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Dislocations and aggregations of solitons in charge-density-wave crystals are studied at low 
temperatures. The main effects studied involve the Coulomb interactions at low densities of 
residual carriers. The aggregation energy and distributions of the phase deformations, electric 
field, and soliton-interaction potential are found. The conditions under which solitons aggregate 
into growing dislocation loops are discussed. The results provide information on consecutive 
steps of current conversion in charge-density-wave crystals. 

1. INTRODUCTION 
In recent years the dislocation mechanism of motion of 

charge density waves (CDW) has been actively discussed 
(see Ref. 1 and citations in Ref. 2). A microscopic picture of 
nucleation of the region of phase slippage in the volume, in 
terms of closed dislocations, has been suggested in Ref. 3. 
Later, in connection with elucidation of the role of contact 
phenomena,"7 the formation of phase vortices at the inter- 
face, which is equivalent to the motion of the edge disloca- 
tion, has been considered.4v5 A systematic translation of no- 
tions of the dislocation theory in a uniaxially deformed 
crystal into the language of phase deformations of CDW is 
given in Refs. 8 and 9. A hypothesis of existence of a "comb" 
of edge dislocations arranged in a consecutive order along a 
sample surface has been put forward by Gill (see Ref. 1, p. 
89, and Ref. 10). 

The purely phenomenological approach and direct bor- 
rowing of traditional notions of the theory of crystal defects 
limit the application range of the studies known to the au- 
thors in two respects. First, the Coulomb interactions ac- 
companying the deformations of CDW are not taken into 
account. This confines the application of the theory to the 
case of high normal-carriers density realized, apparently, 
only in NbSe,. Allowance for Coulomb interactions is ex- 
tremely important for the study of effects at low tempera- 
tures, which attracts now the greatest attention (see Gruner 
and Monceau (Ref. 11, p. 137), Monceau (Ref. 1, p. 165), 
and Nagy (Ref. 11, p. 191). 

Second, a microscopic theory of nucleation of phase- 
slippage centers (PSC) and its juncture with the macroscop- 
ic theory of the development of dislocations are urgently 
needed. In this way one can construct a consistent theory of 
transformation of the current of normal carriers injected at 
the contact into the Frohlich current of CDW. Up to now, 
consistent microscopic equations were derived6 for the de- 
scription of somewhat different "instanton" mechanisms of 
depinning of the CDW phase from the contact by analogy 
with nonstationary resistive phenomena in thin supercon- 
ducting channels (see Gor'kov Ref. 11, p. 403). As,in the 
case of a superconductor, equations of the Gor'kov-Eliash- 
berg type are derived for a gapless regime, i.e., in the vicinity 
of the transition temperature Tc with strong electron scat- 
tering. In the case of CDW with a developed gap 2A0 in the 
electron spectrum, the motion of a plane wall of the ampli- 
tude soliton type has been considered.I2 At least for a system 
of weakly coupled chains ( Tc 4 A, ), this wall is unstable to 

disintegration into purely phase solitons of substantially 
smaller energy (see Refs. 2, 13, and 14). 

At present, CDW in essentially quasi-lD compounds 
are being mainly investigated (see Rouxel and Schlenker," 
p. 15). In these compounds the gap is developed already near 
Tc, and at low temperatures there is already a strongly corre- 
lated 3 0  crystal of CDW (see Pouget and Comes," p. 85 ). 
As seen from the brief survey above, in these cases it is neces- 
sary to reanalyze both the initial microscopic mechanism of 
the electron conversion in the CDW deformation and the 
dislocation growth under conditions of a screened Coulomb 
potential. The first problem has been recently examined in 
Ref. 2 on the basis of oldI3 and recently supplementedI4 
concepts expounded in Refs. 13 and 14. 

