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Some optical manifestations of the low-intensity exciton-biexciton optical Stark effect considered 
earlier [A. L. Ivanov, L. V. Keldysh, and V. V. Panashchenko, JETP 72,359 ( 1991) ] are 
investigated. This effect involves modification of the exciton-photon-biexciton spectra of a 
semiconductor and dynamic shifts of exciton and biexciton levels in the presence of a polariton 
pump wave. The changes in the optical properties of a semiconductor in the presence of a given 
pump wave are described by a system of macroscopic equations for an electromagnetic field, as 
well as for exciton and dipole-inactive biexciton polarizations which are components of a probe 
radiation. These equations are used to consider the relevant Poynting theorem and expressions 
are derived for the components of the total energy flux of the probe wave. The problem of 
additional boundary conditions for such systems of macroscopic equations is formulated and 
analyzed. The proposed set of additional boundary conditions satisfies the requirement of 
continuity of the total energy flux across the boundary of a crystal. An allowance for the 
possibility of existence of exciton and biexciton "dead" layers is made in derivation of expressions 
for the reflection spectra of the probe electromagnetic radiation. A complete system of nonlinear 
macroscopic equations is analyzed for the case of comparable probe and pump wave intensities 
and its three-wave soliton solutions are considered. A consistent method is developed for finding 
soliton solutions in which the polariton effects have to be allowed for exactly. It is shown that the 
proposed approach and the soliton solutions obtained differ qualitatively from the traditional 
results on stimulated-Raman-scattering solitons obtained in nonlinear optics. 

1. INTRODUCTION tons. A theoretical description of such soliton pulses is pre- 

A consistent microscopic theory of the low-threshold sented in Set. 4. 

optical Stark effect in semiconductors due to the exciton- 
biexciton interaction was developed by us earlier.' This 
Stark effect is attributed primarily to the long-wavelength 
dynamic shift of an exciton level in the presence of a polari- 
ton pump wave and to the associated modification of the 
exciton-photon-biexciton spectra of a semiconductor. Such 
changes in the spectra of elementary excitations result in 
effective modification, in the exciton resonance region, of 
the optical characteristics of a semiconductor subjected to 
pumping. The present paper deals specifically with manifes- 
tations of the exciton-biexciton Stark effect. 

The exciton-biexciton optical Stark effect may be mani- 
fested in an unambiguous manner in a three-wave interac- 
tion which in experimental investigations involves a probe 
wave and a pump wave in the form of two optical pulses 
generated by external sources. In our case a strong pump 
wave has a frequency w, within the transparency range near 
the fundamental absorption edge of a semiconductor and it 
propagates practically without attenuation in the form of a 
polariton wave. If a second test wave of frequency w is re- 
garded as a probe, i.e., if its intensity is considerably less than 
that of the pump wave so it has no influence on the latter, we 
can regard the pump wave as determined by an external 
source. The next two sections of the present paper deal with 
this case. In the opposite case of a strong mutual influence of 
two polariton waves the investigated exciton-biexciton in- 
teraction mechanism may give rise to three-frequency soli- 

2. SYSTEM OF MACROSCOPIC EQUATIONS 

One of the most natural ways of investigating the char- 
acteristic features of the behavior of an exciton-photon- 
biexciton system in a semiconductor in the presence of a 
polariton pump wave is a study of changes in the optical 
properties of a semiconductor with the aid of a probe electro- 
magnetic wave. It is convenient to formulate the problem in 
a manner traditional in optics, namely by deriving a system 
of macroscopic equations which can be used, in particular, 
to describe a transient propagation regime of a probe wave in 
a crystal. This system of macroscopic equations for the oper- 
ations representing the electric field E(r, t ) ,  the exciton po- 
larization P(r, t),  and the biexciton nonlinear polarization 
Q(r, t )  can be derived from an analysis of the appropriate 
microscopic Hamiltonian and it is of the form: 

a ti 
[-i - + 0+6" - - b - i y ^ ]  P (r, t )  

d t  2M 

=' /zot i~  (r, t )  -2k 'pk  (r, t )  Q(r, t )  , 

= - ~ M ~ P ~  (r, t )  P  (r, t )  , ( 1 ~ )  
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where P, (r, t )  = P, cos(o, t - kr ) is the exciton polariza- 
tion of a coherent polariton pump wave; E, is the back- 
ground permittivity of the crystal; M is the translation mass 
of an exciton; liw, and f i R p  are, respectively, the energies of 
the exciton and biexciton states of the unperturbed semicon- 
ductor; y"" and ybiex are the phenomenological reciprocals of 
the exciton and biexciton lifetimes; p is the dimensionless 
polariton parameter representing the strength of the exci- 
ton-photon interaction. The nature of the interaction matrix 
element h?, and of the dynamic shifts Se" and Sbiex of the 
exciton and biexciton levels was discussed by us in detail 
earlier.'   he system ( 1) is derived making a reasonable as- 
sumption of neglect of the spatial dispersion in the expres- 
sions for the following quantities: 

