true electron spins. For example, the "spin" S is re- 
versed when any electron is transferred from the granule to 
the bank and vice versa; its z component indicates the direc- 
tion in which we can transfer an electron across the insulat- 
ing spacer in such a way as to leave the system in the space of 
the allowed states with the charge Q = 0 or e. The existence 
of the true electron spin, which is not affected by the tunnel- 
ing, can be allowed for in the Hamiltonian ( 13) as a conser- 
vation law additional to the law of conservation of the trans- 
verse momentum. Therefore, if we allow for the true electron 
spins, we find that a point contact should be described by the 
Hamiltonian ( 17) or (31) with N = 2. In the case of wider 
junctions, which correspond to the value N> 1, doubling of 
N to allow for the spin is unimportant. 

4. ANALYSIS OF THE MULTICHANNEL ANISOTROPIC 
KONDO MODEL 

It is shown in the preceding section that the problem of 
calculating the average charge of a granule G( U )  reduces to 
determination of the average spin p (h)  of an impurity, car- 
ried out using the multichannel anisotropic Kondo model of 
Eq. (3 1 ). In this section we shall calculate p (h ) by the re- 
normalization-group method, which is similar to the scaling 
procedure proposed by Anderson1' in a study of the aniso- 
tropic Kondo model and used by Nozieres and Blandin13 in 
an analysis of the multichannel Kondo model. We shall con- 
sider the Hamiltonians 
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where it is assumed that the electron energies are within the 
range 

-D<&,<D. (34) 

The special case of the Hamiltonian described by Eqs. (32)- 
(34) is the Hamiltonian H ' ,  which is of interest to us and 
which corresponds to the following set of the parameters: 

In this method the Hamiltonian of Eqs. (32)-(34) is trans- 
formed into another Hamiltonian ( 3 1 ) of the same type but 
with a smaller bandwidth D ' = D /A 4D. We can allow for 
the scattering effects involving the ignored high-energy 
states by, firstly, renormalizing the parameters y, y,, J , ,  J, 
and, secondly, modifying the rule for calculation of the aver- 
age impurity spin 

We can find the explicit form of such renormalizations by 
writing down the wave function of the ground state I  W) in 
the form of a Brillouin-Wigner series: 

where )a) is the ground state of the Hamiltonian Ho whose 
energy is Eo; the operators P and Go are given by2) 

We shall introduce an operator M which projects any state to 
the subspace that does not include quasiparticle excitations 
of energies 1 )  D /A. A formal transformation of the series 
(37) gives 

Using the commutative nature of the operators M, P, and 
Go, and the obvious property of the unperturbed ground 
state M I @ )  = I @ ) ,  we find that 

where 

It should be noted that Eq. (39) can be regarded as a Bril- 
louin-Wigner series of Eq. (37) for the ground state I*') of 
the Hamiltonian 

h 

The renormalized perturbation V'  induces transitions only 
between the states in a narrow energy band IE, I  < D /A. The 
relationships (38) between the wave functions of the initial 
and transformed Hamiltonians modify the rule for calcula- 
tion of the average spin. Substituting Eq. (38) into the defin- 
ition (36), we find that 

where 

rs=M 
1 

.SZ. M ,  
( I - M )  Go I-Go ( I - M )  P 

(42) 

This formal transformation deduces from the initial Hamil- 
tonian (32)-(34) a new Hamiltonian (40) for which the 
bandwidth is D ' = D /A. Calculation of the average spin 
p (h ) should be carried out using the rules (41 )-(43). 