The initial stages of the conversion of normal carriers 
(e) are almost unambiguously determined in systems with a 
weak chain coupling characterized by the small ratio of the 
3D-ordering temperature Tc to the gap 2A0 :Tc A,. The 
process goes via formation of amplitude r-solitons at all T 
towards formation of 277-solitons for T < T, and then 
towards their aggregation into macroscopic PSC. The first 
stages (e + 77, 77 + 77- 277) accompanied by energy release 
are irreversible, and the direction of the process does not 
depend on the interactions. Nevertheless, the rate of the sec- 
ond process (77 + 77- 277), requiring pair collisions, depends 
on the sign of the interaction: repulsion will replace this pro- 
cess by another one, e + 77- 277, requiring a high activation 
energy A,. The third stage (277 + ... + 277-PSC) depends, 
in essence, on the character of interactions. In the case of 
attraction, PSC will grow without barrier in agreement with 
new experimental data." In the case of repulsion, the cur- 
rent of 277-solitons will play the role of the current of normal 
carriers. 

The soliton interaction is realized by deformation and 
Coulomb forces which, by virtue of the CDW polarizability, 
are interrelated, and the character of resulting interactions is 
not clear a priori. 

In their previous paper2 the authors have shown that in 
crystals with CDW the solitons of one sign may be attracted 
in the direction of the chain axis. The attraction to the com- 
mon transverse plane r ,  = (y,z) occurs even for non- 
screened interaction dominating in the longitudinal direc- 
tion x. Therefore it is natural to assume that solitons may 
aggregate into clusters, the growth of which will lead to the 
macroscopic slipping of the CDW phase. In the present pa- 
per we shall find the deformation, charge, and Coulomb po- 
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tential distributions in the medium around a soliton cluster, 
and consider the dependence of the energy of the system on 
the charge 2N, where N is the number of 2a-solitons in the 
cluster. We shall also find the energy W(N) of the cluster 
and consider the interaction with the gas of microscopic soli- 
tons and electrons. The analysis is within the framework of 
the macroscopic theory of dislocations. In terms of this theo- 
ry a phase 2a-soliton can be described as a microscopic dislo- 
cation loop in the plane perpendicular to the axis of the 
chain. 

2. EQUATIONS OF THE THEORY OF DISLOCATIONS 

In the discrete model a 2~-soliton appearing at a jth 
chain can be taken into account by an additional condition 

where 4)" is the phase of CDW on the nth chain, the main 
contribution to the integral coming from the region of size I 
of the soliton (I-v/T,, where T, is the temperature of the 
3D-ordering, and v is the Fermi velocity). 

Let us recall (see Ref. 2) that the scale length I is deter- 
mined by the competition of the energy of the longitudinal 
phase deformation and the energy of dephasing at neighbor- 
ing chains n = j and n #junder the additional condition ( 1 ). 
When Nsolitons aggregate into a cluster of chains G}, a scale 
length >I  is conserved only for outer solitons in the cluster, 
for which the phase difference approximately equals a .  For 
inner chains the phase difference decreases, and the longitu- 
dinal scale grows so that the soliton localization length is 
proportional to N if the Coulomb interaction is taken into 
account, and to N if this interaction is neglected. Thus, 
outside the line 9 given by the extreme solitons of scale 
length I, the continual theory is applicable: 

Evidently, the line a is a dislocation line, so that the condi- 
tions ( 1 ) take the form 

In general case, when we traverse any closed contour L en- 
closing the dislocation line 9, the CDW phase receives an 
increment equal to 2a. The direction of passage is related to 
the chosen direction T of the vector tangent to the dislocation 
line by the right-hand screw rule (see Fig. 24 in Ref. 18). In 
the framework of the dislocation theory, Eq. (2) corre- 
sponds to the case when the displacement vector u points 
along the x-axis of the chains, and the Burgers vector b has 
the components b = ( - 2a,0,0) - - 2 a  n, n = ( 1,0,0). 

We are interested in macroscopic scales Ix - xj I % 1, 
Ir, - r,, I >sl/* (x,, r, are the soliton coordinates, ands is the 
cross-section area per chain), on which the condition ( 1 ) is 
equivalent to the differential equation 

The bypass rule ( 1 ) is conveniently written in a differential 
form 

[ Ow] =2nz6 (z), (4) 

where w, = dg, /ax, is an analog of the distortion tensor, 

and is the two-dimensional radius-vector taken from the 
axis of the dislocation in the plane perpendicular to the tan- 
gent vector T at the point considered. Here and below we 
follow, whenever possible, the notation of Ref. 18. 

