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An analytical and numerical investigation is performed of the Hamiltonian dynamics of a charged 
particle in a homogeneous magnetic field and the field of a packet of electrostatic waves that 
consists of one or a finite number of harmonics and propagates obliquely to the magnetic field. 
The system under consideration has 2-5 degrees of freedom and possesses properties 
characteristic of multidimensional systems. In the absence of perturbations the system is 
degenerate, as a result of which, diffusion along the channels of a stochastic web is possible in the 
system. The process of stochastic acceleration of the particles is bounded, and this distinguishes 
the case under consideration from the case of motion in the field of an infinitely broad wave 
packet. Estimates are obtained for the maximum magnitude of the stochastic heating. The 
transformation of the stochastic web with change of the number of harmonics of the wave packet 
is considered. 

1. INTRODUCTION 

The interaction of charged particles with a packet of 
electrostatic waves in a magnetic field has been investigated 
for a long time in connection with diverse applications in 
problems of plasma physics. In Ref. 1 the problem of the 
transverse propagation of one plane wave was discussed in 
application to the problem of the paradox of the vanishing of 
the Landau damping in a magnetic field. In Ref. 2 a descrip- 
tion was given of the stochastic acceleration of particles that 
occurs in the presence of an obliquely propagating wave 
packet as a result of overlap of first-order longitudinal cyclo- 
tron resonances. A serious investigation of the motion in the 
field of a perpendicular wave was carried out in Refs. 3-5. In 
Ref. 3 the dynamics of particles in the case when the wave 
frequency is close to a resonance harmonic of the cyclotron 
frequency was considered, and it was shown that a stochastic 
layer always exists in the neighborhood of the separatrices 
and that global chaos arises as a result of the overlap of re- 
sonances. In Ref. 4 the case of a high wave frequency (much 
higher than the cyclotron frequency) was considered, and in 
Refs. 5 the stochastic dynamics of charged particles in a 
strong magnetic field was investigated. Various applications 
to problems in astrophysics were considered in Refs. 6 and 7. 
The investigation of the problem of the paradox of the van- 
ishing of the Landau damping (motion in a weak magnetic 
field) was continued in Refs. 8 and 9, and a review of many of 
the results of the analysis of the stochasticity of the particles 
can be found in Refs. 10 and 1 1. 

A substantially new understanding of the problem de- 
veloped after the discovery of the stochastic web in the case 
of perpendicular resonance propagation of a plane w a ~ e ' ~ . ' ~  
and a very broad wave packetI4 (see also the review in Ref. 
15). The principal new result relates to the existence (when 
the resonance conditions are fulfilled) of unbounded diffu- 
sion of particles along channels of the stochastic web. This 
diffusion is similar in character to Arnold diffusion, al- 
though it is not exactly the latter, since unbounded escape of 
particles occurs for No = 14 degrees of freedom whereas 
Arnold diffusion is possible only for No > 2. The possibility 
of unbounded diffusion for No = 14 is related to the degen- 
eracy of the unperturbed problem. 

As was shown in Ref. 12, if the packet contains only one 
harmonic the thickness of the stochastic web decreases ex- 
ponentially with distance from the coordinate origin on the 
phase plane. Therefore, truly unbounded diffusion does not 
occur in this case. In the case of a uniform and infinitely 
broad wave packet the thickness of the stochastic web is ap- 
proximately constant over the whole phase plane, and un- 
limited stochastic heating of the particles is possible.I4 Nev- 
ertheless, the diffusion does not occur very rapidly, since the 
thickness of the web is proportional to exp( - const/&), 
where E is the amplitude of the perturbation.I4 [We note 
that in the case of Arnold diffusion the web thickness is of 
order exp( - con st/^"^).] If the wave packet propagates 
obliquely to the magnetic field, one more degree of freedom, 
corresponding to the longitudinal motion, appears in the 
system. In Ref. 16 it was shown that in the case of an infinite- 
ly broad uniform packet this leads to a sharp enhancement of 
the diffusion, even when the direction of propagation of the 
wave packet deviates only very slightly from the orthogonal 
direction (p * -  10-4-10-6, where P= k,/k, ). 

In this paper we consider the problem of the motion of a 
charged particle in a magnetic field and the field of a packet 
of electrostatic waves that consists of a finite number of har- 
monics (including the case of one harmonic) and propagates 
obliquely to the magnetic field. It should be noted that this 
case is the most general in real conditions. The dynamics of 
the particle is investigated in conditions close to longitudinal 
and transverse resonance between the characteristic fre- 
quency of the wave packet and the cyclotron frequency. 
Here we consider the region of parameter values in which 
overlap of the first-order longitudinal cyclotron resonances 
does not occur. 

