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The decay of the top-band phonon mode has been studied by molecular-dynamics simulation in 
monatomic and diatomic anharmonic 1D lattices (chains). Distinct stages are found in the decay. 
An excitation of small-radius localized intrinsic vibrations is also found. These vibrations draw 
energy from the surrounding spatial regions. Some physical realizations of the observed effects 
are discussed. 

INTRODUCTION cal integration. This error, however, depends on the value of 

The problem of seeking stable excitations of nonlinear A, in a complex way, SO the initial time turns out to be shift- 

systems arises both in nonlinear optics and quantum elec- ed with respect to T = 0, and it becomes difficult to analyze 

tronics, on the one hand, and in several problems in solid the the Process. 

state physics, on the other. Among the latter problems are 
those involving vibrational excitations of polymer chains1 
and the appearance of superstructures in the course offer- 
roelectric phase transitions (see the review by Strukov2 ). 
The form of the stable solutions depends on the nature and 
magnitude of the nonlinearity of the potential, which in a 
real physical system may in turn depend on several external 
parameters (the pressure and the temperature) as well as the 
excitation amplitude. The purpose of the present study was 
accordingly not to search for the stable solutions themselves 
but to study the process by which an excitation which is 
uniform in terms of amplitude and is stable in a harmonic 
system decays in a 1D chain with a nearest-particle interac- 
tion potential which includes terms of the third and fourth 
orders in the anharmonicity. That a uniform classical excita- 
tion of a nonlinear system is unstable is a fairly well-known 
fact.3 Distinctive features of the system which we have se- 
lected are its discrete nature and its incomplete integrability. 
These features are linked with some effects found below: a 
pronounced concentration of energy in an intermediate 
stage of the decay and the establishment of a thermal equilib- 
rium (a uniform distribution of energy among the various 
degrees of freedom) in the chain. 

The procedure for the numerical simulation is as fol- 
lows. We begin with a chain of particles with a nearest- 

RESULTS OFTHE NUMERICAL SIMULATION AND 
DISCUSSION 

Monatomic chain 

1. Figure 1 shows a typical decay of an original pertur- 
bation. Specifically, this figure shows the time evolution of 
the maximum energy in a chain of 100 particles. We can 
distinguish three stages on this curve. 

1) First comes the actual decay of the original perturba- 
tion into a series of localized excitations of the envelope- 
soliton type-"intrinsic (natural) localized  mode^"^-^ -oc- 
curs in interval OA, which amounts to about 100T,,, , where 
T, is the vibration period of the excited phonon mode in the 
harmonic approximation. The energy distribution in the 
chain shown in Fig. 2a corresponds to this stage of the decay. 
We see that an energy several times the original energy is 
concentrated at several of the particles. 

2) Next comes a redistribution of energy among the in- 
trinsic localized modes (this is interval AB, which covers the 
time interval from 100Tm to 700Tm ). As a result of this 

neighbor interaction potential 

K2 Ks Kh 
(1)  

6 
U ( r ) = - P + - r 3 + - r ' ,  

2 3 4 
where K,, K3, and K, are constants of the potential. At the 
initial time we specify a configuration of particle displace- 
ments un from their equilibrium positions, 
[u, = ( - 1) "A,, where A, is the mode amplitude corre- 
sponding to the phonon mode (which we will call Q, ) with 2 

the wave vector k = ~ / h ,  where h is the lattice constant]. 
The displacements of the particles at later times are found 
from the equations of motion and cyclic boundary condi- 
t ion~."~  A small perturbation (with a size less than 0.1 % in a5 I 1,5 

terms of amplitude) is specified at the initial time in order to 3 
T ,  10 T", ... 

initiate the decay of the mode Q, . This perturbation does no 
FIG. 1. Time evolution of the maximum energy Em,, localized at a parti- than tie-in the beginning of the decay with the time cle in the courseof the decay ofmode Q, in a chain of 100 particles of mass 

T = 0, since a decay would occur even in the absence of this , = 1 .  The initial amplitude of the mode is A, = O.lh; the anharmonicitv 
perturbation, because of a buildup of the error of the numeri- parameter is /ZA = 0.10, where /Z = K,/K, :  
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redistribution, the concentration of energy becomes even 
more pronounced (Fig. 2b). More than 50% of the entire 
energy of the chain is concentrated in three or four intrinsic 
localized modes which form, and in the most intense of these 
modes the maximum energy per particle is in fact tens of 
times the average energy. 

3) Next comes the decay of the intrinsic localized modes 
(interval BC, covering the time interval from 700T, to 
2000T, 1. As a result of this decay, the energy turns out to be 
distributed more or less uniformly along the chain again. 