According to the dislocation theory, the phase g, experi- 
ences a discontinuity Aq, = 2 a  on a certain finite surface 
.F spanning the contour G' so that at large distances q, -, 0. 
On the contrary, in terms of the soliton problem the phase q, 
is continuous everywhere with respect to x, but receives a 
finite increment at infinity. This definition corresponds to 
the transformation of the surface F into a semi-infinite cyl- 
inder spanning the contour 9. 

In the continual limit one can use a phenomenological 
model-independent functional of the energy of the system2 

where a is the anisotropy constant (a 4 1 ), @ is the electric 
potential, E ,  is the dielectric constant of the medium with- 
out the Coulomb effects of the CDW (below we assume that 
E ,  is included in the definition of e 2 ) ,  and 

is the electric charge density. 
The Coulomb interaction for CDW has been considered 

in many s t u d i e ~ . ' ~ - ~ ~  Note that, contrary to the opinion of 
some authors, the dielectric constant E ,  does not contain a 
dielectric contribution proportional to wj/A2 (w, is the 
plasma frequency) and characteristic of the Peierls dielec- 
tric without the Frohlich mode (see Refs. 20, 22). 

Varying the functional (5) ,  we obtain the equilibrium 
condition that may be written in the form 

where 

and r, is the Debye screening radius in a metal without 
CDW. 

Let us now derive a differential equation for q,(r), al- 
lowing for the condition (4).  Multiplying Eq. (4)  written in 
vector form by the vector b, we find 

(nV ) W- V (nw) =2n [zn] 6 (g) . (8) 

(The square brackets indicate a vector product.) 
Substituting Eq. (8)  into Eq. (6)  differentiated with 

respect to x, we find finally 
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The model-independent equations which follow from 
Eqs. (7  )-(9) mean that the field averaged over cross section 
is not sensitive to the presence and position of solitons and 
dislocations: 

a2 - @ (x) -x2@ (x)= const, 
ax2 

v acp 
5=$ +--= const, 

2 ax 

where 

Note that to proceed from the dislocation to the point- 
soliton approach2 we have to redefine the phase 

X 

q (x, r1) +q (3, r I)  + j p. (XI, rL) hr, 

wherep, is the soliton density. In the soliton approach2 the 
phase q, does not allow for the central chain. In the disloca- 
tion approach this means that the chains passing through the 
loop are not taken into account. 

Eliminating q, from Eq. ( 7 ) ,  we find the equation for 
the field @: 

~ @ = - n x ~ v G  (6 (f) [nz]), ( 1  1 )  

where 

The equations for the fields dq,/dx and 
V = @ + ( v / 2 )  (dg, / a x )  are obtained from Eq. ( 1 1  ) with 
the help of Eq. ( 7 )  : 

It follows from ( 1 1  ) and ( 13) that the fields @, q,, and V 
have singularities on the dislocation line. 

Let us introduce now for the operator K the Green func- 
tion D ( r )  related to the single-soliton solutions @, and q,, 
studied earlier:2 

Then 

It is easy to derive from ( 1 1  ) an expression for @ in the form 
of an integral over the dislocation line 9, and then over the 
surface 3 arbitrarily spanning 9 : 

Using Eq. ( 14),  we find hence 

The first term in Eq. ( 17) has a simple physical meaning of a 
superposition of the fields of point fictitious solitons filling 
the projection of the dislocation surface normal to n. The 
second term vanishes for a loop lying in the transverse plane. 

The fields dq, /dx and Vare obtained from ( 16) with the 
help ofrelations ( 1 3 ) .  Using Eqs. ( l l ) ,  ( 1 3 ) ,  and ( 1 5 )  we 
find 

Integrating ( 18) over x,  we have 

Here 3, and V, are the surface and volume of a semi-infi- 
nite cylinder spanning the contour 9 with generators paral- 
lel to n, and df, = [dl X n ] dx is the element of the cylinder 
surface. 