In practical calculations it is not possible to allow rigor- 
ously for the renormalization described by Eqs. (40), (42), 
and (43). We shall therefore limit ourselves to the first few 
terms of the %ppropriate series expansions in terms of the 
perturbation V: 

h 

We shall now substitute in Eq. (44) the operator V in the 
form of Eq. (3%) and calculate the correction to theJrivia1 
contribution MVM to the renormalized perturbation V' .  Re- 
taining only the terms p ro~or t i o~a l  to lnAA, we obtain four 
different contributions to S V'  = V' - MVM corresponding 
to the renormalizations of the four parameters J, , J , ,  y, y, of 
the Hamiltonian of Eqs. (32)-(34) : 

6 . 7 , ~  (2vJ,J,y-'-'/2Nv2JLJ,2y-2) 1n A, 

6J,= (2vJL2y-'-Nv2J,2J,y-Z+1/2Nv2Jz3y-2) ln A, 
(471 

Sy =Nv2 (J,2+i/2J2) y-i 1n A, 

6ys=-Nv2 (J,2-'/,J,2)y-ZyS In A. 

It is convenient to represent the renormalizations of the sys- 
tem (47) by differential equations for three dimensionless 
quantities: 

We can do this by replacing In A with 66, where 
g=ln(Do/D), which yields 

This system of equations allows us to calculate the renor- 
malizations of the coefficients of the Hamiltonian of Eqs. 
(32)-(34) and carry out then several transformations of the 
type described by Eq. (47). It should be stressed that the 
values of the average impurity spin ,u calculated from Eq. 
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(36) for the two Hamiltonians, the initial H2nd renpmal- 
ized H ', are different. In fact, if we calculate r, and I? from 
Eqs. (45) and (46), we obtain 

where Sys and Sy are found by renormalization of the Ham- 
iltonian (47). The required relationship between the values 
of the average spin p and p' is now obtained by substituting 
Eq. (52) into Eq. (41 ) : 

p=(1+ys-'6ys-y-'6y)l~'=[1+6(ln Z,)] p'. (53) 

It follows from Eq. (53) that the renormalization of (47) 
modifies l n p  by an increment S(ln,u) = - S(lnZ, ), i.e., the 
product pZs is not affected. We can find the average spin p 
for the initial Hamiltonian (3 1 ) by applying consecutively a 
number of transformations of Eq. (47), which reduce the 
width of the band D by a factor A )  1 until the scale of D 
becomes of the order of h. This procedure reduces to the 
solution of the system of equations (49)-(5 1) subject to the 
initial conditions of Eq. (35 ) , written in the form 

Calculation ofp r (S')  for this Hamiltonian naturally gives 
p = 1/2. (On a scale of D-h a perturbation-theory series 
contains no large logarithmic factors and we can ignore the 

h 

perturbation V . )  Therefore, comparing the values of the pa- 
rameterpz, before and after the renormalization, we obtain 

We can find the function Zs (h)  by solving the system of 
differential equations (49)-(5 1 ) subject to the initial condi- 
tions of Eq. (54). A comparison of Eqs. (50) and (51 ) 
shows that 

The remaining system of equations (49)-(50) has the first 
integral 

Its value is found by substituting the initial values from Eq. 
(54) and it amounts to f= (l/J0 )'. We therefore have 

Using Eq. (57) we can represent the solutions of the system 
(49)-(50) in the plane of the variables Z, and Z2 (Fig. 2). 
The explicit form of the dependences Z, (6) and Z, ({) will 
not be needed. Instead, bearing in the task of calculation of 
the average spin-in accordance with Eq. (55), we shall find 
Z,(g). Substituting the relationships (56) and (57) into 
Eq. (5 1 ), we obtain 

It is clear from Eq. (58) that its solution Zs (6) falls mono- 
tonically from Z, (0) = 1 to Zs (6- a, ) = 0. Linearization 
of the right-hand side of Eq. (58) near the point Zs = 0 gives 
Z, a exp ( - 26 /N) for 6- co . This behavior of Zs (6) is in 
agrement with the power-law dependence of the average 

spin of Eq. (55) on the magnetic field: 

It  should be pointed out that the result given by Eq. (59) was 
obtained by us strictly speaking only for the case when N)1. 
This is due to the fact that Eqs. (49) and (50) are derived by 
retaining in Eqs. (44)-(46) only the first few terms of the 
expansio~ of the exact formulas (40), (42), and (43) as a 
series in V. Inclusion of higher terms of the expansion would 
have given rise to corrections of type NZ 4, N ,Z 5,  and simi- 
lar on the right-hand sides of Eqs. (49)-(5 1 ). We can easily 
see that if N) 1, then these corrections are small.3' VN- 1, 
we can use Eqs. (49)-(5 1 ) only for moderate values of g, as 
long as Z, (61, Z2 (6 < 1. 