The subsequent evolution of the system does not cause 
any changes in either the spatial or spectral distribution of 
the energy. 

In the spectral representation, the process by which 
mode Q, having the maximum wave vector decays has two 
characteristic stages. The first is characterized by a redis- 
tribution of energy between the top-band modes of the chain 
and the intrinsic localized modes. Figure 3a shows the mode 
spectrum of a chain of 40 particles in this stage of the decay 
of Q, . The highest-frequency peak in the spectrum in Fig. 3a 
corresponds to intrinsic localized modes whose vibration 
frequencies lie above the band of phonon modes. The peak at 
frequencies near w, (w, = 2n-/T, 1 corresponds to the up- 
per edge of the phonon band, which is the position of the 
spectrum of the Q, vibrations. The low-frequency states are 
filled only slightly in this stage. Next comes a redistribution 
of energy from the top-band part of the spectrum to the bot- 

FIG. 2. Distribution of the energy En in a chain of 100 particles of mass 
m = 1 during the decay of mode Q,, at various times. a-T = 200Tm ; b-- 
T=700Tm; c-T= 1500T,,,. The anharmonicity parameter is 
L A ;  = 1.21. 

FIG. 3. Fourier spectrum F ( w )  of the vibrations of a chain of 40 particles 
of mass m = 1 during the decay of mode Q,. a-During the existence of 
the intrinsic localized modes, at Tz700Tm; b-after the decay of these 
modes, at Tz4000Tm. The anharmonicity parameter is LA = 0.10. 

tom-band part. In a thermalized chain the amplitude of the 
bottom-band modes is more than an order of magnitude 
greater than that of the top-band modes (Fig. 3b). The dis- 
tribution of the amplitude of the Fourier spectrum, F(w), in 
the final phase is indeed characteristic of a thermal equilibri- 
um, since the law F(w) *W = const holds. 

2. Let us take a more detailed look at each of these 
stages in the decay of mode Q, . 

1) The actual decay of Q, occurs exponentially; more 
precisely, the increase in the amplitude of the intrinsic local- 
ized modes occurs exponentially (Fig. 4). The time constant 
of the decay depends on the relative nonlinearity of the po- 
tential (see the caption of Fig. 4 ) .  

The stability properties of mode Q, in 1D chains with a 
particle interaction potential as in ( 1 ) (a  Fermi-Pasta-Ulam 
lattice) have been studied theoretically by Budinsky and 
Bountis." They were interested in the threshold value of the 
energy per particle, i.e., the value at which an instability first 
arises, and also the asymptotic value of this threshold energy 
as the number of particles increased. We are interested pri- 
marily in the rate of decay of mode Q, as a function of the 
amplitude and the characteristic wave vector of the excita- 
tion generated during the decay of Q,. We will study the 
decay process in the continuum approximation. The corre- 
sponding equations of motion are 

where p is the mass density of the chain; u ( t ,  z )  is the dis- 
placement of a unit length element from its equilibrium posi- 
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AA, 10'?h 
I 

FIG. 4. Exponential growth of the amplitude AA in the initial stage of the 
decay of mode Q, (region OA in Fig. 1 ) for various initial amplitudes: a- 
A, = 0.09h; &A, = 0.10h; c-A, = O.llh. The anharmonicity param- 
eter is Ah = 10. Points-Values found by the molecular-dynamics meth- 
od; solid lines-best fit of the exponential function exp(T/s), with (a)  
s = 2.36, (b) 1.98, and (c)  1.70. 

tion; u,, , u,, and u, are respectively the time derivative and 
the spatial derivatives of the displacement; and K, and K, 
are parameters of potential ( 1 ). From (2)  we easily find the 
vibration frequency 0, of mode Q, : 

where k a n i  A, are the wave vector and amplitude of Q, 
{Q, = A,exp[ - i(wt - kz) I), respectively. The stability 
of Q, is analyzed by the standard method here, through the 
addition of a small perturbation l ( t ,  z) to the original excita- 
tion: 

&=A, e x p [ - i ( w t - k z )  ] + t ( t ,  z )  

=An e x p [ - i ( o t - k ~ )  ]+cp(t)$(z)  . (4) 
The functions p ( t )  and $(z) depend on the time and on the 
coordinate, respectively. Substituting (4)  into (2), and us- 
ing (3),  we find 

cp" ooa 9"- 3iK,ksA,' 9' 
---A- - 

rp k2 9 P 9"' 
(5) 

We seek a solution in the form 

Substituting (6)  into (S), we find 

It can be seen from (7)  that the decay of Q, involves a 
threshold if a perturbation wave vector x is given, since a 
decay in (7)  corresponds to the requirement j? > 0. If the 
perturbation has a more or less continuous spectrum of spa- 
tial harmonics, one can determine that value of x at which y 
has its maximum value. We denote this particular value by 2. 
Differentiating (7) with respect to x ,  we find 

where Aw2 is the anharmonic shift of the square of the fre- 
quency. 