Similar to ( 19),  we find from ( 13 ) and ( 16) the follow- 
ing expression for the phase 

Let us find, at last, a convenient expression of the type of Eq. 
( 17) for the phase q, in the form of the superposition of the 
fields of soliton sources 

For this purpose we use an easily verified identity 

nK= (nV)2(A-x2)n+aA (An- (nV) V )  

+aA(nV) (V-(nV)n). ( 2 2 )  

Applying the operator ( 2 2 )  term-by-term to the function 
D ( r  - r ' ) ,  we integrate over 3. The left-hand side of ( 2 2 )  
gives a 6-function singularity on 3; the first, second, and 
third terms on the right-hand side give dq, * /ax ,  dq, /dx ,  and 
aAdG /ax,  respectively [cf. ( 15) ,  (21 ), and ( 17) 1. The re- 
sult is 

where q, * and G are defined by ( 2  1 ) and ( 17) ,  and 8,{F) is 
the unit discontinuity function on the surface 9: 

If we choose the cylinder 9, as the surface 3, the first and 
the second terms on the right-hand side of Eq. ( 2 2 )  vanish as 
well as the second term in the definition of G [see ( 17) 1. As a 
result, we find the formula ( 2 0 ) .  For a plane loop we choose 
a plane surface 3 so that G = 0 .  In this case q, and q, * differ 
only in the definition of the discontinuity. At large distances 
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acterized by a ring dislocation of radius R, ( ~ T R  = N) in 
the transverse plane. To find the fields @, p,  and V we use 
Eqs. ( 17), (21 ), and (19). Single soliton solutions q,, and @, 
in these formulae have been recently investigated in Ref. 2. 
Let us recall that all the fields decrease exponentially over a 
microscopic scale length d in the transverse sector: 

from a loop enclosing N chains (a  cluster with a charge 
2Ne), 

* ( )  2 ,  cp* (r) 4, 2+w.  

The function q, * ( r )  has a discontinuity Sp * 1, = - 27~; 
therefore, by virtue of Eq. (22), the function q, ( r )  does not 
have a discontinuity, i.e., it varies monotonicly from 0 to 27~  
along the x axis, if we cross the surface 3 :  

and have a peculiar mixed exponential dependence in the 
longitudinal sector: 

Thus, the definition of the phase p * corresponds to the 
concept of discontinuity of displacements in the theory of 
dislocations, and the definition of the phase q, corresponds to 
the physical picture of aggregation of 27~-solitons. The conti- 
nuity of the phase q, ( r )  with respect to x and its invariance 
under the choice of the surface 3 follows from its definition 

where T  = (Z,?, ) = xr/2, 7. = I T / .  
We shall use exact solutions2 of Eqs. ( 14), (15) for 

a = 1 valid at all r: since the charge density - A@/~IT  has no singularities on 
any surface. 

f ( r ) =  (ch Z- 
3. ENERGY 

Let us consider now the energy of the system in the 
presence of an arbitrary dislocation loop. Using Eq. (7) ,  we 
transform the last term in the energy functional (5).  As a 
result, the energy takes on the form where h( r )  = exp( - 7.)/7.. 

In the important case a 4 1 the solutions (27) and (28) 
are obtained from (28 I-( 30) by a scale transformation 

ma (x, r,) (xa'", r,) , 

(ps (x, r,) -+cp., (xa'I2, r.J. (31) where B is defined in (6).  Eqs. (4)-(6) and (23) show that 
our system is equivalent to a certain magnetic medium with 
the "magnetic induction" B and "field" 2w in the presence of 
a unit current in the contour 24. Equation (7) plays the role 
of the linear anisotropy and nonlocal susceptibility. 

Introducing the vector-potential A according to 
B = [ V  X A],  we obtain from (23) after standard transfor- 
mations 

Substituting (28)-(30) into (17) and (21), we find 

Having chosen the cylinder surface 3, as the surface 3 ,  we 
have 

where 

- - 
1 = 2  1 d2FL' exp {- + (rL - P ~ ' ) ~ ] % )  a 

[22 + (FL - iLf)]% 
IPl'l<xR,12 For a plane loop 

(35) 

To analyze Eqs. (32)-(35), we should take into ac- 
count that the function I ( r )  is proportional to the effective 
"electron potential" of a charged disk in an isotropic medi- 
um with a unit screening length. Near the plane x = 0 we 
have 

i.e., the energy is integrated as a sum of potentials of point 
solitons in the plane of the dislocation loop. Evidently, the 
field q, in Eqs. (24)-(26) cannot have a discontinuity on the 
same surface. 