In the case when the packet consists of a single harmon- 
ic, the motion of the particle is specified by the system of 
equations 

x+ X=E sin (xi- z-vt), 

5=&pZ sin (x+z-vt) . 
Despite the comparative simplicity of these equations, the 
dynamics of the particle is extraordinarily complicated. For 
p = 0, because of the degeneracy of the unperturbed prob- 
lem, a stochastic ("bare") web exists on the phase plane (x, 
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x). For small, nonzero values of p a further degree of free- 
dom is added, and a complicated structure, which may be 
called a spiral web, arises in the phase space of the system. If 
the packet consists of several harmonics, the stochastic web 
has an even more complicated geometry, since in different 
plane sections perpendicular to the external magnetic field 
its cells have different shapes. It is indisputable that the in- 
vestigation of the diffusion of particles in this complicated 
dynamical system is of interest. In the paper it is shown that 
the stochastic heating of the particles is limited and that its 
character is determined to a considerable extent by the prop- 
erties of the "bare" web. 

It should also be noted that the investigation of the dy- 
namics of a particle in a wave packet propagating obliquely 
to a magnetic field and having a finite number of harmonics 
is the first analysis of this kind that approximates very close- 
ly to the real situation. The considerable dynamical com- 
plexity described in the present article for certain cases per- 
mits one to assess the degree of difficulty of investigating the 
general problem for arbitrary conditions. 

In Sec. 2 we derive the resonance Hamiltonian of the 
system. In Sec. 3 we consider the motion of a particle in the 
case of longitudinal cyclotron resonance. Section 3 also con- 
tains estimates of the thickness of the stochastic web and of 
the maximum magnitude of the stochastic heating of the par- 
ticles. Motion in the field of a packet consisting of several 
harmonics is investigated in Sec. 4. 

2. THE RESONANCE HAMlLTONlAN 

The initial equations of motion of a particle with mass 
m, and charge e in the field of a wave packet propagating at 
an angle to a magnetic field have the form 

.. e e  
r = -  E ( r ,  t ) +  - [&I, 

no m0c 
(1)  

where the constant magnetic field B, is in the direction of the 
z axis. The electric field E lies in the (x, z)  plane and is an 
electrostatic wave 

E (r ,  t )  =Eo sin (kxx+k,z-vat). (2)  

Because the electric field is assumed to be potential, the wave 
vector k, like the amplitude vector E,, has only two compo- 
nents k, and k,, connected by the relation 

kz Eoz -=-= p = const. 
kx Eox 

(3  

We write out Eq. ( 1 ) in its components, taking into 
account the representation (2)  for the electric field: 

e 
1 = - Eox sin (kxx+k,z-vot) + a H y ,  

mo 

e 
i' = - E,, sin (kd+k,z-vot) , 

mo 

where o, = eB,/m,c is the cyclotron frequency. The sec- 
ond equation of the system (4) can be integrated: 

Setting this constant equal to zero without loss of generality, 
we reduce the equations of motion of the particle to a system 
of two equations 

e 
X + O H ~ X  = - EOx sin ( k s f  kzz-vot)  , 

mo 
e 

z = - Eoz sin (k,x+k,z-vot) . 
mo 

It follows from the equations of motion (6)  that in the case 
of an obliquely propagating wave (k,, k, # 0) the longitudi- 
nal and transverse degrees of freedom are coupled. The 
Hamiltonian of the system (6)  has the following form: 

H=- P.'+P' +? oH2x2+e@. coa ( k j + k z ~ - v 0 t ) ,  
2m0 2 ( 7 )  

where 4, = Eox/kx = Eoz/kHz is the amplitude of the po- 
tential of the electric field andp, and p, are the correspond- 
ing components of the momentum of the particle: 

For the numerical analysis we used the dimensionless 
form of Eqs. (6) .  To obtain this form we set m, = 1 and go 
over to dimensionless variables by means of the replace- 
ments x- k,x, z- k,z, t- wHt. Introducing the notation 
E = e4, k and Y = v0/wH, we obtain the dimensionless 
equations 

X + X = E  sin (x+ z - v t ) ,  

z =E@' sin (x+  Z - v t )  . (6') 

Let the resonance condition 

V O ' ~ ~ H ,  (9)  

be fulfilled, where q is an integer. The condition (9)  implies 
that during one revolution of the particle in the magnetic 
field it passes through exactly q periods of the wave. When 
the condition (9) is fulfilled in the case of strictly transverse 
propagation of the wave the phase plane (x, p, ) of Eq. (6)  is 
covered by a stochastic web for arbitrarily small wave ampli- 
tudes. l2  Below, we obtain the conditions for preservation of 
the stochastic web in the case of nonorthogonal propagation 
of the wave and investigate the changes of the phase portrait 
with change of the parameters of the system. 