Here, E < O  is the characteristic biexciton potential of the 
exciton-exciton interaction; Y (p)  is the wave function in the 
momentum space of the relative motion of excitons in a biex- 
citon. The operators representing the electric field and the 
exciton and biexciton polarizations are described by the fol- 
lowing expressions: 

2nAcp " 
E (r, t )  = C( ) ie, (ap( t )e ipr-apt  (t)e-'Pr), 

P 

P ( r ,  t )  =z ( s) 'Ia e2 (Bp  ( t )  eipr+Bp+ ( t ) e - i p r ) ,  
P 

(3)  

Q(r ,  t )  = (s) e, ( x P + k  ( t ) e i ( p + k ) ' + ~ G k  ( t )  e-i(p+k'r), 
P 

where the creation and annihilation operators for photons 
(a:, a, ), excitons (B ,f , B, ), and biexcitons (2 :, 2, ) 
are defined in the presence of a coherent pump wave; ei rep- 
resents the polarizations of the electromagnetic, exciton, 
and biexciton fields; V is the volume of the investigated crys- 
tal. 

We shall consider the physical meaning and some char- 
acteristics of the system of macroscopic equations given 
above. First of all, we note that in the case of an anisotropic 
crystal and an arbitrary scattering geometry the equations in 
the system ( 1) are of tensor nature which in the coordinate 
system of the principal optic axes is governed by the tensor 
B = llPiSii 1 1  of the oscillator strengths of the exciton-photon 
transition and by the corresponding scattering tensor 
M, = ~ l h ? ~ , ~ ~  11. However, we shall make the problem more 
specific by considering semiconductor CdS as the example 
and we shall assume the most interesting-from the point of 
view of manifestation of the investigated exciton-biexciton 
Stark effect-scattering geometry: p))k)lc, where c denotes 
the c axis; we shall assume that the pump and probe waves 
have opposite circular polarizations. It is in this case that the 
expressions given by the system (2 )  are valid and then the 
general tensor system of equations ( 1 ) may be limited to just 
three scalar equations ( la)-( l c )  for the selected fields. 

The equations of the system itself have a clear physical 
meaning. The first represents the usual Maxwell wave equa- 
tion for the electric-field component of a probe electromag- 
netic wave in a semiconductor and the source of this wave is 
linked in a self-consistent manner to the appropriate exciton 
polarization. The second equation of the system describes 
propagation of an exciton polarization wave in our crystal 
and the linear source of this wave is governed by the process 
of exciton creation by the probe electromagnetic wave, 
whereas the nonlinear source of such polarization is related 
to the forced decay of biexcitons because of the interaction 
with the pump wave excitons. Finally, the last equation of 
the system ( 1 ) represents the propagation of the dipole-inac- 
tive biexciton polarization, the appearance of which is relat- 
ed to the nonlinear process of the direct Coulomb pairing of a 
probe wave exciton and a pump wave exciton to form a vir- 
tual biexciton. 

One should point out that when the exciton-biexciton 
coupling vanishes, for example, in the absence of a pump 
wave, the first two equations of the investigated system form 
the usual closed system of macroscopic equations for the 
exciton polar it on^,^^^ except that the second is derived in the 
resonance approximation for the exciton-photon interac- 
tion. It should be stressed that a consistent approach to the 
derivation of a system of macroscopic equations from first 
principles makes it possible to describe in fact all the param- 
eters of the system ( 1 ) in terms of microscopic characteris- 
tics of the semiconductor. An example of the latter conclu- 
sion is represented by the relationships in the system (2)  and 
by the expressions derived in Ref. 1 for the parameters o, 
and 8. 

In the case of a given polariton pump wave (k)  the 
system of macroscopic equations (1)  becomes linear in 
terms of the field operators E, P, and Q. The permittivity of 
the semiconductor in the presence of the pump wave 

is independent of the statistics of the probe electromagnetic 
radiation2 and is strongly nonlocal. 

Intrinsic excitations in our crystal consist of photon, 
exciton, and biexciton components and are governed by the 
dispersion equation for transverse waves 

which in particular represents also the exciton-biexciton op- 
tical Stark effect. 

Using our macroscopic equations, we can formulate the 
appropriate Poynting energy theorem for the investigated 
system. In subsequent applications we will be particularly 
interested in the energy flux in the semiconductor, which is 
generally a sum of the energy fluxes of the probe and pump 
waves, and of a mixed flux. This mixed flux vanishes as a 
result of averaging over a time interval T% lo - o, I-' be- 
cause of the difference between the frequencies of the probe 
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and pump waves. We can therefore consider separately the 
energy flux associated with the pump wave and the energy 
flux of the probe radiation, the expression for which can be 
obtained as follows in the investigated case of a constant 
pump wave. The Maxwell equations can yield the familiar 
relationship 

which must be represented in the form of an equation with a 
clear physical meaning: 

d w - + div S+9=0. 
at 

Here H is the magnetic induction vector; w is the volume 
energy density in the medium; S is the energy flux vector; 8 
is governed by the parameters 4" and ybiex representing the 
energy dissipation processes. With this in mind, following an 
approach similar to that developed in Ref. 5 for the conven- 
tional polariton problem, we shall substitute in 4n-E(d P/dt) 
an expression for E found from Eq. ( lb) .  Then, using the 
third equation ( lc)  of our macroscopic system, we find that 
some transformations yield the following expression for the 
probe radiation energy flux: 