4. PLANE RING DISLOCATION 

It is natural to expect that at a given N the configuration 
with a minimum energy is the one with axial symmetry char- 

with exponentially small corrections. For example, we find 
on the dislocation axis the exact values 
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Let us now study the field distribution near the disloca- 
tion line 

Considering the interior part of the loop as an infinite half- 
plane y > 0, we get from ( 3 5 ) 

I (2, y") = 4n0 (a) exp (- I P 1) - 4 sg11 ,q KO ( ( P  + ,Fa)%) dz 5 
IBI 

B 

where KO ( t )  is a modified Bessel's function and j = xy/2. 
In addition to (36), we find that on the cylinder y = 0 

the function p,  as well as @, takes on half the values (36) at 
r<Ro .  

The derivatives of @ and p and, consequently the field 
V, have diverging singularities on the line 9. This is easily 
seen for the transverse components El and F, of the field and 
force, respectively: 

where p2 = i2 + j2 .  
At minimum distances p < 1 we have 

The formulae (40) show that the attraction to the disloca- 
tion cylinder takes place on the outside in the sector 
1x1 < - y. The potential energy is negative on the outside, 
and the electric field is always directed outside. 

In Eq. (40) F, and the first term in the expression for V 
evidently correspond, as they ought to at r < r,, to the free 
phase for a standard vortex filament. The quantity El and 
the second term in the expression for V are the corrections 
due to the Coulomb interaction. Note that the region xr<  1 
is attainable only if the minimum longitudinal width 1 of the 
dislocation filament is smaller than the Coulomb length d. 
For arbitrary a < 1 this means that 

hence 

Thus, the singularity range and, accordingly, strong at- 
traction of the solitons to the dislocation line are attainable 

for the systems with a sufficiently weak Coulomb interaction 
and a relatively strong interchain coupling. 

At large distances xRO s p s  1 the functions E and F 
decrease rapidly in the horizontal sector: 

In the vertical sector we have a mixed law 

which is a two-dimensional analog of the three-dimensional 
soliton  solution^.^ We see that in the region (42) the Cou- 
lomb interactions dominate, the forces are directed outward 
and from the line 9, and the energy is positive. 

Let us recall that the transition from the special case 
a = 1 to the general one a < 1 is carried out with the help of 
the scale transformation (3  1 ) . 

5. WEAK SCREENING 

The effect of screening by residual carriers (electrons or 
solitons) on the inner structure of a dislocation becomes im- 
portant when the screening length A - '  is smaller than the 
loop size (A - ' < Ro ) . According to Ref. 2, we can allow for 
screening by the subst2ution A - A - A in Eqs: ( 12), ( 13), 
and ( 15) at invariant A and A,.  As a result, at large distances 
we must use single-soliton solutions of the form obtained in 
Ref. 2: 

where a *  = a A  2/x2 < a .  
Thus, the phase distribution is determined by the effec- 

tive problem for a dislocation without the Coulomb field, but 
with an enhanced anisotropy a*. From (21) we find the 
evident result 

c~*(r*) =Q/2, r* (x, rl/ (a')'h), 

AlrLIB1, IrWlBd/a', 

where fl is the solid angle in reduced coordinates r*, at 
which the dislocation loop L9 is seen from the observation 
point. As seen from Eq. (43), the main contribution to the 
interaction V, in terms of the parameter x2/A 2s 1, is given 
by the electron potential @. This potential has a quadrupole 
character, i.e., there are sectors of negative [ x  < r,/(a*) "2] 

and positive [ x  > r/(a*) energy. Thus, we find the fields 
2Np,, 2N@,, and 2NVs far from the loop Ir is  R,. 