The value found for x with the help of (8 )  agrees fairly 
well with that observed in the numerical simulation. 

In precisely the same way we can use (7)  to estimate the 
decay rate (more precisely, the rate at which the amplitude 
of the intrinsic localized modes increases). We find the fol- 
lowing expression for (per 2 )  : 

A substitution of the numerical values into (9)  again reveals 
a satisfactory agreement with the experimental value of y. 

2) The concentration of energy which occurs during 
time interval AB results from an inelastic interaction of the 
intrinsic localized modes with each other. As was shown in 
Ref. 5, two of these modes may merge to form a single local- 
ized mode in the course of an interaction, or these intrinsic 
localized modes may pass through each other without un- 
dergoing any significant loss of energy. On the whole, it is 
thus in this stage that the bottom-band phonons form. These 
phonons play the most important role inthe decay of the 
small-radius intrinsic localized modes. Specifically, in the 
first stage of the decay of mode Q, the chain contains top- 
band phonons, envelope solitons (the peak in the spectrum 
at wzw, in Fig. 3a), and intrinsic localized modes (the 
highest-frequency peak in the spectrum in Fig. 3a). 

According to Flytzanis et al." (see also the bibliogra- 
phy in Ref. 1 I) ,  the evolution of the excitations of the first 
two types is described by a nonlinear Schrodinger equation, 
and these excitations do not interact with each other. Conse- 
quently, generation of low-frequency modes can be expected 
in processes in which intrinsic localized modes interact with 
envelope solitons and with top-band phonons. Figure 5, a 
and b, shows a collision of a soliton with immobile intrinsic 
localized modes. The amplitude of the latter modes in the 
second case is higher by a factor of 5'12 than the amplitude of 
the intrinsic localized modes in Fig. 5a. The soliton has the 
same amplitude and the same velocity in the two collisions. 

In a collision of an envelope soliton with a local mode 
whose anharmonicity is relatively slight (Fig. 5a), only a 
small part of the soliton is reflected from the intrinsic local- 
ized mode, while in a collision of a soliton with a highly 
anisotropic intrinsic localized mode nearly half the soliton is 
reflected back. The local mode, in contrast, undergoes al- 
most no change as a result of the collision in the second case, 
and in the first case it recovers it shape after a rather long 
time. In each case, after one collision of a soliton with an 
intrinsic localized mode this mode nearly recovers the initial 
value of its amplitude. 
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FIG. 5. Collision of an envelope soliton of amplitude A, = 0.01h with a 
local mode of amplitude (a) A ,  = O.lh. (0.2) and (b) A, = O.Ih in a 
chain of 200 particles of mass m = 1, with cyclic boundary conditions. 
The vibration amplitude A of the particles is plotted along the vertical 
axis. The anharmonicity parameter is Ah = 10. 

Figure 6, a and b, shows vibration spectra of particles of 
the chain far from an intrinsic localized mode after about 
four collisions of a soliton with a local mode. In each spec- 
trum, the highest-frequency peak corresponds to the carrier 
frequency of the soliton. To the left of this peak we see two 
smaller peaks in each case, which correspond to bottom- 
band excitations generated in the course of the collision of 
the soliton with an intrinsic localized mode. The frequency 
difference between these excitations corresponds precisely 
to the frequency difference between the local mode and the 
soliton (the particle vibration spectra shown in Fig. 6, a and 
b, are for particles far from the immobile intrinsic localized 
mode, so the frequency of the latter mode is not seen). 

In the case of an intrinsic localized mode which is only 
slightly anharmonic, with the local-mode frequency 
w, (a, z1.08wm) lying close to the soliton frequency 
o, (0, ~ 0 . 9 9 ~ 0 ,  ), excitations are generated in the collision 
which are more intense and which have higher frequencies 
than in the case of a collision of a soliton with a very aniso- 
tropic intrinsic local mode (w, z 1.360, ). This circum- 
stance is reflected in the intensity of the low-frequency peaks 
in Fig. 6, a and b. One might suggest that a collision of a 
bottom-band phonon with a local mode involves a corre- 

FIG. 6. Fourier spectrum F ( o )  of the vibrations of a particle of a chain of 
mass m = 1 far from an intrinsic localized mode, after four collisions of an 
envelope soliton with a local mode. The amplitude of the envelope soliton 
is A, =0.01h. The amplitude of the intrinsic localized mode is (a) 
A ,  = O.lh (0.2) or (b) A, = O.Ih, in correspondence with Fig. 5. The 
high peak at the right corresponds to the soliton frequency. 

sponding interaction process, in which a bottom-band exci- 
tation is created, since the motion of the phonon obeys a 
nonlinear Schrodinger equation, as the motion of a soliton 
does. 