When the resonance condition (9)  is fulfilled the Ham- 
iltonian (7)  can be represented in a more convenient form. 
With this aim we go over from the variables x, p, to the 
action-angle variables (J, 8) for the transverse degree of 
freedom: 

x=p sin 0, p , = = p o ~  cos 0, J=p20H/2, (10) 

where p is the Larmor radius (we have set m, = 1 ). In the 
new variables the Hamiltonian of the problem has the form 

H=p,2/2+JoH+Vo cos ( k r  p sin B+k,z -~ot ) ,  (11) 

where we have introduced the notation V, = e4,. We re- 
write ( 1 1 ), using expansion in Bessel functions: 

By means of the generating function 
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we make the change to new variables I = J, e, = B - w,t in 
the coordinate frame rotating with the cyclotron frequency 
w,. In these variables the Hamiltonian has the form 

Separating out the resonance term, which does not depend 
explicitly on the time, we write the following representation 
of this Hamiltonian: 

R=H,+ V,, 

Hq=pz2/2+Vdq( k,p) cos (qq+kzz), (15) 

We shall call the expression for H, the averaged Hamilto- 
nian. It is the expression for R, averaged over the period of 
the Larmor rotation. For a sufficiently large value of the 
cyclotron frequency w, the terms appearing in the expres- 
sion for V, are rapidly oscillating in comparison with H,, 
and their contribution to is small. Thus, the averaged 
Hamiltonian describes particle motion that differs little 
from the true motion under the condition 

where we have introduced the transverse bounce frequency 

corresponding to the frequency of small oscillations of the 
particle in the field of a plane transverse wave with ampli- 
tude V,. 

The averaged Hamiltonian Hq corresponds, generally 
speaking, to a nonintegrable Hamiltonian system. The dy- 
namics of this system is determined in many respects by the 
relative magnitudes of the frequencies characterizing the 
longitudinal and transverse degrees of freedom. 

Suppose that, besides the conditions ( 16), the condi- 
tions 

are fulfilled. The first of the inequalities ( 18) implies that 
through particles with high energies are not considered. The 
second inequality is fulfilled, e.g., if the wave propagates at a 
small angle to the direction of the magnetic field B,. In this 
case the averaged transverse motion is slow in comparison 
with the longitudinal motion, and in the system there is an 
additional approximate first integral. To find it, we write the 
expression ( 15) for H, in the form of the Hamiltonian of a 
pendulum: 

Hq=p,Z/2-A (p) cos [k,z--0 (cp) ] (19) 

with a slowly varying amplitude 

A (p) =-VoJ, (kp)  

and with phase 

The slowness of the transverse motion leads to the appear- 
ance of an adiabatic invariant 

Since on a trajectory we have Hq = const, the approximate 
integral I = const follows from this. 

An analytical investigation is also possible in another 
limiting case, when the second of the conditions ( 18) is re- 
placed by the opposite condition: 

which corresponds, e.g., to the motion of a particle in the 
field of a wave propagating at almost a right angle to the 
direction of the magnetic field. In this case the averaged 
transverse motion is fast in comparison with the longitudinal 
motion. The system has an adiabatic invariant correspond- 
ing to the action of the averaged transverse motion. How- 
ever, with drift of the slow variablesz, p, the phase point can 
intersect the separatrix of the fast motion on the ( x ,  p,) 
plane and the conditions for adiabaticity are violated. This 
leads to violation of the adiabatic invariance and cause the 
motion to become chaotic. The phenomena that occur in this 
case are considered below. 