The fields near the line 23 can be found in the simplest 
way by solving directly Eq. ( 11 ). After the substitution 
A + A - A Eq. ( 1 1 ) acquires the form of the equation for a 
dipole filament: 
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Eqs. (44) and (13) yield fields g, and @ are multiples of the soliton fields: g,z2Np,, 

v x 2 d y  u a  x y V=@e---=--- 
2 hZ ax 2 (a')"' h yZ+ xZa" 

At the boundary of the validity range, A Ir* I - 1, the interac- 
tion reaches the following value in the dislocation plane: 

This result is of the type given by Eq. (40), but with a drasti- 
cally narrowed vertical sector, 1x1 > Iyl/(a*) "'. In the re- 
maining region the solitons are attracted to the loop g on 
the outside. 

6. ENERGY 

The energy of a plane ring loop is calculated with the 
help of Eq. (26), using the results of the exact solution (34) 
and (35) with the scale transformation ( 3  1 ). As follows 
from Eqs. (36) and (40), the quantity Vis constant every- 
where inside the plane of the loop, except for a narrow ring 
j (  1, y = Ro - r,. Substituting the obtained solutions into 
Eq. (26), we find 

The last term in this formula corresponds to the self-energy 
of the dislocation line. The coefficient C -  1 should be re- 
placed by C-ln(a/y), if the condition (41) holds. 

If the size of the loop is larger than the screening length, 
then V decreases according to Eq. (45) on moving away 
from 9. The main contribution is again made by the Cou- 
lomb field, which is distributed on 3 similar to the phase 
gradient [see (45) 1. To logarithmic accuracy, the resulting 
energy differs from the standard vortex energy by a large 
factor of order %/A: 

nu X H = -  Ro In (R,k) a - E,N'" In N .  
s (a*)  '" h 

The soliton aggregation into a dislocation loop is advan- 
tageous, from the point of view of energy, if 

We see that for loops of limited radius ARo < 1 we have 

i.e., for large N the aggregation is always advantageous irre- 
spective of the anisotropy parameter a .  Let us recall that 
under the additional condition (41 ) th'e joining of a soliton 
occurs without a barrier. If large loops (ARo > 1) are 
screened, aggregation at large N is always advantageous. 

7. CONCLUSION 

We have studied loop dislocations in a CDW crystal 
arising due to the soliton aggregation. The main results are 
due to the Coulomb interaction effects. We have found and 
solved equilibrium equations for the Coulomb potential and 
the CDW order parameter. Far from the dislocation loop the 

z 2N@, . In the plane of the loop the fields and q, apart 
from exponentially small terms, are constant (36), except 
for a narrow vicinity of the dislocation line, where the behav- 
ior of p corresponds to a standard vortex filament (40). In 
this vicinity, taking place under the condition (41 ), solitons 
are attracted to the dislocation line on the outside, in the 
sector 1x1 < - y. 

In the presence of residual carriers (electrons, solitons) 
screening effects become essential, the phase distribution at 
large distances being similar to that without the Coulomb 
interaction, but with an enhanced anisotropy (43). Near the 
dislocation loop the distribution of the fields V, 4, and p is 
similar to that without screening, but with a sharply nar- 
rowed vertical sector of repulsion (45 ) . 

We have calculated the energy of a plane ring loop. 
Contrary to the standard case of a vortex filament, the ener- 
gy has a term proportional to the area of the dislocation loop, 
or to the number of solitons (46). We have shown that f i r  
systems with a weak Coulomb interaction the soliton aggre- 
gation into a dislocation is advantageous irrespective of the 
anisotropy parameter. If the size of the loop is larger than the 
screening length, the energy has a standard form (47), and 
the soliton aggregation is advantageous at least for large N. 
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The problems of the diffraction and inelastic scattering of nonrelativistic fast electrons in crystals 
are solved for the case in which the angle (9) between the momentum vector of the particle and a 
crystallographic axis is many times the Lindhard angle. The solutions are analyzed. At certain 
values of 9 ,  a resonant coupling may arise between states of quasifree motion of the particle and 
Bloch states from the low-lying narrow band in the energy spectrum of an electron in the 2 0  
transverse periodic potential of the crystal. The onset of a resonance of this type in the final state 
of the inelastic-scattering problem may be responsible for the anomalies which have recently been 
seen in experiments on the transmission and reflection of electrons from crystalline targets. 