C 
S,, = - {[E,'H,]+ H.c.} , 

Ibn 
(gal 

f i  
$j =-- {[Pa' rot pol +Po* div P, +H.c.) , (8b) 

'* 4 o $ M  
f i  

Shies = - {[Q,' rot Q ~ ] + Q ~ '  div Q, +H.c.}, ( 8 ~ )  
8o$M 

where E, , H,, Po, and Qo are the positive-frequency parts of 
the corresponding fields. Therefore, the total energy flux S 
of the probe radiation in the semiconductor in the presence 
of the polariton pump wave has three components: the elec- 
tromagnetic flux S,, governed by the usual Poynting vector, 
as well as the exciton Sex and biexciton Sbiex energy fluxes 
associated with the translational motion of excitons and 
biexcitons, respectively. Characteristically, the expression 
for the biexciton flux differs from the exciton flux only by the 
substitutions Po +Q, and M+ 2M, which reflects the gen- 
eral physical nature of our quasiparticles. It should be noted 
that in the case of the excitation of only transverse excitons 
(as assumed here) the terms with the divergence vanish in 
the expressions for the fluxes and may be ignored. 

3. ADDITIONAL BOUNDARY CONDITIONS OF A NEW TYPE 
AND REFLECTION SPECTRA OF A PROBE 
ELECTROMAGNETIC WAVE 

Experimental studies of the exciton-biexciton optical 
Stark effect may involve observation of changes in the reflec- 
tion spectra of probe electromagnetic radiation from the 
boundary of a semiconductor in the presence of a polariton 
pump wave. A possible scattering geometry for the case of 
normal incidence (investigated later) of a probe wave on the 
surface of a crystal is shown in Fig. 1. 

It is k n ~ w n ~ ~ ~ ~ '  that the spatially nonlocal nature of the 
permittivity ~ ( p ,  w ) is in this case related to the finite exciton 
and biexciton masses, and it may give rise to "additional" 
waves in the medium. The dispersion equation ( 1 ) consid- 

FIG. 1. Possible scattering geometry for the observation of changes in the 
dispersion characteristics of the semiconductor CdS in the presence of a 
pump wave, using the spectra of reflection of probe radiation. The inset 
shows the formation of the transmitted and reflected waves in the case of 
normal incidence of the probe radiation on the surface of a crystal. 

ered here is of the sixth degree in the wave vector p and, 
therefore, there are generally six different branches of the 
solutions pi = p i  (a) representing eigenwaves of the semi- 
conductor in the presence of a polariton pump wave. A 
probe electromagnetic wave with a given frequency w excites 
three different damped waves of the same frequency inside 
the crystal. The last three roots of the dispersion equation 
are nonphysical because they correspond to spatial amplifi- 
cation of the probe wave. Therefore, we are faced with the 
problem of additional boundary conditions of a new type, 
different from the usual polariton problem where only one 
additional wave is associated with the spatial dispersion of 
excitons. One should stress here the novel and general nature 
of this problem in the cases of pump-induced changes in the 
spectra of elementary excitations in  semiconductor^.^^^ 

We shall analyze the problem of the additional bound- 
ary conditions for the system of macroscopic equations ( 1 ) 
using a phenomenological approach based on qualitative mi- 
croscopic considerations and in agreement with the natural 
requirement of continuity of the energy flux across the 
boundary of a crystal. The specifics of the problem are relat- 
ed to the behavior of the dipole-inactive biexciton polariza- 
tion on the surface uo of the investigated semiconductor. In 
other words, the two Maxwellian boundary conditions of 
continuity of the tangential components of the electric and 
magnetic fields 

should be supplemented by two further conditions describ- 
ing the behavior of the exciton and biexciton polarizations 
on the boundary. If we assume that the crystal boundary 
represents an infinitely high potential barrier for excitons 
and biexcitons, we find that vanishing of the wave functions 
of excitons and biexcitons at the boundary leads in a natural 
way to the Pekar form of the additional boundary conditions 
for the exciton and biexciton polarizations: 

P (r, t )  I .,=O, Q(r, t )  I oO=O.  (10) 
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An analysis of our system of macroscopic equations subject 
to the boundary conditions (9)  and ( 10) solves completely 
the problem of finding the reflection coefficient of a probe 
electromagnetic wave incident on the boundary of a semi- 
conductor in the presence of a polariton pump wave (inset in 
Fig. 1): 