3.THE MOTION FOR LONGITUDINAL CYCLOTRON 
RESONANCE 

In this section we consider the properties of the reso- 
nance Hamiltonian ( 14) in conditions of longitudinal cyclo- 
tron resonance: 

where s is an integer. We shall assume that the motion of the 
particle along the magnetic field is close to the resonance 
motion, and that the cyclotron rotation is high-frequency: 

In the Hamiltonian (14), when these conditions are ful- 
filled, it is possible to extract the resonance terms, i.e., to 
perform averaging in conditions of cyclotron resonance. For 
the averaged Hamiltonian we find 

(H)--pz2/2+Vdq-, (k,p) cos [ (q-s) cp 
- k k z ~ - ~ ~ ~ t ] .  

By means of the generating function 
( 2 6 )  

(27) 

we go over to the coordinate frame moving along the direc- 
tion of the magnetic field with velocity v, = sw,/k,. In the 
new variables 

SOH Z=z - - t, p,=pz 
kz 

the Hamiltonian (26) can be written in the form 
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Adding the constant (sw,/2kZ )*, we finally have 

<B> =P,2/2+ V,J,-, ( k , ~ )  cos [ (q-s) q+k,Z], (28) 

where 

P,=p,-soH/kZ. (29) 

The system (28), generally speaking, is not integrable. 
Simple to investigate is the case when the conditions 

analogous to the conditions (18), are fulfilled. In this case 
the variables P,, Z are fast and I , p  are slow. In the same way 
as in the preceding section, we find the approximate integral 
I = const of the slow motion. 

The opposite limiting case, when the motion in the (P,, 
Z )  plane is slow and that in the (I, p) plane is fast, corre- 
sponds to wave propagation almost perpendicular to the 
magnetic field. The parameter /3 = k,/k, is small, and the 
second of the inequalities ( 18) is replaced by the opposite 
inequality 

We rewrite the Hamiltonian (28) of the averaged motion in 
dimensionless form, for which we change to the dimension- 
less variables 

Omitting the carets for simplicity, we find the dimensionless 
Hamiltonian 

As was shown in Ref. 12, for strictly perpendicular 
propagation of the wave (P = 0) the equations of motion 
(33) determine a stochastic web on the (I, p) plane. This 
web is a network of finite thickness, inside which the dynam- 
ics of the particles is stochastic, and outside which (i.e., in 
the cells of the network) the dynamics is regular. The geom- 
etry of the web as a whole is also preserved for E -  1. An 
example of such a web is shown in Fig. 1, in which a PoincarC 
section of the phase trajectory of the system (6') for /3 = 0, 
E = 2.2, and v = 4. The points are calculated after equal time 
intervals A t  = 2r/v. 

For a small nonzero value of p &  1 the variables Z and 
P, vary slowly. Thus, in the system described by the Hamil- 
tonian 2Y the variables p and I are fast and the variables Z 
and P, are slow. A particle rotates rapidly in the cells of the 
web while executing slow motion (drift). The equations of 
motion have the following form: 

P,=p2VJq-, (p) {cos [ (q-s)cp] sin Z 
+sin [ (q-s) cp] cos Z) 

l=V(q--s)  I,-, (p) sin [ (q-s) q+Zl, 

- sin [ ( q - s )  (PI sin Z) , ( 32) where J I, - , ( p )  denotes the derivative of a Bessel function 
with respect to its argument. For p( 1 we can consider the 
second pair of equations (34) with a slowly varying param- 

where V = k 5; V,/w;. The corresponding Hamilton equa- eter 2. The separatrix network of the Hamiltonian is speci- 
tions of motion have the form fied by the set of equations 

FIG. 1. Stochastic web forp = 0, E = 2.2, v = 4. FIG. 2. Regular trajectory for f i  * = E = 0.5, v = 4. 
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p=p.(j), Jq-a(pl(j)) =0, j = l ,  2, . . . , 

rp=rp., (q-s) rp,+Z=n/2+nn, 

the variations of the momentump, is too small for the crite- 
(35) rion for overlap of resonances to be fulfilled, although the 

dynamics of the system is stochastic. This is due to a certain 

where n is an integer. The equations (35) specify a spiral web 
in the three-dimensional space ( x ,  p,, Z ) .  In the section cut 
by a plane Z = const the web is a system of concentric cir- 
cles, and straight lines passing through the coordinate ori- 
gin, on the ( x ,  p, ) plane. The cells of the web form concen- 
tric "belts" around the coordinate origin. From Eqs. (35) it 
can be seen that, when Z is varying slowly as a result of 
detuning from longitudinal resonance, the separatrix 
network and, consequently, the stochastic web rotate about 
the coordinate origin with angular velocity P, -P 2, while 
the shape and area of the shells remain constant. Because of 
this, a particle that is executing rapid rotation inside a cell 
sufficiently far from the separatrix of the averaged motion 
will never intersect the stochastic web and will move regular- 
ly. An example of such a regular trajectory is shown in Fig. 2. 