INTRODUCTION 

In research on the motion of fast electrons in crystals it 
is generally assumed that the periodic potential has a strong 
effect on the shape of the trajectory only if the angle between 
the particle momentum p and the atomic plane or axis is less 
than or equal to the Lindhard angle: 

where n i s  on the order of the internal crystal potential, and 
E~ is the energy of the particle.1 In a quantum-mechanical 
formulation of the scattering problem, inequality ( 1) is the 
condition of a pronounced restructuring of a plane wave in- 
cident on a crystal, accompanied by simultaneous excitation 
of a large number of Bragg diffraction  reflection^.^-^ In par- 
ticular, when condition (1) holds, the whole set of the coeffi- 
cients in the expansion of the electron wave function in a 
perturbation-theory series in Fourier components of the pe- 
riodic crystal potential, which correspond to a certain plane 
of the reciprocal-lattice vectors orthogonal to the particle 
momentum p become anomalously large (Ref. 2).  From the 
geometric standpoint, condition ( 1 ) is equivalent to the con- 
figuration in Fig. la, in which the Ewald sphere7 p2 = 2 m ~ ,  
is tangent to this plane of reciprocal-lattice vectors. 

However, it is not difficult to show that the relative po- 
sitions of the Ewald sphere and the three-dimensional sys- 
tem of reciprocal-lattice sites in Fig. l a  do not account for all 
the cases which might correspond to a pronounced dynamic 
restructuring of the wave function of the particles incident 
on the crystal. In particular, the configuration in Fig. lb also 
corresponds to the case of the simultaneous excitation of 
many diffraction reflections-a number of reflections com- 
parable in order of magnitude to the number of features in 
case la. We denote by g the distance between successive 
planes of reciprocal-lattice vectors. It is a straightforward 
matter to derive the angle a,, between the momentum vector 
of the electron and the crystal axis, for the case correspond- 
ing to Fig. lb: 

6 , = 2  arcsin [ ( g / 2 p ) " ] .  ( 2 )  

of Ap- (2pg) I/'. Since the matrix element of the periodic 
crystal potential corresponding to a diffractive reflection by 
a certain reciprocal-lattice vector G contains a Debye- 
Waller factorZ exp( - 1/2 ( ( Gu) 2, 1, a11 processes with a 
momentum transfer Ap 2 ( (u2) ) - are suppressed (here 
and below, we are using a system of units with f i  = 1 ). Com- 
parison of the latter inequality with (2)  leads to an upper 
limit on the energy of the electrons: 

Under ordinary conditions the right side of (3)  would be 
some tens of kiloelectron volts, suggesting that a special mo- 
tion of the fast electrons in the crystal might arise at nonrela- 
tivistic energies in the scattering geometry in Fig. lb. 

As we will see below, for a motion of this type a 
multiwave resonant coupling typically arises between (on 
the one hand) free semiclassical states of the particle which 
correspond to relatively large angles between p and the lat- 

I 
The ~robabilitv for the excitation of Bram reflections in case 

ww 

lb  can be estimated in the following way. The angle (2)  FIG. 1.  Relative positions of the Ewald sphere and the system of recipro- 

through which the electron is deflected in the course of the cal-lattice sites of the crystal. a-The electrons are incident approximate- 
ly normally on the crystal surface, and inequality ( 1 )  holds; b--a 

scattering corresponds to a momentum transfer on the order multiwave resonance arises in the solution of the diffraction problem. 
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tice axes and (on the other) "bound" Bloch states corre- 
sponding to narrow bands of transverse motion in the 2 0  
periodic potential of the crystal. In particular, under the 
conditions of this multiwave resonance there may be a com- 
plete "capture" of a nonrelativistic electron from a plane 
wave into a bound state of transverse motion, localized near 
atomic axes of the crystal (by way of comparison, the proba- 
bility for the filling of bound states in the case in which elec- 
trons are incident normally on a target is no greater than 
- 50%; Ref. 8).  