X-Y 
~(o)=l,l , 

where the variables X and Yare related to the wave vectors 
pi (w), pz (w), andp, ( a ) ,  which are found from the disper- 
sion equation (5)  and which represent three waves excited in 
the crystal by the probe radiation of frequency w: 

whereas the polariton parameter a, is defined in terms of the 
longitudinal-transverse polariton splitting w,, or in terms of 
the dimensionless parameter B: 

It is known that experimental investigations of the con- 
ventional exciton reflection spectra frequently reveal a low- 
temperature spike, which is a sharp peak in the region of the 
exciton reflection minimum. A theoretical description of 
this effect is usually based on the existence of an exciton-free 
"dead" layer.'' The spike appears because of the interfer- 
ence between a wave reflected from the uo surface of a crys- 
tal and the wave reflected from the boundary a, between the 
exciton-free layer and the rest of the semiconductor. In our 
case after an allowance for such a dead layer of thickness I 
with a background permittivity E,, we find that the expres- 
sion for the reflection coefficient of a probe wave becomes 

1-n+R (l+n)exp (2i (o/c) nl) 
1 0 -  --. R (  ) - I  (14) I+~+H(<-n) exp (2i(o/c)nl) ' 

where n = E?, 

nX- Y a=- 
nX+Y' 

and X and Yare defined in accordance with Eq. ( 12). 
It should be pointed out that the additional conditions 

of the Pekar type ( 10) satisfy the requirement of continuity 
of the energy flux of the probe radiation across the boundary 
of a crystal. In fact, in view of the Maxwellian boundary 
conditions of Eq. (9) ,  the electromagnetic energy flux S,,- 
defined by the Poynting vector (8a)-is continuous at the 
crystal boundary. Then, the continuity of the total energy 
flux of the probe radiation is due to the fact that, according 
to the additional boundary conditions ( l o ) ,  there are no 
exciton Sex and biexciton S,,, energy fluxes [Eqs. (8b) and 
(8c) ] at the boundary a, or o,, depending on the adopted 
model, because 

The expression for the permittivity (4) suggests the oc- 
currence of two resonances and in the case when the pump 
intensity goes to the limit I+ 0, one of these resonances coin- 
cides with the position of the exciton term, whereas the other 
is an exciton-biexciton resonance at a frequency flbiex - w,. 
It is convenient to distinguish here the case of a double reso- 
nance, when the frequency fib"" - w, lies within the region 
of the unperturbed exciton term, i.e., in the region w, + w,,, 
from the opposite case of separate resonances. 

The numerical calculations reported below and carried 
out to illustrate the above expressions were made for the 
specific case of the semiconductor CdS with the following 
parameters: h, = 2552 meV, h,, = 1.9 meV, 
f i n p =  5100meV,M=0.9m0,fi, = - 5meV,tzg =8.87, 
and 1V (0) 1 = 2.10- cm3. In the double resonance case 
(Fig. 2) the modification of the reflection spectra is quite 
complex and is related to considerable changes which affect 
all three types of the initial excitations: excitons, photons, 
and biexcitons. Variation of the frequency w, of the pump 
wave can be used to realize the second case, when the exciton 
reflection spectra and the pump-induced reflection in the 
exciton-biexciton resonance region have different frequen- 
cies. The exciton-biexciton resonance then lies in a photon- 
like unperturbed polariton dispersion region, which results 
in considerable attenuation of the relevant reflection line 
compared with the double resonance. However, in this case 
the dynamic long-wavelength shift of the exciton level ap- 
pears in its pure form, i.e., the exciton-biexciton optical 
Stark effect is observed (Fig. 3). 

It should be pointed out that introduction of a dead 
layer gives rise to a double spike in the reflection spectra, 
such as that shown for example in Fig. 2 (see also Fig. 5). In 
the case of the separate resonances this new spike represents 
the pump-induced reflection line in the region of the exci- 
ton-biexciton resonance. In general, both spikes are of the 
same interference nature and are linked to two spectral 
points corresponding to nonzero values of the long-wave- 

FIG. 2. Modification of the reflection spectra of the probe radiation inci- 
dent on the semiconductor CdS in the presence of a pump wave of intensi- 
ty I = 5 MW/cmZ (outside the crystal) of frequency y, = 2547 meV 
when the thickness of the exciton-free layer is I = 90 A. The case of a 
double resonance is illustrated. The dotted curve represents the exciton 
reflection line in the absence of pumping. 
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FIG. 3. Shift of the exciton reflection in the case of separate resonances. 
The pump wave frequency is w, = 2541 meV and its intensity is I = 25 
MW/cm2. The thickness of the "dead" layer is I = 90 A. Curve 1 repre- 
sents the unperturbed exciton reflection spectrum. 

length limit of the modified dispersion curves of the investi- 
gated semiconductor. 