A trajectory with initial conditions sufficiently close to 
the separatrix of the averaged motion is captured by a sto- 
chastic layer and wanders chaotically along the channels of 
the stochastic web. In this case, of course, the particle energy 
can vary significantly, and, thus, the particle will execute 
diffusional motion. This is, in essence, the usual mechanism 
of diffusion over a stochastic web--a mechanism that is de- 
scribed, e.g., in Ref. 12 and also occurs when the wave propa- 
gation is strictly perpendicular to the magnetic field. Thus, 
there is no substantial enhancement of the diffusion in com- 
parison with that in the case of a perpendicularly propagat- 
ing wave. 

These conclusions were confirmed by numerical inte- 
gration of the system ( 6 ' ) .  Figure 3a depicts the projection 
of the Poincart section on to the (x, p , )  plane for the same 
values of the parameters as in Fig. 1 but with f l  = lo-'. 
The initial conditions are the same in the two cases. It can be 
seen that there is some increase in the energy to which the 
particle is "heated" during the observation time, but this 
increase is slight. The slow drift of orbits as a result of the 
detuning of the longitudinal resonance can also be seen. We 
note that stochastic dynamics occurs in the system despite 
the fact that the criterion that was used in Refs. 2 and 17 for 
overlap of cyclotron resonances is not fulfilled. This is dem- 
onstrated by Fig. 3b, which shows the projection of the Poin- 
cart cross section on to the ( Z , p ,  ) plane for the same param- 
eter values as in Fig. 3a. It can be seen that the amplitude of 

roughness (noted, e.g., in Ref. 18) in the criterion for over- 
lap of the primary resonances. 

We shall estimate the energy to which the particles can 
be heated stochastically as a result of random walks of the 
phase trajectories inside the stochastic web. When the trajec- 
tory falls inside the web the probability of heating of the 
particle, i.e., the probability that it moves chaotically over 
the web in the radial direction away from the coordinate 
origin, is smaller than the probability of motion in the direc- 
tion of lower values of the action. This is due to the exponen- 
tial decrease of the thickness of the web with increase ofp. In 
the case of wave propagation perpendicular to the magnetic 
field the thickness of the stochastic layer is estimated as fol- 
l o w ~ : ' ~  

where p is the coordinate of the nearest stationary elliptic 
point. This estimate can also be used in the case of a longitu- 
dinal resonance of order s for oblique propagation of the 
wave for 04 1 (with the replacement q-, Iq - sl ). If we 
deem the diffusion to cease for those values of p, for which 
the argument of the exponential is equal to - 2, we obtain 
an approximate estimate for the value p, up to which diffu- 
sion of particles occurs: 

As is shown by numerical analysis, the diffusion of par- 
ticles is also limited in the case when the longitudinal-reso- 
nance condition (24) is not fulfilled. 

4. DYNAMICS OF A PARTICLE IN THE FIELD OF A PACKET 
CONSISTING OF SEVERAL HARMONICS 

We shall consider the dynamics of a charged particle in 
a homogeneous magnetic field and the field of a wave packet 
consisting of a finite number M of harmonics. The electric 
field E of the packet lies in the (x, z )  plane and has the form 

M 

E (r, i!) =Eo sin (kg+ks-mot) ,  (38)  

18 3.riY 
b 

4 pz 

F4G. 3. a) Phase trajectory for 8 ' = lo-', 
E = 2.2, v = 4: projection on to the ( x ,  p , )  
plane; b) the same, but in projection on to the 
(Z, p, ) plane. 
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FIG. 4. Stochastic web formed for motion in the 
field of a wave packet for P = 0, E = 1.0: a)  
M = 2 , q = 4 ; b ) M = 3 , q = 5 ; c ) M = 5 , q = 5 .  

i.e., for simplicity the amplitudes of all the harmonics are 
taken to be the same. As before, let the resonance condition 
v, = quH be fulfilled. The Hamiltonian of the system is writ- 
ten in the form 