3) In the final stage of the thermalization of the chain, 
the localized modes decay against the background of genera- 
tion of bottom-band modes. To identify the mechanism for 
the decay of the intrinsic localized modes, we consider the 
conditions for the existence of a local mode in a chain in 
which a low-frequency mode is excited. 

The equation of motion for the particles of a chain with 
a quartic anharmonicity is 

where m is the mass of the particles, and u, are the displace- 
ments of the particles of the chain. The particle displace- 
ments corresponding to a low-frequency mode are 

where A, is the amplitude of the mode which has a wave 
vector q and a frequency w, and h is the chain constant. 
Assuming that the size of the intrinsic localized mode is 
small in comparison with l/q, and assuming that the fre- 
quency w ,  of the localized mode is significantly higher than 
the frequency of the low-frequency mode, w ,  we consider the 
equation of motion of an intrinsic localized mode against the 
background of a constant gradient of displacements of the 
chain particles. Singling out the slowly varying gradient, we 
seek the displacements in the form 
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where v, ( t )  are displacements which describe the local 
mode. Substituting ( 12) into ( lo ) ,  we easily find the follow- 
ing equations for v ,  ( t )  : 

where R = K4/K, is again the anharmonicity parameter. 
Equation (13) describes vibrations in a chain with anhar- 
monicities of third and fourth orders, in a nearest-neighbor 
potential. In other words, a low-frequency mode has created 
for the intrinsic localized modes an effective potential 

Qz Qs Q' V , ( r ) = - - f  + - r 3 + - - $ ,  
2 3 4 

(14) 

where 

Qz= (1+3kA,2q2hZ) K2,  

Qa=-SA,qhK,, 

Q*=K&. (15)  

The question of the decay of an intrinsic localized mode 
against the background of low-frequency modes which have 
appeared now reduces to the question of the existence of 
local modes in a chain with anharmonicities of third and 
fourth order. We have accordingly studied the stability of 
intrinsic localized modes as a function of the relation 
between the anharmonicity constants Q, and Q4 in potential 
( 14). A local mode was excited through a displacement of 
two neighboring particles toward each other, while the other 
particles remained at rest in their equilibrium positions. The 
amplitude of the initial displacements of the two particles 
which were moved was chosen to lie above the threshold for 
the excitation of intrinsic localized modes, in accordance 
with Refs. 4 and 5. The degree of stability of intrinsic local- 
ized modes in a potential of this sort was estimated from the 
fraction of the energy which formed a local mode at the par- 
ticles which were initially moved. Studies of potentials with 
various relations between the anharmonicities of third and 
fourth orders showed that the stability of intrinsic local 
modes falls off as the shape of the particle interaction poten- 
tial approaches that of a Toda potentialI2 

a a 
V ,  ( r )  = exp (-br)  + ar- - 

2 , '  

where a and b are constants (ab > 0).  For a chain with po- 
tential ( 16), a localized mode does not form, and an initial 
perturbation leaves the region of the initial excitation in the 
form of solitons. Correspondingly, for a chain of particles 
with a nearest-neighbor potential ( 14) the localized modes 
quickly decay if the relations among the constants Q,, Q,, 
and Q4 correspond to the coefficients of the first terms in a 
Taylor-series expansion of Toda potential ( 16) in powers of 
r near the equilibrium position. The equation which we are 
seeking is 

The absence of localized solutions from a chain with a Toda 
potential also implies the absence of envelope solitons.' Sub- 
stituting expressions ( 15) into (17), we find a condition on 

the amplitude ( A ,  ) of a low-frequency mode with a wave 
vector q whose appearance would result in a complete de- 
struction of the local modes: 

Let us apply condition ( 18) to the case of the decay of 
intrinsic localized modes during the thermalization of a 
chain of 100 particles, as discussed above. The typical size of 
the localized modes can be taken to be about 4h (Fig. 2b), so 
a phonon with a wave vector q z r / 4 h  will create the gradi- 
ent which we need in order to destroy the intrinsic localized 
modes. Substituting the value Ah = 10 for the anharmoni- 
city parameter for the particular potential used into ( 18), we 
find the amplitude of a phonon which will destroy the intrin- 
sic localized modes: 

Results found on the decay of mode Q,, as shown in Figs. 1 
and 2, demonstrate that the destruction of the intrinsic local- 
ized modes occurs before the amplitude of the low-frequency 
modes reaches the value z0.3h, in agreement with ( 19). 