We shall discuss in greater detail the problem of the 
dead layer in the formation of the reflection spectra of the 
probe radiation. The physical justification for introducing 
the exciton-free dead layer is the qualitative idea that, be- 
cause of its finite radius a,, , an exciton cannot approach the 
boundary of a crystal closer than the distance I-a,, . In the 
problem under discussion it is natural to generalize the con- 
cept of such a dead layer and introduce similarly an addi- 
tional biexciton-free layer of thickness LMabiex , where abiex 
is the biexciton radius. Figure 4 shows schematically the 
process of formation of the reflected and transmitted waves 
in this model. The part of the crystal a, - a, enclosed be- 
tween the boundaries of the two dead layers is unusual. Here, 
the incident probe radiation excites two ordinary unper- 
turbed polariton waves and these in turn create, beyond the 
boundary a,, three eigenwaves corresponding to the modi- 
fied spectrum of the semiconductor in the presence of the 
pump wave. It should be stressed that crossing of the bound- 
ary a, of the biexciton-free layer not only activates the exci- 
ton-biexciton mixing, but also induces (by the pump wave) 
an abrupt long-wavelength shift of the exciton level. 

The reflection coefficient of the probe electromagnetic 
wave can be found by considering the additional conditions 
on the boundaries a, and a,. The problem of the radiation 
crossing the boundary a, is accounted for fully by one addi- 
tional boundary condition, which-as before-will be as- 
sumed to be the Pekar condition of the absence of the exciton 
polarization on the surface a,,  i.e., PI,, = 0. At the bound- 
ary a, the corresponding additional boundary condition ap- 
plicable to the biexciton polarization QI, = 0 should be 
supplemented by two further boundary conditions. The lat- 
ter could be the conditions of continuity of the exciton polar- 
ization P and of its derivative 6' P/d{ at the boundary a,. 

From the microscopic point of view, such boundary 
conditions are linked to the requirement of continuity of the 
exciton wave function and of its spatial derivative at the 
point 6 = L where there is a finite jump in the exciton poten- 
tial. Therefore, in the case of the two-layer model proposed 
here, the additional boundary conditions are 

FIG. 4. Formation of the transmitted and reflected waves allowing for the 
presence of a biexciton-free layer. Two ordinary polariton eigenwaves of a 
crystal form in the region a, - u2. 

It should be stressed that the additional boundary con- 
ditions ( 16) satisfy the requirement of continuity of the en- 
ergy flux of the probe radiation across the boundaries a, and 
a,. At the boundary a, not only the electromagnetic energy 
flux S,, is continuous, but it applies also to the exciton flux 
Sex. The continuity of the latter follows directly from Eq. 
(8b) for the exciton energy flux and from the proposed exci- 
ton additional boundary conditions at the surface a,. 

After introduction of the initial boundary conditions 
(16) and fairly cumbersome calculations, we obtain an 
expression for the reflection coefficient R, (w) of the probe 
electromagnetic wave incident on the boundary of a crystal. 
The reflection is still given by ( 14), where in the expression 
( 15) for the reflection coefficient i? we have to replace the 
parameters X and Y with the following quantities: 

In this case the matrix of the coefficients ad is given by 
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FIG. 5. Influence of the thickness of the biexciton-free layer on the form of 
the reflection spectra of the probe radiation in the presence of a pump 
wave of frequency o, = 2547 meV and of intensity I = 5 MW/cm2 when 
the thickness of the biexciton-free layer is I = 90 A. Curve 1 corresponds 
to L = 180 A and curve 2 corresponds to L = 250 A. The dotted curve 
represents the reflection spectrum calculated using the one-layer model 
(Fig. 2).  

where in turn the function f is related to the wave vectors q, 
and 9, of the polariton waves excited by the probe wave 
frequency w in the 0, - u2 layer and to the corresponding 
wave vectorsp, ,p, , andp, of the three waves propagating in 
the bulk of the semiconductor: 

2M 
X ( P ~ +  q2) - ti 8 [ (q,qz+hz) ( ~ i ~ z + ~ i ~ 3 + ~ z ~ , - q 1 q z )  

+ (q1+q2)  [ P ~ P ~ P ~ + ~ ~ ( P ~ + P ~ + P ~ + ~ ~ + ~ ~ )  I I } .  ( 19) 

The following additional notation is used in Eqs. ( 17)-( 19): 
egCo2 

h2 = -, 9=hex-i ( r e x -  y o e x ) ,  
c2 

(20) 

FIG. 6.  Reflection spectrum of the probe radiation in the case of separate 
resonances. The dotted curve represents the exciton reflection in the ab- 
sence of pumping. The continuous curve is the reflection spectrum pf Fig. 
3 after allowance for the biexciton-free layer of thickness I = 200 A. 

where f l  is the exciton attenuation in the a, - a, layer. It 
should be pointed out that the expression obtained for the 
reflection coefficient R, (w) is symmetric under transposi- 
tions of the wave vectors q, and 9, or p,  , p,, and p, . 

Figure 5 shows the reflection spectra of a probe electro- 
magnetic wave obtained for different thicknesses L of the 
biexciton-free layer. The differences in the profiles of the 
reflection lines compared with the one-layer model consid- 
ered earlier are quite large, so that we can consider an addi- 
tional mechanism associated with the nature of the addi- 
tional boundary conditions and modifying the reflection 
spectra of a semiconductor in the presence of a polariton 
pump wave. This is manifested clearly also in the case of the 
separate resonances (Fig. 6 ) .  