Just as was done in Sec. 2, we find the resonance Hamilto- 
nian: 
8= H,+ V,, 

M 

P H . = - +  V o E  Imq(ky)cos(mqcp+kzz). (40) 
m-i  

V,= V ,  I. ( k x p )  cos [nrp+k,z+ (,lox-mvo) tl 

When the conditions ( 16) are fulfilled, the dynamics of the 
system is described in the main by the averaged Hamiltonian 
Hq. In particular, fo r0  = 0 the latter determines the geome- 
try of the stochastic web and the arrangement of the elliptic 
and hyperbolic stationary points on the phase plane. Figure 
4 shows PoincarC sections of phase trajectories of the particle 
in the case of strictly perpendicular (0 = 0)  propagation of 
the wave packet for E = 1.0 and M = 2, q = 4 (Fig. 4a), 
M = 3, q = 5 (Fig. 4b), and M = 5, q = 5 (Fig. 4c). The 

order of the symmetry of the stochastic web is determined by 
the quantity q, i.e., by the ratio of the characteristic frequen- 
cy of the wave packet to the cyclotron frequency. The skele- 
tons of the webs have a more complicated geometry than in 
the case (analyzed in Ref. 12) of a packet consisting of one 
harmonic, in which they are a set of concentric circles and 
rays issuing from the coordinate origin. 

For p # O  the number of degrees of freedom in the sys- 
tem becomes equal to 24, and this leads to substantial 
changes in the dynamics of the particles. We shall consider 
the particular case q = 4, M = 2. The Hamiltonian Hq takes 
the form 

H,=pz2/2+Vo(J, ( L p )  cos (4cp+kzz) 
+18(kxp) cos (8cp+kzz) 1. (41 

For oblique propagation of the wave packet (0 2 <  1) the 
variable z in (41) is a slowly varying parameter. With in- 
crease of z the geometry of the separatrix network of the 
averaged Hamiltonian changes. This is demonstrated in 
Figs. 5a and 5b, which present the numerically obtained se- 
paratrices of the Hamiltonian H, for k,z = 0 and k,z = ~ / 2 ,  
respectively. It can be seen that with change of z the shape 
and area of the cells of the separatrix network change. There- 
fore, a particle executing rapid rotation inside a cell not too 
close to an elliptic point will, in time, intersect the separatrix 
of the averaged motion and fall into a stochastic layer. As a 
result, the effective width of the web turns out to be consider- 
ably greater than for P = 0. This increase of the region of 
chaotic dynamics is analogous to that described in Ref. 16 
for an infinitely wide wave packet, when it leads to a sharp 
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enhancement of the diffusion of particles. The difference 
between the system under consideration and that investigat- 
ed in Ref. 16 is manifested at sufficiently large values of the 
energy. For large values ofp we make use of the asymptotic 
expansions of the Bessel functions and their derivatives: 

2 I,, (k,p) = ( -) '' cos (kg - - - - "" 2 4 1 +..., 
n k,p 

2 
I,,'(K,.~)= - ( - ) I h  sin(kg -y--%) +. . . 

nk,p 2 4 

We confine ourselves to the leading terms of the asymp- 
totic forms, which is admissible when 

The Hamiltonian (41) takes the form 

x (cos(4rp+k,z)+ cos (8cp+kzz) 1. 
(43) 

FIG. 5. Separatrices of the Hamiltonian H, for 
k,z = 0 ( a )  and k,z = 7r/2 (b). 

From this we find the set of equations that specify the geome- 
try of the separatrix network for large p: 

where n, k, and I are integers. Thus, for largep the separatrix 
network is a set of concentric circles and rays issuing from 
the coordinate origin, as in the case of motion in the field of 
one wave. Therefore, for suchp the arguments of the preced- 
ing section concerning the mechanism of the limitation of 
diffusion over the stochastic web can be repeated. In the 
process of slow drift the phase trajectory cannot leave the 
"belt" in which it finds itself, and the diffusion is weakened 
on account of the exponential decrease of the thickness of the 
web with increase ofp. Thus, in practice, diffusion ceases at 
values of p at which the cells of the web form concentric 
circular belts. The limitation of the stochastic heating can be 
seen from Figs. 6a-d, which show consecutive stages of the 
development of the diffusion process in the field of the pack- 
et (38) consisting of two harmonics (P = E = 1.0, 

- 25 ' FIG. 6 .  Stages in the development of the diffusion process - 25 x 25 i n t h e f i e l d o f t h e p a ~ k e t ( 3 8 ) f o r ~ ~ = l O - ~ , ~ = 1 . 0 ,  
M =  2, Q = 4 (one phase traiectorv is re~resented) for 
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FIG. 7. Poincart section of a phase trajectory of a particle moving in the 
field of the packet (38) for P = E = 1.0, M = 3, q = 5. 