Special motivation for analyzing multiwave resonant 
scattering comes from some anomalies recently seen experi- 
mentally in the angular distributions of electrons scattered 
inelastically through relatively large angles with respect to 
the lattice axes of a ~ r ~ s t a l . ~ - ' ~  Some nearly regular intensity 
rings were observed in Refs. 9-1 3 in addition to the custom- 
ary angular distribution of the scattered particles (a  pattern 
of intersecting lines and bands3f4 ). These rings appeared 
both in experiments on the passage of fast electrons through 
thin crystals1' and in experiments on reflection9s12 and 
backscattering13 from bulk samples. The expression derived 
below for the differential cross section for inelastic collisions 
of fast electrons in a thin crystal makes it possible to work 
from ideas concerning a multiwave resonance to explain the 
experimental results of Refs. 9-13. In several cases, it be- 
comes possible to find a good quantitative agreement be- 
tween the theoretical intensity profiles and the observed an- 
gular distributions of inelastically scattered particles. 

1. WAVE FUNCTION IN THE ELASTIC-SCATTERING 
PROBLEM 

The motion of a fast electron in matter can be represent- 
ed as a diagram sequence of events of elastic scattering by a 
periodic crystal potential averaged over thermodynamic 
equilibrium, 

uo (r) = 2 e-~J'<n 1 U (r) 1 n> , (4)  
55 9, 

and of inelastic collisions in exciting internal degrees of free- 
dom of the target.2 The summation in (4)  is over the eigen- 
states of the electron and phonon subsystems of the crystal, 
In), with energies En;  T is the absolute temperature; and 
9 = E, exp( - E, / T ) .  In accordance with the usual ex- 
perimental situation,lO'" we restrict the analysis below to 
the case in which electrons pass through a relatively thin 
crystal, whose dimension (L )  along the direction of motion 
of the particles does not exceed the mean free path (I) of the 
electrons with respect to inelastic interactions (at E~ - lo5 
eV, for example, the mean free path of the electrons with 
respect to the excitation of the phonon subsystem of the crys- 
tal isI4 lo3 A ) .  

The wave function of the problem of elastic scattering in 
a thin crystal is the solution of the equation 

with a boundary condition for the incident wave, 

$inc (r) =eiPr. (5a) 

We assume that the crystal occupies the spatial region 
0 < z < L and that the vector p makes a small angle 8 with the 

z axis. Under condition ( 1 ) for fast particles, with 

in solving Eq. (5)  we can restrict the Fourier expansion of 
potential (4 )  to reciprocal-lattice vectors {G, } which lie in 
the xy plane.2 We seek the wave function of the fast electron 
in ( S ) ,  (5a) as a superposition of transmitted and diffracted 
waves with slowly varying amplitudes: 

Substituting (7) into (5),  we find a system of coupled differ- 
ential equations for the amplitudes p, (z) : 

where u is the velocity of the electron, E, = (p  + G, )2/2m, 
and the quantities A,, are the Fourier components of the 
periodic crystal potential, 

where no is the volume of the unit cell. 
The condition E, % In I allows us to ignore the reflected 

waves in formulating the boundary conditions on (8) ,  so we 
can write'' 

We can solve Eqs. (9)  by transforming the set of functions 
{p, (2)) to the new representation 

where the unitary matrix C,, (q)  is fixed by the condition 

A direct comparison of ( 11 ) and ( 12) with Eqs. (3 .8)  and 
(3.9) of Ref. 2 easily reveals that the matrix C,, (q) ,  which 
depends on only the projection q of the momentum p onto 
the xy plane, determines a basis of Bloch functions of the 
transverse motion in the 2 0  potential Uo (x, y )  : 

where p is a 2 0  vector with the components x, y. In represen- 
tation ( 11 ) and ( 12), the solution ( 10) becomes 

The value of pj (z) at z = 0 is the same as the known result 
from the sudden-perturbation theory:'s2 

where So is the area of the 2 0  unit cell of the crystal in the xy 
plane. 
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