4. POSSIBILITY OF FORMATION OF POLARITON SOLITONS 
DUETOTHE EXCITON-BIEXCITON INTERACTION 

We have analyzed so far the case when a probe electro- 
magnetic wave is so weak that it does not influence a polari- 
ton pump wave regarded as governed by an external source. 
However, it is very interesting to consider the nature of the 
propagation of two coherent polariton pulses of comparable 
intensity when they interact resonantly due to the exciton- 
biexciton mechanism. In this case we can expect formation 
of three coupled solitons in a semiconductor: they are two 
polariton solitons and one biexciton soliton, all propagating 
at the same velocity us, without dispersion spreading. The 
problem is topical not only because of the increasing interest 
in such nonlinear waves in crystal but also be- 
cause of the special manifestation of the investigated exci- 
ton-biexciton nonlinearity mechanism. An important fea- 
ture of the approach adopted below is a correct allowance for 
the polariton effects, i.e., for the proximity of the carrier 
frequencies w and a, of coherent electromagnetic pulses in- 
cident on a crystal to an exciton resonance at a frequency w , .  

The system of the macroscopic equations ( 1 ) becomes 
closed and self-consistent on addition of two equations de- 
scribing the electric field E, and the polarization P, of a 
pump pulse. These two equations resemble Eqs. ( l a )  and 
( lb) ,  and they represent a certain equivalence and mutual 
influence, via the biexciton field, of the pump and probe 
waves of comparable intensities. We shall consider a specific 
case and simplify the treatment, as we have done in the anal- 
ysis of the problem of the additional boundary conditions, by 
selecting the casepJJkll6, wherep = p(w) and k = k(w, ) are 
the carrier-wave vectors ofthe polariton pulses and 6 1Jc is the 
coordinate axis along which these pulses are propagating. 
Then, limiting our study to the soliton solutions of the sys- 
tem of the selected macroscopic equations, we shall seek 
them in the form reflecting the requirement of the frequency 
and wave matching: 

E ( r ,  t ) = B ( q )  exp ( - i o t + i p k ) ,  

P ( r ,  t)=P(q) exp ( - io t+ ipE) ,  

E ,  ( r ,  t )  = E k  ( q )  exp (--iodf i k k ) ,  

P , ( r ,  t )  =Pk ( q )  exp ( - i o k t + i k g ) ,  

Q(r, t )  =?(TI exp ( - i ( o + o k ) t + i ( p f  k ) k ) ,  
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where q = t - { / u s  is the associated time and ?;;(77) is the 
soliton profile of the envelope of the relevant field. In the 
approximation of slowly varying amplitudes, the original 
system of five macroscopic equations can be transformed to 
a closed system of three nonlinear equations for the positive- 
frequency parts of the envelopes of the exciton and biexciton 
polarizations: 

The parameters of the equations are given by the relation- 
ship 

where the index is j = 1 or 2 and 

The term with the cubic nonlinearity on the right-hand side 
of the system (22) represents the nature of the dynamic 
shifts of the positions of the exciton and biexciton levels be- 
cause of the mutual attraction of excitons in two different 
polariton waves and also because of repulsion between the 
excitons forming each of the waves separately. The following 
additional notation is used in the expressions given by the 
system (24):ql = p ,  q, = k, w, = w, w, = w,. Moreover, in 
the system (22) the dimensionless time r = wry is adopted. 

In contrast to the approach traditional in nonlinear op- 
t i c ~ , ' ~ " ~  the three-wave system of equations obtained above 
does not contain electromagnetic fields as the variables, but 
their polarizations. However, the actual form of the equa- 
tions in the system (22) is natural and related to the circum- 
stance that the polariton waves interact with one another by 
the polarization components, i.e., by the exciton compo- 
nents. The biexciton wave is dipole-inactive. 

There is one additional and most important reason for 
adopting the polarization system (22). The similarity of the 
carrier frequencies w and w, of the polariton waves to an 
exciton resonance w ,  means that incorrect results would be 
obtained by the usual procedure employed in the description 
of nonlinear processes with the aid ofjust the nonlinear low- 
er order electrical susceptibilities, i.e., $,' andXC3). This can 
be illustrated quite well by taking the example of the rela- 
tionship (4),  from which it follows that when the general 
expression for x =x(w, p, IPk 1 ' )  is expanded as a series 
near an exciton resonance land, this series contains all the 
nonlinear susceptibilities x'"', but we need retain in our 

analysis just the lowest of them, which in our case is x ' ~ ) .  
The use of a system of the polarization equations (22) 

makes it possible to bypass this difficulty and in fact to allow 
explicitly, within the framework of the initial microscopic 
model, for a whole series of the nonlinear susceptibilities, 
i.e., we can consider the problem rigorously. The envelopes 
of the electric fields of the polariton pulses are then related to 
the corresponding exciton polarizations by 

The use of the method of slowly varying amplitudes 
imposes the following constraint on the values of the soliton 
velocity v, and on the duration of the soliton pulses T, : 

Moreover, the system of equations (22) represents the cases 
of the interaction of two polariton pulses with nondegener- 
ate carrier frequencies Iw - w, I - ' 4~~ in the absence of at- 
tenuation y"x = yb"" = 0. 