M = 2, q = 4). Figure 7 shows a PoincarC section of the 
phase trajectory of a particle moving in the field of the packet 
(38) forP = E = 1.0, M = 3, q = 5. Figure 8 shows 
stages of the diffusion process for 8 = 10 -4, E = 1.0, 
M = 5, q = 5; the corresponding calculation times are 
T = 19 000 (Fig. 8a) and T = 49 000 (Fig. 8b). Owing to 
the presence of higher harmonics in the packet, the "heat- 
ing" of a particle is to higher values of the energy than in the 
case represented in Fig. 7. Figure 9 depicts PoincarC sections 
of a particle trajectory for 0 = E = 1.0, M = 3 ,  
q = 7; the corresponding calculation times are T = 14 200 
(Fig. 9a) and T = 46 200 (Fig. 9b). It is clear that the sym- 
metry of the phase portraits on Figs. 6-9 is determined by 
the quantity q = v,/w,.  The slow drift of the orbits as a 
result of the longitudinal motion can be seen. 

To conclude the section we make a remark concerning 
the maximum magnitude of the stochastic heating. The ener- 
gy to which a particle can be heated has been estimated from 
simple physical considerations. In Ref. 19 it is assumed that 
a particle can be accelerated to a velocity equal to the highest 
of the phase velocities of the harmonics of the wave packet. 

However, the above results from the numerical analysis 
show that this estimate is much too low. This can be seen, 
e.g., from Fig. 4c, obtained for M = 5, q = 5 .  The corre- 
sponding highest phase velocity in the wave packet is equal 
to (in dimensionless units) v,,,,, = Mqw,/k, = 25, where- 
as the maximum velocity to which the particle is accelerated 
in the observation time is x,,, ~ 4 0 ,  which is almost twice as 
large. This discrepancy is due, obviously, to the stochastic 
character of the acceleration. 

5. CONCLUSION 

The system that we have considered has 2+ degrees of 
freedom and possesses the basic properties intrinsic to multi- 
dimensional Hamiltonian dynamical systems. Thus, investi- 
gation of this system permits us to make progress in our 
understanding of the complicated phenomena associated 
with the onset of stochastic dynamics in multidimensional 
systems. Owing to the degeneracy of the problem with re- 
spect to some of the degrees of freedom, a "bare" web exists 
in the phase space. In the case when the wave packet con- 
tains one harmonic, the skeleton of this web, as determined 
by the averaged Hamiltonian, possesses radial symmetry 
and is a set of concentric circles and rays issuing from the 
coordinate origin. The presence of the extra longitudinal de- 
gree of freedom gives rise to slow drift of the phase trajector- 
ies, and this leads to the appearance of a spiral web in the 
phase space. If the packet consists of several harmonics the 
structure of the "bare" web is more complicated: There ex- 
ists a region around the coordinate origin in which the skele- 
ton of the web is not a set of rays issuing from the coordinate 
origin and circles, as in the case of one wave, but is more like 
the skeleton of the stochastic web that arises in the field of an 
infinitely wide packet.14 If for a stochastic web arising in a 
four-dimensional phase space we consider sections of it cut 
by planes perpendicular to the magnetic-field direction, it 
turns out that in this region the shape, area, and relative 
positions of the cells of the web vary from one section to 
another. Here, phenomena occur that are similar to those 
considered in Ref. 16-in particular, enhancement of diffu- 
sion. Nevertheless, the diffusion of particles is limited, since 
the geometry of the web at large values of the energy of the 
transverse motion is the same as in the field of one wave, but 
the thickness of the web decreases exponentially with in- 
crease of the energy. 

We note that the slowing of the diffusion at large ener- 
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FIG. 8. Stages in the development of the dif- 
fusion process for B = lop4, E = 1.0, 
M = 5, q = 5 (one phase trajectory is repre- 
sented) for T = 19 000 (a)  and T = 49 000 
(b).  
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gies of the transverse motion creates considerable difficulties 
in a numerical investigation of the dynamics of the particles 
on the web. In particular, the question of the rearrangements 
of stochastic webs with increase of the number of harmonics 
in the packet requires further investigation in the case of 
oblique propagation of the packet. 
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