3. Let us examine the thermalization of a chain with an 
initial excitation of mode Q, as the amplitude of this excita- 
tion is varied. This variation of the excitation amplitude 
causes a variation of the extent to which potential ( 1 ) is 
nonlinear. Figure 7 shows trajectories of the time evolution 

FIG. 7. Time evolution of the maximum energy Em;,, which is localized at 
a particle for various initial values of the amplitude and anharmonicity of 
mode Q,. a-A, =O.lOh, LA: =0 .10;  b-A, =O. l lh ,  M i  =0.121; 
c-A, = 0.13h, LA = 0.169. The chain contains 100 particles of mass 
m =  I .  
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FIG. 8. Fourier spectrum F ( w )  of the vibrations of a diatomic chain 
(m, = 1, m, = 2) of 40 particles during the decay of mode Q, at (a)  
Tz2800Tm and (b)  T z  10700T,. The anharmonicity parameter is 
AA;  =0.10. 

of the maximum energy Emax in the chain for various ampli- 
tudes Q, . We observe a pronounced contraction of the time 
intervals of all the stages of the decay which we discussed 
above as the anharmonicity increases. A 30% increase in the 
amplitude (compare Fig. 7c with Fig. 7a), for example, 
shortens the complete thermalization time from T=; 1600Tm 
to Tz600Tm,  i.e., by a factor of nearly 3. The relative in- 
crease in Emax which occurs in the intermediate stage is 
roughly the same in all three cases. 

Diatomic chain 

The process by which Q, decays basically involves the 
same stages as in a diatomic chain, but the presence of a gap 
in the vibration spectrum introduces a qualitatively new re- 
sult: Complete thermalization does not occur. The reason is 
not difficult to see, when we go back to the mechanism for 
the filling of the phonon states. A generation of low-frequen- 
cy phonons occurs as the result of an interaction of a small- 
radius intrinsic localized mode with envelope solitons and 
with high-frequency phonons. The higher the energy of the 
intrinsic localized mode (the smaller the localization radi- 
us), the lower the frequency of the phonon which is genera- 
ted. The gap in the spectrum of a diatomic chain has the 
consequence that a threshold is involved in the generation of 
low-frequency excitations. Consequently, after the intrinsic 
localized mode has lost a fraction of its energy above the 
threshold value, the general thermalization comes to a halt, 
and a thermalization occurs only within each band (Fig. 8).  

CONCLUSION 

From this study of the decay kinetics of a uniform clas- 
sical excitation of a nonlinear chain we can draw several 
concIusions which concern the dynamics of nonlinear sys- 

tems as such and which are applicable to certain problems in 
the solid state physics. The most important points in our 
opinion are the following: 

a )  the comparatively rapid decay of an initial excitation 
into randomly positioned intrinsic localized modes, with a 
decay rate which increases with increasing K,; 

b) the high concentration of energy in small-radius in- 
trinsic localized modes; 

C )  the governing role played by the small-radius intrin- 
sic localized modes in the relaxation to a thermal equilibri- 
um. 

The first two of these consequences are exceedingly im- 
portant for concrete physical realizations. The rapid and ir- 
reversible decay of mode Q, as the nonlinearity of the vibra- 
tions increases may reflect the behavior of the damping of a 
soft mode near a structural phase transition. Near the tem- 
perature phase-transition T,, the nonlinearity of the soft- 
mode potential (K, ) increases, at the expense of K,, which 
decreases (Ref. 13 ), the quasiharmonic frequency wm (kc, ) 
becomes comparable to the anharmonic increments, and the 
soft mode itself becomes a classical excitation. According to 
(9), y increases to the extent that the mode may become a 
relaxation mode. Since y is very sensitive to k, the spectrum 
of spatial fluctuations of the order parameter may contain 
intense harmonics with k4k,,. In other words, we might 
expect that modulated and random phases would arise in 
such systems. The key factor for this conclusion is the quasi- 
one-dimensional nature of the soft-phonon band, rather 
than the one-dimensional nature of the overall system. 

The pronounced concentration of energy which occurs 
during the decay of a uniform classical excitation of this 
system may describe a specific mechanism for the generation 
of point defects in a condensed medium. 

We wish to thank V. I. Rupasov for a useful discussion. 
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