Introducing the real amplitudes x ,  y, and z and the 
phases p, $, and 5 of positive-frequency soliton envelopes 

we obtain the nonlinear equations 
+-fj , y z  sin 0, y=-p2xz sin 0, i = p x y  sin 0, 

xip=-v~x+p, (2x2-y2 )x -p , y z  cos 0, 

where 0 = p + $ - 5 is the phase matching angle for the 
interaction between the polarization waves. 

The first three amplitude equations of the system (28) 
have three integrals of motion and of these two are indepen- 
dent: 

An analysis of the integrals of motion given by Eq. (29) 
allows us to classify fully all possible soliton solutions the 
nature of which is governed by the signs of the parameters 
P I ,  P,, and p and by the values of the constants C, .  How- 
ever, we shall consider only the most interesting (from our 
point of view) class of solutions and use it as an example to 
illustrate the specific features of the method adopted to in- 
vestigate the system (28). We shall in fact consider the case 
when the constant has the value C, = 0 in the integrals of 
motion of Eq. (29). It should be pointed out that, in accor- 
dance with a definition generally accepted in nonlinear op- 
t i c ~ , ' ~  the three-wave soliton solutions are understood to be 
such three steady-state nonlinear waves that at least of them 
are solitary, i.e., their amplitudes tend to zero for 7- + W .  

Then, in the case selected for investigation, we find from the 
integrals of motion (29) that the relationship between the 
amplitudes of the nonlinear waves is 
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where yo is the amplitude of the polarization wave Pk in the 
limit r-+ + W .  Therefore, a steady-state wave k can still be 
regarded as a pump wave in which the solitary pulses of the 
polariton wave p and of the wave p + k of the biexciton po- 
larization "burn a hole" representing a dark soliton, which is 
a pulse representing reduction in the pump intensity. 

This situation may be realized experimentally if a co- 
herent electromagnetic pulse of sufficiently long duration is 
used as the pump wave and a short probe pulse of compara- 
ble intensity forms a dark soliton.16 The relationship de- 
scribed by Eq. (30) is possible for the following signs of the 
parameters of the system (29): PI > 0, P2 < 0. We then have 
p < 0, which follows directly from Eq. (23) in the case when 
\V(O) >O. The frequencies w and w, of electromagnetic 
pulses set by an external source, the intensity of the pump 
wave governed by the value of yo, and the duration r, of the 
soliton pulses are suitable free parameters of the problem. 

Applying the formal procedure of substitution of the 
variables . 

and using the relationships in Eq. (30), we can separate from 
the complete system (28), a closed system of two nonlinear 
equations suitable for the final analysis: 

Here, the parameters and x are given by 

and we adopt a new time 

If we regard u and v as canonically conjugate variables, we 
can construct the following Hamiltonian for the system of 
equations ( 32) : 

R (u, v) = (812) (u2+ u2) + ( x / 4 )  ( u ~ + ~ ~ ) ~ - u ( u ~ + u ~ - ~ ) ,  

(35 
which is an integral of motion. This is precisely why we can 
find analytically the soliton solutions of the complete system 
(28). The limiting stationary points of the system (32) 

representing the behavior of the soliton solutions in the limit 
7'--r w , allow us to establish an algebraic relationship be- 
tween the variables u and u in the form 

Before we continue finding the profile of the soliton 
pulses, we shall consider the task of determination of the 
dispersion relationships for carrier-wave vectors of the po- 
lariton solitons. These dispersion relationships follow from 

the requirement of the absence of phase modulation in the 
limit r- + w : 

as assumed initially in our approach by selecting the solu- 
tions in the form of Eq. (21). An analysis of the last three 
equations of the system (28) including Eq. (30) makes it 
possible to derive the following two independent equations 
form the conditions (38) : 

which are in fact the required dispersion relationships. Us- 
ing the first of them, we can determine the carrier wave vec- 
tor k = k(wk, I) of the pump wave. This dispersion relation- 
ship for a dark soliton then represents the usual polariton 
dispersion law which allows for a short-wavelength shift of 
the exciton level induced by the pump wave itself. The phys- 
ical meaning of this result is quite clear: it is related to the 
fact that this should be the dispersion relationship in the 
absence of two corresponding solitary polariton and biexci- 
ton waves, i.e., when T+ + W .  