Assuming that the number of channels N is large, we 
can find Z, (6) for any value of the parameter vJ0N by inte- 
grating Eq. (58). The problem reduces to the solution of a 
cumbersome transcendental equation which can be carried 
out only numerically. An analytic study can be made in the 
limiting cases YJ, N)1 and YJ, N 4  1. In particular, if 
vJ0NS 1, the average spin of Eq. (55) is given by 

1 exp (-2EhlN) 
p(h)=- (60) 2 ' (v1,N) '[I-exp (-2EhlN) ]+I ' 

The case vJ0N< 1 for a wide junction (N) 1) can be 
considered simultaneously with the case of a point contact 
( N  = 1 or 2).  The renormalization-group method is a con- 
venient means for investigating the range of high magnetic 
fields h when the correction Ap = 1/2 - p (h)  to the average 
spin of an impurity is small, Ap< 1, because the spin is 
screened by conduction electrons. If h is sufficiently high, it 
follows from Eqs. (58) and (55) that 

p (h) ='I2 [i-vJoN tg(2vJOEh) 1. (61 

A reduction in h increases the quantity gh =ln(D0/h) and 
the argument of the tangent in Eq. (61 ) approaches r/2. In 
this range of values of h, Eq. (61) is no longer meaningful, 
but the first two terms of the asymptotic expansionp (h)  can 
still be found from Eq. (58) and are of the form 

The scale TH occurring in Eq. (62) is governed by the pa- 
rameters of the initial Hamiltonian of Eq. (3 l ) : 

The validity of the expansion of (62) is limited to the range 
of relatively weak magnetic fields h$eNTH, in which the 
average spin p ( h )  differs little from the unperturbed value 
p = 1/2. 

It should be noted that the dependence (62) is of uni- 
versal validity. The average spin is governed by the ratio 
h /TH and the parameters Do, J,, and Y occur in the answer 
only in the form of the combination described by Eq. (63). 
This is due to the fact that the renormalization of the param- 
eters J, and J, ofthe Hamiltonian (32)-(34) increases them 
in such a manner that in the case of sufficiently small widths 
of the band D they are practically equal (curve 2 in Fig. 2). 
Therefore, the Hamiltonian of Eq. (3 1 ) is transformed to the 
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Hamiltonian of the isotropic Kondo model4' (J, = J, ), for 
which the universal behavior of p ( h )  is well 
Therefore, the average impurity spin when h a e"T, is iden- 
tical with p ( h )  for an N-channel isotropic Kondo model 
with the same value of the parameter TH. 

The multichannel isotropic Kondo model is solved in 
Refs. 10 and 1 1 exactly by the Bethe method and the p (h ) 
dependence is calculated for any value of the ratio h /TH. 
The resultant expressions are very cumbersome and we shall 
not give them here. We shall simply point out that the behav- 
ior of p ( h )  in the limit h- or, is identical with that of Eq. 
(62), whereas in the limit h - 0, it depends on the number of 
channels N: 

~ I T H ,  N = l  
(h/TH)ln(TH/h), N=2 . (64) 
(hlT,) 2/"3 N>2 

Therefore, in the absence of a magnetic field (h = 0)  the 
impurity spin is screened completely (p = 0): the power- 
law dependence of Eq. (59) obtained for the average spin 
impurity in the limit N% 1, applies for all values N >  2 if 
h -0. 