The second of the equations (39) allows us to find the 
carrier-wave vectorp = p(w, wk , u s ,  I) of a solitary polari- 
ton wave. This dispersion relationship contains, in the form 
of an as yet unknown parameter, the solitary velocity v, and 
it generally differs from the usual polarization dispersion 
law and from the spectral relationship (5)  considered ear- 
lier. This is the essential difference between our approach 
and the traditional procedure,14 where in the investigation 
of the similar problem of stimulated Raman scattering soli- 
tons the dispersion relationships are used justifiably in the 
form of the unperturbed dispersion laws that apply in the 
absence of any interaction between the waves. In our case 
this would have been an incorrect selection of the usual po- 
lariton dispersion law and this would have resulted, in par- 
ticular, to the conditions Y ,  = v2 = 0 that the terms linear in 
the polarization vanish from the first and third equations of 
the initial system (21 ). 

We shall consider one further important circumstance. 
The requirement that the coordinate v m  at the stationary 
points of Eq. (36) should be real leads to the condition 
IZ + xi (2, which together with the relationships (39) can 
be transformed to 

We can easily see that this inequality defines the frequency 
interval of the existence of the soliton solutions proportional 
to the amplitude (yo a I I") of the pump wave, with the cen- 
ter of the interval given by the condition a + Ayi = 0 and 
corresponding to the exact resonance of the interaction of 
the waves when allowance is made for the dynamic shift of 
the biexciton level. 

Using the integral of motion (37), we can now find the 
soliton solution of the system (32) and then, taking account 
of the dispersion relationships given by the system (39), we 
obtain nonlinear solutions of the complete system (28) in 
their final form. We then find that the intensity profiles of 
the investigated soliton pulses are 
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where 

and the parameter A is given by 

The soliton pulse duration T, is then given by 

Therefore, in the frequency interval defined by Eq. (40) and 
representing the range of existence of our soliton solutions, 
these solutions have the minimum duration and the maxi- 
mum amplitude at the central point of the exact resonance 
where A = 0. A shift of the frequency detuning 
(OF?, - o - a,)--a to the end of the interval of Eq. (40) 
increases the duration of the solitons and reduces their am- 
plitude for fixed values of the parameters o k ,  I, and v,. At 
the end point of the frequency interval of the existence of the 
soliton solutions we have A = + 1 and, in accordance with 
Eqs. (41 ) and (42), we find that two solitary waves out of 
the three soliton solutions vanish and the third (pump) 
wave becomes a steady-state nonlinear wave of constant in- 
tensity. Typical graphs showing the profiles of the polariton 
solitons are presented in Fig. 7. It should be noted that the 
relationship (44) allows us to derive an expression for the 
soliton velocity v, = v, (o ,  w,, T,, I, p, k).  Therefore, for 
given parameters of the problem w, o,, rS, and I we have to 
consider Eq. (44) and the second equation of (39) as a sys- 
tem of algebraic equations for the variables p and v, . 

It is of interest to consider also the time dependence of 
the phase-matching angle 0 

~ 5 4 ' :  rel. units 

FIG. 7. Intensity profiles of the soliton pulses of the exciton polarization. 
The calculations were carried out for fixed parameters o, = 2540 meV, 
1 = 0.2 MW/cmZ, v, = 5 . 5 4 ~  lo7 cm/s. The continuous curves corre- 
spond t o o  = 2560meV, (A = - 0.073, x = - 0 . 3 8 5 , ~ ~  = 3.42 ps). The 
dotted curves represent the pulses obtained for 0 = 2560.1 meV 
(A = 0.93, x = - 0.415, T, = 8.94 ps). 

9, rad 

z'q t 

FIG. 8. Time dependence of the phase-matching angle 6' ( 1 ) and of the 
phase shifts between the electric field and the polarizations in the case of 
the "bright" (2) and "dark" ( 3 )  solitons, calculated for the following 
parameters of the soliton pulses: 7, = 2.1 ps, I =  0.2 MW/cm2, 
o, = 2540 meV, o = 2560.1 meV ( A  = 0.51). 

[ (1-A" ( ( x Z +  4Ax+4)]" sh  ( d z , )  
t g e = - +  

A (x2+4Ax+4)'" ch ( z l ~ , )  +2A+x 
(45) 

and of the phase shift 4 ,  or qbEk,& between the electric 

fields and the polarizations of the appropriate polariton 
pulse: 

where the quantities x, xi+, y, y$ are governed by the nonlin- 
ear quadratures for the envelopes of the soliton pulses given 
by Eqs. (41 ) and (42), by the system of equations (26), and 
by the expression (45) describing the phase-matching angle. 
Figure 8 shows the time dependences of 6 = 07, 4 ,  . (T )  

and #,,,Pk (7) 

We shall conclude this analysis by mentioning one 
further qualitative difference betwen our soliton solutions 
and the generally accepted results of nonlinear optics. The 
adopted approach makes it possible to analyze the case of the 
appearance of a dark soliton at one of the polariton frequen- 
cies, whereas it is usually assumed that a dark soliton can 
form only in the case of a wave with the maximum frequen- 
cy. In our problem this wave is the dipole-inactive biexciton 
polarization wave, which obviously cannot be used as the 
pump wave. 
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