5. DISCUSSION OF RESULTS 

The above results for the average impurity spin p in the 
multichannel anisotropic Kondo model can be reduced with 
the aid of Eq. (30) to the problem of the charge of a granule 
in a gate field (Fig. 1 ). We shall consider only the values of q, 
in the interval defined by Eq. (7) and in addition to q, we 
shall employ a new variable 

with the aid of which we can write down some of the results 
for the charge Q(q,). In particular, in the case of a wide 
junction in the limit N- or, we find from Eq. (60) that 

It follows from Eq. (65) that if q,+q,, = - e/2C, the gran- 
ule charge is e/2 and g(p) approaches this limiting value 
logarithmically: 

For finite values N%g-' the dependence (65) is valid 
throughout the interval described by Eq. (7) ,  with the ex- 
ception of narrow regions near the ends of the interval, 
where It& I > N. Within these narrow regions the charge 
differs little from the limiting values + e/2, but it obeys a 
power law: 

In the limit N<g-  ', which includes also the case of a 
point contact ( N  = 1 or 2), the dependence Q(q,) has the 
characteristic scale 

e ( g ) ) "  { n ( N ) " }  U'=- - 
C N 

exp -- - 
4 g  

which is an analog of the Kondo temperature (63). For val- 
ues of q, within the interval (7) ,  but separated from the ends 
of the interval by more than U *, we find that the average 
granule charge is small, Q<e, and it amounts to 

(This expression is obtained in Ref. 6 for the case when 
N = 1. ) On approach of q, to the ends of the interval (7) ,  for 
example, when cp + e/2Ca U *, we find that the average 
granule charge rises reaching values of the order of e. The 
dependence of g on the parameter q, or, which is equivalent, 
on U=q, + e/2C can be found from the expression for the 
average spin N using the N channel Kondo model'0.' ' and it 
is given by 

- e e d o  
Q = - - -  -- erp (2 iw  in:) 

2  4n"i l o - i ~  

It is clear from Eq. (64) that in the limit U-0 the granule 
charge approaches e/2 in accordance with the following 
power law: 

e U /  U', N = l  
(eU/U')ln(U'IU), N = 2  . (67) 
e ( UlU') ' I N ,  N > 2  

Experimental verification of the B(q,) dependences can be 
made by, for example, measuring the capacitance between 
the gate and the substrate (Fig. 1 ) as a function of a constant 
bias Vapplied to the gate. Such a dependence should exhibit 
periodic maxima at the points defined by Eq. (3)  where, as is 
clear from Eq. (67), the capacitance reaches the value e/U * 
for N = 1 and diverges for N > 1. 

The author is grateful to L. I. Glazman and A. I. Larkin 
for valuable discussions. 

" A more general conclusion is also valid: the Hamiltonians of Eqs. (20), 
(2 1 ), and (24), (25) are equivalent if we consider the Hamiltonian of 
Eqs. (241, (25) in the subspace of such states for yhich we have 
P =  Q / e .  This is possible since the operator PSBB, - Q/e commutes 
with the Hamiltonian of Eqs. (24) and (25). 

"In fact, the unperturbed energy Eo which occurs in the series (37) 
should be replaced with the true ground-state energy E. We shall as- 
sume that the shift of Eo is compensated by adding to the perturbation 
(33) a counterterm Eo - E, the presence of which, however, is not 
manifested in any way in the subsequent expressions. 

"We have to satisfy also the condition N(vJ,)'( 1, which-as is clear 
from Eqs. (30) and ( 18)-implies (when the language of fluctuations 
of the granule charge is used) smallness of the conductance of the tunnel 
layer, g( 1, and thoughout this treatment this condition is assumed to 
be true. 

4' It is clear from Eq. (57) that the approximate equality Z ,  =. Z2 begins to 
be satisfied when Z ,  - Z ,  -vJO (1 and the system of equations (49)- 
(51) can then be applied even in the case of a point contact, (i.e., when 
N- 1). 
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